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Integrative analysis reveals ncRNA-
mediated molecular regulatory network
driving secondary hair follicle regression in
cashmere goats
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Abstract

Background: Cashmere is a keratinized product derived from the secondary hair follicles (SHFs) of cashmere goat
skins. The cashmere fiber stops growing following the transition from the actively proliferating anagen stage to the
apoptosis-driven catagen stage. However, little is known regarding the molecular mechanisms responsible for the
occurrence of apoptosis in SHFs, especially as pertains to the role of non-coding RNAs (ncRNAs) and their
interactions with other molecules. Hair follicle (HF) degeneration is caused by localized apoptosis in the skin, while
anti-apoptosis pathways may coexist in adjacent HFs. Thus, elucidating the molecular interactions responsible for
apoptosis and anti-apoptosis in the skin will provide insights into HF regression.

Results: We used multiple-omics approaches to systematically identify long non-coding RNAs (lncRNAs), microRNAs
(miRNAs) and mRNAs expressed in cashmere goat skins in two crucial phases (catagen vs. anagen) of HF growth.
Skin samples were collected from three cashmere goats at the anagen (September) and catagen (February) stages,
and six lncRNA libraries and six miRNA libraries were constructed for further analysis. We identified 1122 known and
403 novel lncRNAs in the goat skins, 173 of which were differentially expressed between the anagen and catagen
stages. We further identified 3500 gene-encoding transcripts that were differentially expressed between these two
phases. We also identified 411 known miRNAs and 307 novel miRNAs, including 72 differentially expressed miRNAs.
We further investigated the target genes of lncRNAs via both cis- and trans-regulation during HF growth. Our data
suggest that lncRNAs and miRNAs act synergistically in the HF growth transition, and the catagen inducer factors
(TGFβ1 and BDNF) were regulated by miR-873 and lnc108635596 in the lncRNA-miRNA-mRNA networks.

Conclusion: This study enriches the repertoire of ncRNAs in goats and other mammals, and contributes to a better
understanding of the molecular mechanisms of ncRNAs involved in the regulation of HF growth and regression in
goats and other hair-producing species.
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Background
Cashmere goats are the main livestock breed used for
the production of both cashmere and meat [1]. Cash-
mere has an important status in the textile industry due
to its high economic value [2]. Improvement the quan-
tity and quality of cashmere becomes an important
breeding goal, and molecular breeding is a convenient

way to locate functional genes that increase fiber
production [3, 4]. Preventing or delaying hair loss is a
matter of some priority. Hair loss and production mech-
anisms remain incompletely explained, though there
have been several studies involving hair regeneration in
humans or other model animals [5, 6].
Cashmere is produced by the secondary hair follicles

(SHFs), which exhibit an annual periodicity, undergoing
anagen (growth), catagen (regression), and telogen (rest-
ing) phases annually. The majority of the time spent in
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each cycle is occupied by anagen, while catagen can have
a critical effect on telogen or even the complete cycle.
The basis for HF involution rests in the unique follicular
epithelial and mesenchymal elements, as well as other
cells type (adipocytes) intercellular molecules communi-
cation [7, 8]. Some of the molecular signals involved in
HF regression process have been determined, including
fibroblast growth factor (FGF), transforming growth
factor-β (TGF-β), tumor necrosis factor-β (TNF-β), Wnt,
sonic hedgehog (SHH), neurotrophins (NT), and
homeobox proteins [7, 9–13].
HF regression is not only associated with the regula-

tion of HF-structured cells but is also affected by other
types of cellular changes in the skin environment.
Whole-transcriptome sequencing could provide new in-
sights into the molecular regulatory mechanisms of the
HF cycle and the interactions among HF cells. The func-
tions of microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) have been extensively reported in live-
stock, such as sheep and goat [14, 15], which played an
important regulatory role in biological processes such as
cell proliferation, differentiation, and apoptosis. MiRNAs
are widely reported in animals and expressed in a
temporal and spatial manner, playing an important role
in hair follicle development and cycle [16–19]. We
previously found that miRNAs are widely expressed in
the skins of cashmere goats and that their expression
levels were altered across the different HF cycling phases
[16, 20, 21]. Specifically, the expression of miR-31 was
significantly higher in the growth phase than in the
regression phase; this miRNA targets the regulation of
KRT16, KRT17, DLX3, and FGF10, thus affecting hair
growth [22]. MiR-214 controls skin and HF development
by modulating the activity of the Wnt pathway [23].
MiR-22 has been shown to be associated with HF degen-
eration and inhibits the expression of transcription fac-
tors such as DLX3, FOXN1, and HOXC13 [24]. Thus,
miRNAs play an indispensable regulatory role in various
biological processes during the HF cycle and in the HF
transitions to other stages.
Other non-coding RNAs (ncRNAs), such as lncRNAs,

are essential for the regulation of hair growth and the
HF cycle, though the functions of the lncRNAs involved
in the HF cycle remain unclear. The expression of
lncRNAs in mouse dermal papilla cells (DPCs) changes
with subsequent passage generations, indicating that
lncRNAs are related to dermal papilla (DP) characteris-
tics [25]. LncRNAs have been found to be associated
with hair growth, playing an important role in the devel-
opment of SHFs in sheep [15]. The lncRNA PlncRNA-1
regulates the proliferation and differentiation of HF stem
cells through the TGFβ1-mediated Wnt/β-catenin
signaling pathway [26]. The expression of lncRNA-H19
changes according to the growth phase of goat SHFs

[27]. Overall, lncRNAs as well as miRNAs play an im-
portant role in the regulation of HF growth and
development.
Despite this progress, the regulation of hair cycling in

mammals is complex, and there may be other regulatory
channels involved. Previous studies have reported that
lncRNAs act as regulatory genes that compete with miR-
NAs [28] to not only directly inhibit mRNA expression
but also bind miRNAs to regulate mRNA expression. In
this study, we aimed to elucidate the molecular mechan-
ism of HF regeneration by determining the expression
levels of mRNAs, lncRNAs, and miRNAs and their cor-
responding relationships in the skin microenvironment.

Methods
Samples
Three two-year-old female Shanbei Cashmere goats with
unrelated genetic background were used in this study.
Skin samples were biopsied at mid-September and mid-
February, as previously described [29]. To minimize ani-
mal suffering, procaine was used for local anesthesia.
The goats were sampled from the Shanbei Cashmere
Goat Farm of Hengshan, Yulin, China (located at 37°
21′–38°14′ N and 108°56′–110°01′ E), being raised in
the same environment. Dorsal skin samples were col-
lected from between ribs 12 and 13. Each skin sample,
about 1 cm2, was cut into pieces and then stored in an
RNA/DNA sample protection reagent (Takara, Dalian,
China), immediately. Samples were transported in dry
ice and stored at − 80 °C for total RNA extraction. All
sampling procedures in this experiment were in accord-
ance with approved guidelines of the Animal Care and
Use Committee of the Northwest A&F University
(Approval ID: 2014ZX08008–002).

Total RNA isolation, library preparation, and sequencing
Total RNA was extracted using an Eastep® Super Total
RNA Extraction Kit (Promega, Shanghai, China), accord-
ing to the manufacturer’s instructions. We obtained two
libraries from each sample: a lncRNA library and a
miRNA library. The lncRNA library was prepared
following a previous description [30], and library quality
was assessed on the Agilent Bioanalyzer 2100 system.
Libraries were sequenced on an Illumina HiSeq 4000
platform as 150-bp paired-end reads. Small RNA librar-
ies were constructed and sequenced following a previous
description [30], and the libraries were sequenced on an
Illumina HiSeq 2500 platform using single-end reads.

Quality control, annotation, and expression levels
Raw reads from lncRNA libraries were routinely proc-
essed using a Perl script. In this step, adapters, reads
containing over 10% Ns, and low-quality reads (> 50% of
bases with Phred scores < 5%) were removed. The Phred
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score (Q20, Q30) and GC content of the clean data were
calculated. All subsequent analyses were based on the
high-quality data. The goat (Capra hircus) reference
genome and gene annotation files (Ver. ASM170441v1)
were downloaded from the National Center for Biotech-
nology Information (NCBI, https://www.ncbi.nlm.nih.-
gov/). An index of the goat reference genome was built
using Bowtie2 v2.3.1 [31], and paired-end clean reads
were aligned to the reference genome using TopHat2
v2.1.1 [32]. Cufflinks v2.1.1 [33] was used to analyze
gene patterns. lncRNAs were identified based on their
structures and the fact that they do not encode proteins;
specifically, the following five criteria were used [34]: 1)
transcripts must contain no fewer than 2 exons; 2) the
transcript length must be more than 200 bp; 3) screen-
ing the known lncRNAs and the unknown transcript left
for the following analysis; 4) quantification of each tran-
script must be no less than 0.5; 5) remaining unknown
transcripts that potentially encoded proteins were assessed.
Tophat2 was run with ‘–library-type fr-firststrand’, and Cuf-
flinks was run with ‘min-frags-per-transfrag = 0’, while other
parameters were set to the defaults.
Raw reads from small RNA libraries were first proc-

essed using custom Perl and Python scripts, and redun-
dant regions were removed. Then, we chose a certain
range of length from clean reads for all the downstream
analyses, and the annotation was performed following
previously described methods [35] with miRBase21.0
used as a reference. Cuffdiff (v2.1.1) [33] was also used
to calculate the fragments per kb per million reads
(FPKM) for both lncRNAs and coding genes in each
sample. MiRNA expression levels were estimated by
transcripts per million (TPM) as previously described
[35]. For biological replication, transcripts, genes, or
miRNAs with a P-value of < 0.05 were considered differ-
entially expressed between the two groups of goats.
DEseq2 was used to analyze all differential expression
experiments.

Quantitative real-time PCR (qPCR) validation
Total RNAs were extracted from adult goat skin samples
from the two groups and used for qPCR analysis. First
strand cDNA was synthesized using the Thermo Scien-
tific RevertAid First Strand cDNA Synthesis Kit
(#K1622, Thermo Scientific, USA) according to the man-
ufacturer’s instructions and was then subjected to quan-
tification using a standard SYBR Premix Ex Taq (Tli
RNaseH Plus) kit (#RR420A, Takara, China) on the
Bio-Rad CFX96 Real-Time PCR Detection System with
β-actin as an endogenous control. The qPCR procedure
was carried out according to the instructions of the
reagent kit: pre-denaturation at 95 °C for 30 s, followed
by 41 cycles of denaturation at 95 °C for 5 s, annealing
at 60 °C for 30 s, and extension at 72 °C for 30 s. The

primers used for this experiment are listed in
Additional file 1. Biological and technical replication was
performed in triplicate for each sample. Relative gene
expression was calculated using the 2-ΔΔCt method and
quantified relative to β-actin. Student’s t-tests were used
for statistical analysis, and a P-value < 0.05 was consid-
ered to be significant. Values are expressed as means ±
SD, * P < 0.05, ** P < 0.01.

GO and KEGG pathway analysis
Gene ontology (GO) enrichment analysis of DE RNAs
or lncRNA target genes was conducted with the GOseq
R package, with a correction for gene length bias. GO
terms with corrected P-values < 0.05 were considered
significantly enriched DE genes. Kyoto Encyclopedia of
Genes and Genomes (KEGG) database is a resource for
understanding the high-level functions and utilities of a
biological system, such as a cell, organism, or ecosystem,
from molecular-level information, especially large-scale
molecular datasets generated by genome sequencing and
other high-throughput experimental technologies
(http://www.genome.jp/kegg). We used KOBAS software
to assess the statistical enrichment of DE genes or
lncRNA target genes in KEGG pathways. Directed acyc-
lic graph (DAG) is a graphical display of DE genes GO
enrichment analysis results, and DAGs were drawn in
the biological process (BP), cellular component (CC) and
molecular function (MF), respectively.

Correlation and co-expression/co-localization analysis
Co-expression analysis was based on calculating the
Pearson correlation coefficients (PCCs) between coding
genes and noncoding transcripts according to their
expression levels. An absolute value of the parameter
PCC ≥ 0.95, P-value < 0.01, and false discovery rate
(FDR) < 0.01 was used for identifying genes for further
analysis. For identifying cis-regulation, lncRNAs that act
on neighboring target genes were investigated. We
searched for coding genes 10 k/100 k upstream and
downstream of each lncRNA and then analyzed their
functions. For identifying trans-regulation, lncRNAs and
target genes were identified based on their expression
levels. We calculated the expression level correlation be-
tween lncRNAs and coding genes using custom scripts.

Competing endogenous RNAs (CeRNAs) network analysis
To reveal the roles and interactions of ncRNAs and
mRNAs in the HF growth cycle, we constructed ncRNA
regulatory networks. Those lncRNAs and mRNAs whose
expression levels were meaningfully correlated were
included in this analysis. Potential miRNA response ele-
ments were searched for the sequences of lncRNAs and
mRNAs, and we identified overlaps in predicted miRNA
seed sequence binding sites and lncRNAs binding sites
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in the target mRNA as part of the lncRNA–miRNA–
mRNA interaction. The miRNA binding sites were pre-
dicted by miRBase (http://mirbase.orghttp://mirbase.org),
while the miRNA–mRNA interactions were predicted by
Targetscan (http://www.targetscan.org/). The interaction
network was built and visually displayed using Cytoscape
software based on the screening of lncRNA–miRNA–
mRNA pairs.

Results
Morphological features of goat skins at different stages
To examine the morphological differences in the growth
to regression stages, we collected cashmere goat skin
samples at anagen (September) and catagen (February).
These time points were determined according to HF
morphological analysis and fiber growth features.
Hematoxylin and eosin (H&E) staining indicated clear
differences in the hair bulbs of anagen and catagen goat
skins. Specially, the sharp/size of DPs had a great change
and their appearance were atrophying in February, while
they were plump in September (Fig. 1a). These results
indicate that a series of biological processes occur in
goat skins throughout the year, and this further guaran-
teed that the proper samples were collected for further
analysis. Therefore, a comprehensive whole-transcriptome
sequencing analysis was used to systematically investigate
the role of genes and ncRNAs in the biological processes
of the HF transition from the anagen to the catagen stage
(Fig. 1b).

Identification of lncRNAs and miRNAs in goat skin
An average of 183,914,710 raw reads were produced on
the Illumina HiSeq 4000 platform for each sample. After
filtering out adaptor-related and low-quality sequences
and those containing Ns, we obtained 176,158,389 clean
reads, accounting for 26.4 Gb of clean sequence for each
sample. Subsequently, we classified and mapped the
clean reads to the latest goat reference genome assembly
(ARS1, https://www.ncbi.nlm.nih.gov/assembly/GCF_00

1704415.1). The output data, raw read classification, and
mapping region for each sample are summarized in
Additional file 2 (Tables S1–S2) and Additional file 3:
Figure S1, Additional file 3: Figure S2). We identified
lncRNAs by characteristics that distinguish them from
other RNAs (coding mRNAs, tRNAs, rRNAs, snRNAs,
snoRNAs, pre-miRNAs, and pseudogenes), including the
use of five rigorous criteria and screening tools for iden-
tifying potential coding sequences (see Additional file 3:
Figure S3a). We identified 45,638 transcripts, 1122
known lncRNAs, 403 novel lncRNAs (Additional file 3:
Figure S3b), and 350 transcripts of uncertain coding
potential (TUCP). A list of these and their expression
levels is provided in Additional file 4. For miRNA-seq,
we obtained more than 28.6 M clean reads, accounting
for 1.43 Gb of clean sequence for each sample
(Additional file 2: Table S3). We identified 411 known
miRNAs and 307 novel miRNAs (Additional file 5). A
summary of the identified RNAs is provided in Table 1,
and those determined to be differentially expressed (DE)
between the anagen and catagen stages were used for
further analysis.

Differentially expressed mRNA, lncRNA, and miRNA
profiles
To determine whether ncRNAs are involved in the HF
regression process. DE ncRNAs and mRNAs from cata-
gen and anagen stages were visualized using a volcano
plot and clustering map, while overlapping RNAs
expressed in the two groups were visualized using a
Venn diagram. There were 173 DE lncRNAs comparing
the catagen to the anagen, including 98 up-regulated
and 75 down-regulated lncRNAs (Fig. 2a–b,
Additional file 6). Similarly, there were 3500 DE mRNA
transcripts (3357 genes) comparing the catagen to the
anagen, including 1830 up-regulated and 1670 down-
regulated transcripts (Fig. 3a–c, Additional file 7), and
there were 72 DE miRNAs comparing the catagen to the
anagen, including 39 up-regulated and 33 down-

Anagen Catagen
NGS

DE miRNAs DE mRNAs DE lncRNAs

Target mRNAs Target mRNAs

Sampling

Sequencing

GO & KEGG analysis

Co-target mRNAs

Function analysis &
Network construction

4X

10X

September February ba

Fig. 1 H&E staining of goat skins and overall study design. (a) H&E staining results of goat skins in the anagen and catagen phases. Red arrows
show the location of hair dermal papilla. (b) Schematic workflow of the experimental design of this study
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regulated miRNAs (Fig. 4a–c, Additional file 8). Fig. 5a
shows a summary histogram of DE lncRNAs, mRNAs,
and miRNAs, and the top 20 most significantly DE
ncRNAs are provided in Table 2. We found that those
lncRNAs (LOC102190274, LOC108635596, LOC108635
657, LOC108636746, LOC108635658, LOC102188339,
LOC108635659, and LOC108635656) are potential
regulators. LncRNAs regulate the expression of target genes
(mRNAs), and this can be demonstrated by co-localization
and co-expression. Given that DE mRNAs could be directly
or indirectly regulated by lncRNAs, we identified the over-
lap between lncRNA target genes and DE mRNAs for fur-
ther analysis. Fig. 5b shows the target mRNAs of lncRNAs,

based on co-localization and co-expression, and the overlap
between these and DE mRNAs in aVenn diagram.
In comparing the RNAs expressed in the catagen and

anagen phases, there were some genes of note. As kera-
tin protein (KRT) and keratin-associated protein
(KRTAP) are strongly associated with hair growth, we
focused on these. We found that 74 KRT and KRTAP
transcripts were differentially expressed between the
catagen and the anagen stages (Fig. 6a). These genes are
involved in driving the physiological characteristics of
hair growth. KRT and KRTAP comprise the hair shaft
and are an important part of cashmere. Most DE KRT
and KRTAP genes (KRT38, KRT4, KRTAP15–1,
KRTAP13.1, and KRTAP3–1) are involved in the con-
struction of hair and were more highly expressed in the
anagen than in the catagen stage. We also found that a
few genes (KRT2, KRTDAP, KRT77, and KRT80) in-
volved in epidermis keratinization were more highly
expressed in the catagen stage. We also investigated DE
growth factors or ligands associated with hair growth,
and we found that the expression of growth arrest-

a

c

b

Fig. 2 LncRNA expression profile changes in goat skins. (a) Volcano plot indicating up- and down-regulated lncRNAs in the catagen stage compared
with the anagen stage. (b) Heat map of lncRNAs showing hierarchical clustering of altered lncRNAs in the catagen stage compared with the anagen
stage. Up- and down-regulated genes are in red and green, respectively. (c) Venn diagram showing the number of overlapping lncRNAs in the catagen
and anagen stages

Table 1 Summary of identified genes and ncRNAs

ncRNA #Known #Novel #Known different
transcripts

#Novel different
transcripts

mRNAs 43,763 350 3500 87

lncRNAs 1122 403 107 66

miRNAs 411 307 55 17
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specific genes (GAS1, GAS6, and GAS7) was higher in
the catagen than in the anagen stage. We also found that
growth factors and their receptors (FGF22, FGF21,
FGF2, GDF11, IGF1, and FGFR4), as well as up-regulated
skeletal muscle growth 5 homolog (USMG5) were more
highly expressed in the anagen stage (Fig. 6b).

Validation of mRNAs and lncRNAs
To validate the reliability of the sequencing results, the
expression changes of some mRNAs (WNT11, PLIN4,
LAMA5, LAMA2, PLIN1, MSX2, HSP70.1, TGFBR2, and
WNT4) and lncRNAs (lnc10218839, lnc102190274,
lnc102189880, lnc106502925, and lnc102171315) were
validated by qPCR (Fig. 7a). The expression levels of the
genes as determined by the sequencing and qPCR methods
are shown in Fig. 7b. These exhibited a correlation coeffi-
cient of 0.865 and P-value of 6.599E-05. The qPCR expres-
sion levels of all validated mRNAs and lncRNAs were
consistent with the results obtained from HiSeq.

Functional prediction of ncRNAs in the HF growth cycle
To explore the potential regulatory roles of lncRNAs in
the HF growth cycle, we performed an integrated

co-expression and co-localization network analysis of
DE lncRNAs and mRNAs. We further selected genes in
which the absolute value of the correlation was > 0.95 to
predict the functions of lncRNAs using GO and KEGG
analysis tools. Additional file 3: Figure S4a–c (Additional
file 3) shows the BP, CC, and MF categories of the GO
enrichment analysis based on the co-expression and
co-localization of DE lncRNAs. The most significantly
enriched BP terms were cellular metabolic process,
metabolic process, and intracellular transport, and the
noteworthy CC terms were protein complex, intracellu-
lar organelle part, and intermediate filament. The most
significantly enriched MF terms were binding, protein
binding, and ion binding (Additional file 3: Figure S4d).
Additional file 3:Figure S5a–c (Additional file 3) shows
the BP, CC, and MF categories of the GO enrichment
analysis involving the overlapping co-expressed and
co-localized DE lncRNA target genes, DE miRNA target
genes, and predicted mRNAs. The most significantly
enriched BP terms were biosynthetic process, metabolic
process, and gene expression, and the most significantly
enriched CC terms were intermediate filament, cytoskel-
eton, and protein complex. The most significantly

a

c

b

Fig. 3 mRNA expression profile changes in goat skins. (a) Volcano plot indicating up- and down-regulated mRNA transcripts in the catagen stage
compared with the anagen stage. (b) Heat map of mRNA transcripts showing hierarchical clustering of altered mRNA transcripts in the catagen
stage compared with the anagen stage. Up- and down-regulated genes are in red and green, respectively. (c) Venn diagram showing the number
of overlapping mRNA transcripts in the catagen and anagen stages
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Fig. 4 MiRNA expression profile changes in goat skins. (a) Volcano plot indicating up- and down-regulated miRNAs in the catagen stage compared
with the anagen stage. (b) Heat map of mRNA transcripts showing hierarchical clustering of altered miRNAs in the catagen stage compared with the
anagen stage. Up- and down-regulated genes are in red and green, respectively. (c) Venn diagram showing the number of overlapping miRNAs in the
catagen and anagen stages

a b

Fig. 5 Count of relative ncRNAs and mRNAs in goat skins. (a) Histogram showing the number of up- and down-regulated ncRNAs and miRNAs in
goat skins. (b) Venn diagram showing the number of overlapping targeted mRNAs of up-regulated lncRNAs, targeted mRNAs of down-regulated
lncRNAs, and up- and down-regulated mRNAs
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Table 2 The information of top 20 ncRNAs

Gene_id Symbol Catagen_FPKM Anagen_FPKM log2(foldchange) pvalue qvalue

lncRNAs

108,636,076 LOC108636076 3.27552 2.18113 0.586645 5.00E-05 0.00453085

102,190,274 LOC102190274 69.5476 108.324 − 0.639287 5.00E-05 0.00453085

108,635,596 LOC108635596 496.322 332.291 0.578828 5.00E-05 0.00453085

XLOC_016760 XLOC_016760 0.679671 0.270519 1.32911 5.00E-05 0.00453085

108,635,657 LOC108635657 176.509 119.452 0.563313 5.00E-05 0.00453085

108,636,746 LOC108636746 349.081 2088.57 −2.58088 5.00E-05 0.00453085

XLOC_011770 XLOC_011770 1.64242 0.964027 0.768677 5.00E-05 0.00453085

XLOC_035762 XLOC_035762 0.522913 0.23768 1.13755 5.00E-05 0.00453085

102,191,729 LOC102191729 5.17834 2.00733 1.36721 5.00E-05 0.00453085

XLOC_022928 XLOC_022928 0.776793 0.328905 1.23986 5.00E-05 0.00453085

108,635,658 LOC108635658 439.096 261.643 0.746936 5.00E-05 0.00453085

108,637,983 LOC108637983 16.501 6.96008 1.24538 5.00E-05 0.00453085

102,188,339 LOC102188339 170.957 331.264 −0.954346 5.00E-05 0.00453085

108,635,659 LOC108635659 329.178 167.788 0.972233 5.00E-05 0.00453085

108,637,984 LOC108637984 12.7238 6.5125 0.966241 5.00E-05 0.00453085

XLOC_011150 XLOC_011150 0 0.388551 #NAME? 5.00E-05 0.00453085

106,502,102 LOC106502102 1.45025 0.539867 1.42563 5.00E-05 0.00453085

106,503,367 LOC106503367 2.82561 1.51684 0.897489 5.00E-05 0.00453085

108,635,656 LOC108635656 647.611 384.805 0.750998 5.00E-05 0.00453085

108,636,333 LOC108636333 0.393285 0.165964 1.24471 5.00E-05 0.00453085

miRNAs

chi-miR-26b-5p – 36,994.40529 20,106.24622 0.83827 4.28E-06 0.0012203

chi-miR-9-5p – 584.8240442 293.1119614 0.92855 1.48E-05 0.0021027

chi-miR-296-3p – 869.3498021 1740.745814 −0.93111 2.51E-05 0.0023833

chi-miR-126-3p – 99,329.19052 60,171.26529 0.69324 5.28E-05 0.0035946

novel_902 – 91.47212143 233.4059548 −1.1671 6.31E-05 0.0035946

chi-miR-10a-5p – 121,759.63 78,052.61543 0.61618 0.000239 0.011345

chi-miR-146b-3p – 1952.842666 3969.328822 −0.92414 0.000291 0.011832

chi-miR-10a-3p – 291.264755 195.0896059 0.55629 0.000538 0.017629

chi-miR-708-3p – 4905.081724 3185.797639 0.59626 0.000575 0.017629

novel_184 – 104.1424806 50.34351654 0.92423 0.000677 0.017629

chi-miR-30a-5p – 70,051.28439 52,086.13725 0.41857 0.00068 0.017629

novel_134 – 148.851035 322.3613492 −0.96263 0.001149 0.027286

chi-miR-411a-3p – 121.9818919 218.432541 −0.76409 0.001434 0.029372

chi-miR-27b-5p – 1603.481251 2398.470514 −0.55609 0.001443 0.029372

chi-miR-379-3p – 192.3674291 329.4816033 −0.71425 0.001648 0.031316

chi-miR-100-5p – 192,463.8305 133,343.7653 0.50892 0.002202 0.039218

chi-miR-145-3p – 5533.228655 4168.91426 0.39802 0.003202 0.053682

chi-miR-380-3p – 668.4528705 966.4892172 −0.50836 0.003804 0.060233

chi-miR-29b-3p – 422.3496069 227.8073258 0.78513 0.004412 0.064847

chi-miR-126-5p – 751.4526306 498.5027456 0.5589 0.004551 0.064847
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enriched MF terms were binding, catalytic activity, and
cytokine activity (Additional file 3: Figure S5d). Add-
itional file 3: Figure S6a–c (Additional file 3) shown the
BP, CC, and MF categories of the GO enrichment ana-
lysis of all DE genes. The most significantly enriched BP
terms were protein import into nucleus, protein
localization to nucleus, and protein targeting to nucleus,
while the most significantly enriched CC terms were
intermediate filament, intermediate filament cytoskel-
eton, and keratin filament. The most significantly
enriched MF terms were cytokine activity, chemokine
activity, and binding (Additional file 3: Figure S6d).
These enriched categories of DE ncRNAs and their tar-
get genes showed potential values and will be the focus
of future studies in HF regression.
An enriched scatter diagram of the candidate genes

provides a graphic display of the KEGG enrichment ana-
lysis. The degree of KEGG enrichment is assessed by the
richness factor, Q-value, and number of genes. We listed
the top 20 most enriched pathways for DE mRNAs and
lncRNA-miRNA-mRNAs by Q-value range (Additional
file 3: Figure S7a–b). The most enriched pathways were
disease pathways (pathways in cancer and systemic lupus
erythematosus) and signaling molecules and interaction
pathways (extracellular matrix (ECM)-receptor inter-
action). The ncRNA target genes exhibited KEGG
enrichment patterns similar to those of the DE mRNAs.
We divided the DE mRNA KEGG enrichment pathways
into two categories: up-regulated and down-regulated
(Additional file 3: Figure S7c–d). In the up-regulated

category, the most significant pathways were pathways
in cancer, cytokine–cytokine receptor interactions, adhe-
rens junctions, and the TNF signaling pathway. Most of
these participate in cell apoptosis. Among the down-
regulated pathways, the most significant pathways were
metabolic pathways, oxidative phosphorylation, cell
cycle, and ECM-receptor interactions. Additional KEGG
pathways are provided in Additional file 9, and they
deserve further analysis in the future.

lncRNA-miRNA-mRNA networks
To explore the molecular mechanisms by which
ncRNAs are involved in HF development and the HF
cycle, we performed regulatory network analysis of
ncRNAs and mRNAs in the two growth phases. MiR-
NAs have broadly regulatory functions involving RNA
silencing and post-transcriptional regulation of gene
expression, while lncRNAs also have extensive regula-
tory functions. We performed an integrated ncRNA and
mRNA profiling analysis on the basis of their binding
sites, with lncRNA-gene pairs and miRNA-gene pairs
that share the same binding site being considered ceR-
NAs. We constructed lncRNA-miRNA-mRNA groups
with the lncRNA as the decoy, miRNA as the center,
and mRNA as the target (Fig. 8a). We then divided the
ceRNA regulatory networks into two groups based on
their gene expression patterns: up-down-up (Fig. 8b)
and down-up-down (Fig. 8c). The results indicated that
the expression of genes in the skin during HF regression
is regulated by an ncRNA regulatory network that
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Fig. 6 Heat maps for gene groups. (a) Heat map of differentially expressed KRT and KRTAP genes. (b) Heat map of differentially expressed growth
factor-related genes
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involves the action of ceRNAs. Our results (Table 3)
present the regulatory relationships between ncRNAs
and mRNAs in the processes of HF development and
the HF cycle. Thus, further studies should be undertaken
to better understand the mechanisms of HF develop-
ment and cycle in the future.

Discussion
Skin, as the first line of defense consisting of diverse
cells (adipocyte and fibroblast) and affiliate organs (HFs
and sweat glands), covers the entire body. HFs are an
important component of the skin, consisting of primary
HFs and SHFs. SHFs account for over 90% of the two
types of HFs in cashmere goats, and they produce fine
fibers in a rigorous annual cycle that involves anagen,
catagen, and telogen [36]. During catagen, the DPs of
SHFs shrink, and therefore, it is presumed that there is
strong apoptosis signaling in DPs and anti-apoptosis

singling in adjacent DPs. While seven theories have been
proposed to explain the HF cycle (epithelial theory,
papilla morphogen theory, bulge activation theory, res-
onance theory, oscillating signal theory, inherent embry-
onic cycle theory, and inhibition-disinhibition theory)
[37], the underlying mechanism for regression remains
unknown. In this study, we performed an ncRNA and
coding RNA profiling analysis by comparing the DE
RNAs of the anagen and the catagen phases, providing
novel insights into the mechanism of the HF cycle.
We initially performed a histological analysis to show

that the DPs of SHFs experienced atrophy in February
and were full in September. This phenomenon was
consistent with expectations and provided the basis for
the subsequent analysis. Next, we performed whole-
transcriptome sequencing and a comparative analysis of
goat skins in different growth phases. Phenotypic
appearance of HFs is affected by the expression of genes,
which is regulated by various factors [38, 39]. The
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Fig. 7 qPCR validation of RNA-seq. (a) Nine coding genes and five noncoding genes (lncRNAs are renamed “lnc” + the gene accession number).
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findings obtained from several studies have revealed the
critical roles of ncRNAs in the hair growth cycle. Indeed,
miRNAs have been frequently reported as regulators of
skin and HF development [40], and there is also consid-
erable evidence supporting the idea that lncRNAs play
causal roles in the HF growth cycle [15, 25]. However,
there was previously a lack of information regarding the
role of ncRNAs in the HF cycle. In this study, we found
that abundant RNAs, including lncRNAs, miRNAs, and
coding mRNAs, were enriched in the skin and differen-
tially expressed between the anagen and catagen phases.
Some of these transcripts were differentially expressed in
the skin at different growth phases, indicating that they
play an important role in the regulation of biological
processes, in particular those associated with apoptosis,

anti-apoptosis, and growth processes [41–43]. Our
results showed that a total of 173 lncRNAs, 72 miRNAs,
and 3500 mRNA transcripts were significantly differen-
tially regulated when comparing the catagen and anagen
phases. These data indicate that many miRNAs are
involved in HF development, and some of these miRNAs
differ from those observed in previous research studies
[16], although there were also some common miRNAs
(miR-27a-5p, miR-99a-5p, miR-380-3p, and miR-9-5p)
that deserve further attention. One reason for this dis-
crepancy is the difference in analytical strategies.
Another reason is that the same biological processes
may be induced by a different combination of genes that
coordinate with each other. In addition, the analysis of
lncRNAs and their roles as ceRNAs provide new insight
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Fig. 8 LncRNA–miRNA–mRNA regulatory networks in goat skin. Circles indicate miRNAs, squares indicate coding genes, and triangles indicate
lncRNAs. Red indicates up-regulation, and green indicates down-regulation (catagen/anagen)
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Table 3 ncRNAs and their potential target genes involved in HF cycle

Genes lncRNAs in cis lncRNAs in trans miRNAs

Transcription Factors

STAT3 – LOC102185409, LOC108635659, LOC108636392 -, chi-miR-10a-5p, chi-miR-1388-3p, chi-miR-125a-3p

TP63 – LOC108634033 -, chi-miR-378-5p

SOX9 XLOC_031780 LOC108636392, LOC102185409, LOC108635596 -, chi-miR-125a-3p,chi-miR-30a-5p,chi-miR-141

MYC LOC102186225 LOC108637984, LOC102185409, LOC108635656 -, chi-miR-338-3p, chi-miR-148a-3p, chi-miR-148a-3p

TFAP2 – LOC108635596, LOC108636392, LOC108637897 -, chi-miR-141, chi-miR-141, chi-miR-148b-5p

LHX2 – LOC108636746, LOC108636392 -, chi-miR-130b-3p, chi-miR-296-3p and chi-miR-125a-3p

MSX2 LOC102169517 LOC108635658, LOC108635659 -, chi-miR-1388-3p

FOXI3 – LOC108636746 -, chi-miR-9-5p

HOXC13 – LOC108635596, LOC102188339 -, novel_72 and chi-miR-141, chi-miR-873-5p

GATA3 – LOC108635658, LOC108636746 -, chi-miR-1388-3p, novel_926

WNT/TGFB related

WNT2 – LOC106502925 -, chi-miR-29a/b-3p

WNT3 – LOC108635656, LOC108636392 -, chi-miR-148a-3p, chi-miR-125a-3p

WNT4 LOC102189078 LOC108637984 and LOC102185409 -, chi-miR-338-3p

WIF1 – LOC108636392 -, chi-miR-330-3p

DKK1 – LOC108635596, LOC108636746 and LOC108636392 -, novel_72, chi-miR-9-5p

TGFBR2 – LOC108635596 and LOC108636392 -, chi-miR-141

SAMD5 – LOC108635656, LOC108635596 -, chi-miR-148a-3p, novel_72

TGFB1 – LOC108635596, LOC108636746 -, chi-miR-873-5p, novel_926 and chi-miR-9-5p

BAMBI – LOC108635596, LOC108636746 -, chi-miR-141, novel_926

FGF/FGFR related

FGF2 – LOC108635596 and LOC102188339 -, chi-miR-873-5p

FGF11 – LOC108637983 and LOC108637984 -, chi-miR-140-5p

FGF12 – LOC108637984, LOC102185409 -, chi-miR-502b-5p, chi-miR-340-5p

FGF21 – LOC108635596 and LOC102188339 -, chi-miR-873-5p

FGFBP1 – LOC108636746 -, novel_926 and chi-miR-9-5p

FGFR1 – LOC108635596 and LOC102188339 -, chi-miR-873-5p

Notch related

DLL4 – LOC106502925, LOC106502506, -, novel_735, novel_1008

JAG2 – LOC108636746, LOC108636392 -, chi-miR-9-5p, chi-miR-330-3p

ADAM17 – LOC108635596, LOC108636392, LOC108637983 -, novel_72, chi-miR-125a-3p, chi-miR-26a/b-5p

HEY1 – LOC102171315, LOC108637983 -, chi-miR-101-3p, chi-miR-378-3p and chi-miR-140-5p

DLK2 – LOC108636746, LOC108636392 -, novel_926, chi-miR-125a-3p

DTX1 – LOC108635659, LOC106502506 -, novel_996, chi-miR-25-5p

DTX3L – LOC108635656, LOC108635596, LOC108636746 -, chi-miR-148a-3p, chi-miR-873-5p, chi-miR-130b-3p

DTX4 – LOC106502925, LOC108636392 -, chi-miR-29a/b-3p, novel_965

SHH related

SUFU LOC108635656, LOC108636746 -, chi-miR-148a-3p and chi-miR-873-5p, novel_926

PRKX LOC108636392, LOC108637983 and LOC102185409 -, chi-miR-125a-3p, chi-miR-378-3p

GLI3 LOC108636392, LOC102171315 -, chi-miR-24-5p, chi-miR-23b-3p

BMP/TGFβ related

BMP2 – LOC108635659, LOC108636392 -, novel_996, novel_965 and chi-miR-125a-3p

TGFB1 – LOC108635596, LOC108636746, LOC102188339 -, chi-miR-873-5p, novel_926 and chi-miR-9-5p, chi-miR-873-5p
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into these differences. Despite the fact that the functions
of lncRNAs in HF development and the HF cycle are
still poorly understood, the rhythmic expression of
lncRNA genes indicates their casual roles in biological
processes. Numerous lncRNAs, acting as decoys for
miRNAs, have been found to play critical roles in
biological functions such as apoptosis, proliferation, and
differentiation [44–47].
Although we screened for DE ncRNAs from goat skins

in different growth phases and a few ncRNAs were con-
firmed in the present study, the underlying mechanisms
of ncRNAs in the HF cycle are poorly understood. We
then analyzed DE ncRNAs-related gene functions and
their corresponding pathways through GO and KEGG
term enrichment analyses. Our data showed that the
most significantly enriched pathway was pathways in
cancer, a comprehensive pathway involving multiple cel-
lular processes. Other cancer pathways, such as prostate
cancer and proteoglycans in cancer, as well as cytokine–
cytokine receptor interaction, estrogen signaling path-
way, adherens junction, and the Jak-STAT signaling
pathway pointed to roles in cell growth, proliferation,

and apoptosis/anti-apoptosis. These pathways fully illus-
trate the balance between apoptosis and anti-apoptosis
in the skin. The DPs of SHFs begin to atrophy while
other cells experience accelerated growth and produc-
tion of keratins to protect against environmental stress.
There were also some lipid metabolism and endocrine
system KEGG pathways contributing to fat deposition as
well as the hair growth cycle. The predicted functions of
ncRNAs in the HF cycle, as determined by the GO and
KEGG analyses, should be studied at a greater depth in
future work.
The majority of fine hair growth slows down or ceases

during catagen, including the production of KRT and
KRTAP, which are indispensable structural components
of hair. Most of DE KRT and KRTAP genes were down-
regulated during catagen. Interestingly, we found that
the expression levels of KRT2, KRTDAP, KRT77, and
KRT80 were higher during catagen. These genes mainly
participate in epidermis keratinization, not in the pro-
duction of hair components, indicating that epidermal
cells experience extra growth during the catagen phase;
this may be a defense mechanism against upcoming

Table 3 ncRNAs and their potential target genes involved in HF cycle (Continued)

Genes lncRNAs in cis lncRNAs in trans miRNAs

TGFBRAP1 – LOC108635656, LOC102188339 -, chi-miR-148a-3p and chi-miR-873-5p, chi-miR-873-5p

TGFBR2 – LOC108635596 and LOC108636392, 102,171,315 -, chi-miR-141, chi-miR-23b-3p

Fig. 9 A proposed model for the microenvironment of the skin during the HF transition from anagen to catagen. Red squares indicate that
expression of these genes is up-regulated during catagen, while green squares indicate down-regulation
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extreme environments (i.e., the cold winter). We also
found that the expression of GAS1 was higher during
catagen than during anagen; this gene plays a role in
growth suppression, blocking entry to S phase and pre-
venting the cycling of cells [48]. This is consistent with
what happens to the DPs of SHFs during catagen.
Additionally, the expression levels of FGF22, FGF21,
FGF2, GDF11, IGF1, FGFR4, and USMG5 were lower
during catagen, indicating that the growth of the entire
skin slowed down, perhaps caused by the transition of
SHFs from anagen to catagen. It is worth mentioning
that HSPH1, HSPA6, HSP70.1, LOC102178315 (heat
shock 70 kDa protein 1B), and HSPB1 were also highly
expressed during catagen. These genes belong to the
heat shock protein family and are involved in stress
resistance, such as ensuring the correct folding of pro-
teins or controlling the targeting of proteins for subse-
quent degradation [49–51]. These proteins would
therefore be useful in preventing apoptosis, making a
response to DPs adjacent organization. Next, we found
that the expression levels of AR and DKK1 were higher
during catagen. AR, an androgen receptor, modifies the
expression of the Wnt antagonist DKK1 in DPs, prevent-
ing HF stem cell differentiation [52]. Thus, this is
another factor associated with fatty acids or adipocyto-
kines that might trigger a non-apoptotic DP cell death.
Intradermal adipocytes are distributed around SHFs in
the skin, making this hypothesis more relevant. We
detected that the expression levels of FASN and TRL4
were higher during catagen, and these two genes may
also play a role in non-apoptotic cell death [53].
Based on these lines of evidence, we propose a model

(Fig. 9) for understanding what occurs in the skin during
catagen, with gene locations based on previous studies
[54]. Some evidence indicates that BMP2, TGFβ1, and
BDNF could represent inducers of catagen, while IGF1
could inhibit catagen [23]. HF stem cells return to quies-
cence via the action of BMPs (BMP2) and Wnt inhibi-
tors, and their characteristics are maintained during HF
regression by LHX2, SOX2, ITGA3, ITGB4, and other
factors [55]. Meanwhile, the matrix undergoes apoptosis,
and hair shaft formation slows. HOXC13, MSX1, MSX2,
and other factors regulate the proliferation and differen-
tiation of the hair matrix, and their expression were
down-regulated during anagen in our study. Under the
mediation of various genes, apoptosis and anti-apoptosis
coexist among different cells in a single organism. The
expression levels of CASP8 and MYC are higher during
catagen, contributing to apoptosis, while the increased
expression levels of BAG3, HSP70, and XIAP during
catagen may contribute to anti-apoptosis. CASP14 is
helpful for keratinization. The factors leading to the re-
gression of HF still require further study and additional
lines of evidence.

Conclusions
In this study, we provided new insight into the molecu-
lar mechanisms driving the transition from anagen to
catagen in HFs. We integrated analysis of lncRNAs,
miRNAs, and mRNAs to determine their predicted roles
and regulatory relationships in the HF cycle. We also
provided a catalog of predicted ncRNAs in goat skin that
will help to explain their regulatory roles in the goat HF
cycle. In future studies, we plan to further examine the
functions of these predicted DE ncRNAs, which may
ultimately enable the full elucidation of the regulatory
mechanisms associated with the goat HF cycle at the
molecular level.
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