
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Available online at www.sciencedirect.com

Viral hijacking of the host ubiquitin system to evade interferon
responses
Kasinath Viswanathan, Klaus Früh and Victor DeFilippis
The post-translational attachment of ubiquitin or ubiquitin-like

modifiers (ULMs) to proteins regulates many cellular processes

including the generation of innate and adaptive immune

responses to pathogens. Vice versa, pathogens counteract

immune defense by inhibiting or redirecting the ubiquitination

machinery of the host. A common immune evasion strategy is

for viruses to target host immunoproteins for proteasomal or

lysosomal degradation by employing viral or host ubiquitin

ligases. By degrading key host adaptor and signaling

molecules, viruses thus disable multiple immune response

pathways including the production of and response to

interferons as well as other innate host defense mechanisms.

Recent work further revealed that viruses inhibit the ligation of

ubiquitin or ULMs or remove ubiquitin from host cell proteins.

Thus, viruses succeed in either stabilizing negative regulators

of innate immune signaling or thwart host cell proteins that are

activated by ubiquitin or ULM-modification.

Address

Vaccine and Gene Therapy Institute, Oregon Health and Science

University, 505 NW 185th Ave., Beaverton, OR 97006, United States

Corresponding author: Früh, Klaus (Fruehk@ohsu.edu)

Current Opinion in Microbiology 2010, 13:517–523

This review comes from a themed issue on

Host-microbe interactions: Viruses

Edited by Antonio Alcami

Available online 17th June 2010

1369-5274/$ – see front matter

# 2010 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.mib.2010.05.012

Introduction
Ubiquitin is a 76 amino acid protein that is conjugated to

lysines of target proteins with the help of three main

enzymes: The ubiquitin activating enzyme E1, one of

dozens of E2 conjugating enzymes and a E3 substrate

specific ubiquitin ligase, of which hundreds are known.

Recent studies of viral ubiquitin ligases further revealed

that ubiquitin can be conjugated to cysteines, serines, and

threonines in the absence of lysines on the target protein

[1,2��]. The fate of target proteins depends on the num-

ber of attached ubiquitins, the mode of poly-ubiquitina-

tion at ubiquitin lysines 48, 63, or others, and the

intracellular site at which ubiquitination occurs. Gener-

ally, ubiquitination of cytoplasmic and nuclear proteins
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leads to their degradation by the proteasome whereas

ubiquitination of the cytoplasmic domains of transmem-

brane proteins results in their sorting to lysosomes via the

multivesicular body pathway. An important exception to

this general rule is the ubiquitin-controlled extraction of

transmembrane proteins from the endoplasmic reticulum

(ER), a quality control procedure during ER protein

folding. In addition to playing a dominant role in con-

trolling protein turnover, ubiquitination, particularly mo-

no-ubiquitination, can also regulate protein function and

protein/protein interaction. This is partially controlled by

removal of ubiquitin from target proteins by ubiquitin

hydrolases. Thus, similar to the control of phosphoryl-

ation by kinases and phosphatases, ubiquitin ligases and

de-ubiquitination enzymes modulate substrate function

by transient ubiquitination. In addition to ubiquitin, a

number of ubiquitin-like modifiers (ULMs) similarly

alter target substrates with various outcomes. Some of

these ULMs are ubiquitin homologs (SUMO, ISG15)

whereas others are unrelated by sequence (ATG6), but

perform parallel roles. Each of these ULMs comes with

designated E1, E2, and E3 enzyme-like proteins. In this

review we will highlight the recent developments and

trends in this very active field of investigation.

Essential role of the UPS for viral entry and
replication
Viruses utilize the host ubiquitin pathway at each stage of

their life cycle including entry, genome replication, and

egress [3,4]. This is illustrated by recent reports that

diverse viral families are unable to enter cells or replicate

if the ubiquitin proteasome system is disabled by protea-

some inhibitors, a treatment that also depletes free ubi-

quitin. Such treatment trapped viruses in the endosomes

and dense lysosomes, but did not affect initial endocytosis

[5]. By contrast, proteasomal inhibitors blocked endocy-

tosis of influenza virus due to the blockade of ubiquitina-

tion of epsin 1, a cargo specific adaptor for clathrin [6]. For

herpes simplex virus it was shown that UPS activity was

required at a post-penetration step to transport the incom-

ing capsid to the nucleus [7]. Thus, several unrelated viral

families depend on the UPS system even before the onset

of viral replication. In poxvirus-infected cells, two groups

reported that inhibitors of the proteasome or of E1

enzymes delayed expression of early viral genes and

blocked the formation of virus replication factories result-

ing in complete inhibition of intermediate and late gene

expression [8,9�]. The UPS system is also required for the

replication of coxsackie virus 3B since proteasome inhi-

bition, ubiquitin knockdown, or increasing deubiquitinase
Current Opinion in Microbiology 2010, 13:517–523
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activities all prevented CV3B replication [10]. Similarly,

replication of human respiratory syncytial virus was

decreased in the presence of proteasome inhibitors [11].

Although it has been speculated that proteasome inhibitors

in clinical use might have anti-viral activity [8], it has yet to

be demonstrated that these compounds are able to inhibit

viral replication in vivo. Taken together, these studies

highlight the importance of the UPS for viral infection.

Ubiquitin-mediated viral evasion of interferon-
induction
One reason the UPS is essential for viral replication is that

many viruses use or inhibit the UPS to modulate the

innate immune response, particularly the production and

function of type I interferons (IFN), which include

multiple IFN a subtypes and IFNb. While the anti-viral

activities of IFN have been known for over 50 years, the

molecular details of how virus infection actually triggers

IFN synthesis have only emerged in the past decade (for a

recent review see [12]). As the roles and regulation of

receptors, adaptors, signal transducers, and transcription

factors in IFN induction come to light, corresponding

viral counter-mechanisms are uncovered (reviewed in

[13]) including many that involve the ubiquitin pathway

[14]. The current model of virus-mediated induction of

IFNb and the IFN mediated responses with viral inter-

ventions is illustrated in Figure 1.

Viral inhibition of IRF3 activation

Examples for ubiquitin-mediated degradation of com-

ponents of the signaling pathway leading to IFN synthesis

are pestiviruses such as Classical swine fever virus (CSFV)

and Bovine viral diarrhea virus (BVDV) [15–17] as well as

rotaviruses [18,19]. These viruses induce proteasome-de-

pendent degradation of IRF3. HIV-I also mediates IRF3

degradation via Vpr-directed and Vif-directed ubiquitina-

tion of the protein [20]. Similarly, Ebola virus VP35 protein

has been shown to inhibit IFN synthesis in immune cells

by promoting SUMOylation of IRF7 by the cellular E3

ligase PIAS1 [21�]. IFN expression can also be impaired by

blocking the signaling pathways leading from virus detec-

tion to transcription factor activation. This is well exem-

plified by the inhibition of RIG-I activity by the NS1

protein of influenza A virus. Gack et al. recently showed

that this protein interacts with and blocks the activity of

TRIM25, an E3 ligase required for ubiquitin-dependent

interaction between RIG-I and IPS1 [22��]. NS1 was

shown to prevent TRIM25-dependent ubiquitination of

RIG-I and thus activation of IRF3-dependent IFN

secretion thereby allowing the virus to evade its anti-viral

effects. Moreover, in the absence of this phenotype mutant

virus was highly attenuated thereby demonstrating its

importance for virus replication and transmission.

Viral inhibition of NFkB activation

To prevent NFkB activation viral proteins either directly

bind to NFkB to inhibit its translocation to the nucleus or
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they mediate degradation of NFkB. The poxviral protein

CP77 prevents NFkB activation by binding with its N-

terminal six ankyrin repeat region to the p65 subunit of

NFkB [23]. Another poxvirus protein that contains pyrin

domain containing protein M013 also has been shown to

bind to RelA/p65 and prevent localization of NFkB to the

nucleus [24]. African swine fever virus even encodes a

homolog of human IkB, A238L that is resistant to phos-

phorylation and thus irreversibly binds and inactivates

NFkB [25]. A direct degradation of p65/RelA was

reported for the murid herpesvirus-4 (MuHV-4) latency

associated protein ORF73. MuHV-4 ORF73 has an

unconventional suppressor of cytokine signaling

(SOCS)-box motif that associates with the host ubiqui-

tin-ligase complex ElonginC/Cullin5/SOCS to mediate

poly-ubiquitination and subsequent proteasomal degra-

dation of p65/RelA [26�]. Functional deletion of SOCS-

box motif in ORF73 ablated NFkB degradation and

resulted in suppressed viral expansion in germinal center

B cells and prevented persistent infection in mice indi-

cating that suppression of NFkB activity is essential for

viral persistence. Viruses also utilize host machinery that

negatively regulates NFkB activation to turn off the

innate immune response. For instance, the host de-ubi-

quitin (DUB) enzyme A20 terminates TLR-dependent

NFkB activation by removing ubiquitins from ATF6. A20

is prematurely upregulated by measles virus P protein

thus preventing NFkB activation [27]. An unusual target-

ing of the ubiquitin complex that mediates IkB degra-

dation was observed for the rotavirus NSP1 protein. NSP1

mediates the ubiquitination and degradation of the F-Box

substrate recognition protein, b-transducin repeat con-

taining protein (b-TrCP) that binds to and degrades IkB

through the ubiquitin-ligase complex Skp-1/Cul1/F-Box

(SCF) [28�]. However, the same SCFb-TrCP complex is

utilized by HIV-1 Vpu to target host anti-viral effectors

CD4 and bone marrow stromal antigen-2 (BST2). This

demonstrates a case in which different viruses utilize the

same host ubiquitin ligase in different contexts to target

host proteins to their advantage.

Viral use of the ubiquitin system to inhibit IFN-
dependent signal transduction
In addition to preventing the induction of IFN, viruses also

inhibit the signal transduction pathway triggered upon

binding of IFN to its receptor [13]. A key event in this

signal cascade is the activation and nuclear translocation of

STAT proteins that are frequent targets of viral counter-

mechanisms. For example, parainfluenza simian virus 5 is

known to degrade STAT1 via a proteasome-dependent

mechanism [29] that involves co-opting a host cell E3 ligase

[30]. Respiratory syncytial virus was found to degrade

STAT2 through formation of an E3 ligase complex that

includes both host proteins (Cul2, Rbx) as well as the viral

NS1 protein [31]. More recently, Ashour et al. have shown

that the Dengue virus NS5 protein mediates ubiquitina-

tion and proteasome-dependent degradation of STAT2
www.sciencedirect.com
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Figure 1

Examples of viral protein mediated intervention of host pathogen stimulated IFN stimulation pathways using UPS. Host anti-viral signals are initiated

when cells sense the presence of pathogens via pattern-recognition receptors (PRRs) such as extracellular toll like receptors (TLRs), or intracellular

RIG-I like helicases (RLHs) or DNA binding proteins. PRRs recognize molecular signatures of pathogens, the single or double stranded RNA or DNA.

TLR3 activates Toll–interleukin (IL)-1-resistance (TIR) domain-containing adaptor inducing IFN-b (TRIF), whereas TLR7 and 9 activate myeloid

differentiation factor 88 (MyD88). Melanoma differentiation-associated gene (mda-5) and retinoic acid-inducible gene-1 (RIG-I) activate tumor necrosis

factor (TNF) receptor associated factor 3 (TRAF3) via Cardif/VISA/MAVS/IPS-1. Activated TRAF3 interacts with TRAF family member associated NFkB

activator (TANK), TANK binding kinase 1 (TBK-1), and the related IkB Kinase e (IKKe) to phosphorylate and translocate IRFs in the nucleus. In a parallel

pathway, NFkb activation is initiated by poly-ubiquitination of TRAF6 and receptor interacting protein-1 (RIP1). These adaptors recruit transforming

growth factor (TGF) b—activating enzyme 1 (TAK1), NFkB essential modifier (NEMO), and IkB Kinases (IKK) into a multi protein complex that

phosphorylates inhibitor of NFkB (IkB) resulting in its ubiquitination and degradation by proteasomes. The degradation of IkB reveals the nuclear

localization signal of NFkB that then translocates to the nucleus. In the nucleus, activated IRFs and NFkB assemble at the IFNb promoter together with

ATF-2/c-jun and other co-factors to stimulate IFN transcription. IFNs are secreted and induce an anti-viral state in neighboring cells by binding to the

receptors IFNAR 1 & 2 and activating the tyrosine kinases JAK1 and Tyk2 that in turn activate signal transducer and activator of transcription (STATs).

Phosphorylated STAT1 and STAT2 heterodimerize and translocate to the nucleus, where they associate with IRF-9 to form the hetrotrimeric

transcription factor ISGF3. Binding of ISGF3 to the IFN stimulated response element (ISRE) induces transcription of IFN stimulated genes (ISGs). Viral

intervention of these pathway proteins are marked in the figure as numbers and listed below in the virus (protein)[ref] format: 1. Influenza A virus (NS1)

[22��]; 2. Measles virus (P) [27]; 3. African swine fever virus (A238L) [25], Rotavirus (NSP1) [28�]; 4.Murid herpesvirus-4 (ORF73) [26�], Poxvirus (CP77)

[23]; 5. classical swine fever virus [15], Bovine viral diarrhea virus [16], Rotavirus [18,19], HIV-1 (Vpr, Vif) [20]; 6. Ebola virus (VP35) [21�]; 7. Para

influenza simian virus 5 [29,30]; 8. Respiratory syncytial virus (NS1) [31]; 9. Hepatitis C virus [70]; 10. Human cytomegalovirus (US2, US11) [3], Kaposi’s

Sarcoma associated herpesvirus [KSHV] (K3, K5) [1,2��]; 11. Influenza virus (NS1A) [42��,46–49], vaccinia virus (E3) [51�], Coronavirus (PLP) [53]; 12.

HIV-1 (Vpu) [57,61,64–66], KSHV (K5) [63].
although the host cell molecules required for this are

unknown [32]. Interestingly, this effect is exhibited only

by the form of NS5 that is proteolytically processed by the

viral polyprotein [32]. In addition to STAT1 and STAT2,

STAT3 is also targeted by viral proteins. Mumps virus V
www.sciencedirect.com
protein targets both STAT1 and STAT3 but a mutant of

this protein E95D that lost its ability to bind to and degrade

STAT3 could still ubiquitinate and degrade STAT1 [33].

Virus with this mutation increased cell death resulting in a

large-plaque phenotype.
Current Opinion in Microbiology 2010, 13:517–523
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Viral use of the ubiquitin system to prevent the
function of IFN-induced genes
In the event that viruses fail to completely shut-down the

induction of IFN or IFN-dependent signaling they face a

multitude of anti-viral IFN-induced proteins (ISGs) [34].

Well-studied anti-viral ISGs include PKR, OAS, RNAseL,

and Mx. While the pre-treatment of cells with IFN gener-

ally renders them resistant to viral infection, important

ISGs that are induced during viral infection can be success-

fully counteracted by viruses. Here, we will focus on two

ISGs whose function and viral counter-mechanisms are

currently being elucidated: ISG15 and BST2/Tetherin.

ISG15

ISG15 is a ubiquitin-like modifier that is one of the most

highly induced ISGs. This di-ubiquitin-like protein is

conjugated to proteins (ISGylation), a process that utilizes

UbE1L as E1 enzyme, UbcH6, UbcH8 or UbcM8 as the

E2 enzyme and Herc5, HHARI, and Efp as E3 ubiquitin

ligases that are also IFN-induced [35,36]. This process is

reversible via the action of the ubiquitin-specific protease

UBP43. Although many ISGylated targets have been

identified [37], the impact of ISGylation has yet to be

established in individual cases. Recent examples include

demonstration that IRF3 is positively regulated by ISG15

[38,39] whereas RIG-I is negatively regulated [40]. How-

ever, a broadly anti-viral function of ISG15 has been

established in ISG15 and UbE1L null mice that exhibit

increased susceptibility to influenza A and B, HSV-1,

MHV68, and Sindbis virus [41,42��]. How ISG15 med-

iates anti-viral functions requires elucidation. Given the

plethora of ISGylated proteins it is possible that anti-viral

effects are virus-specific. One ISGylation anti-viral mech-

anism is inhibition of ubiquitin-ligase activity of Nedd4,

which is required for budding of Ebola, vesicular stoma-

titis, and rabies viruses [43]. ISG15 and UbE1L over

expression also inhibits ubiquitination of Tsg101 and

Gag, a process essential for HIV budding [44].

Yet not all viruses are affected by ISGylation [45] and

several viruses have developed countermeasures against

ISGylation. The NS1 protein of influenza B virus binds to

ISG15 in a species-specific manner [46–48] and thus

inhibits protein ISGylation. By contrast, the NS1A

protein of influenza A is ISGylated that disrupts its

nuclear localization [49]. Sumoylation of NS1 was also

reported [50]. Inhibition of ISGylation has also been

reported for Vaccinia Virus (VACV) [51�]. Interestingly,

this was dependent on the VACV E3L protein that was

known previously as an inhibitor of PKR. E3L-deleted

virus was growth-restricted in ISG15+, but not in ISG15�
cells and mice. Viruses are also known to deconjugate

ISG15. Nairoviruses and arteriviruses encode OTU

domain proteases that hydrolyze both ubiquitin and

ISG15 from cellular target proteins [52�]. Similarly, the

coronavirus PLP protein acts as a de-ubiquitinating and

de-ISGylating enzyme [53]. These viral counterstrategies
Current Opinion in Microbiology 2010, 13:517–523
probably pinpoint those ISGylation events most detri-

mental to a given viral species.

BST2/Tetherin

Bone marrow stromal antigen-2 (BST2/Tetherin) is an

IFN-induced [54], glycosylated type II transmembrane

protein with a unique topology since it also contains a

glycosylphosphatidylinisotol (GPI) anchor at the C-termi-

nus thus localizing it to the periphery of lipid rafts, forming

a fence like structure [55]. We initially identified this

protein in a proteomics screen as a new target of the viral

E3 ligase K5 of Kaposi’s sarcoma virus [56] and, more

recently, in a similar screen as dominant target for the HIV

Vpu protein [57]. KSHV-K5 is a viral homolog of the

membrane-associated RING-CH (MARCH) family of

transmembrane ubiquitin ligases [58] that share the ability

to ubiquitinate the intracellular domains of selected target

proteins [59]. By comparison, HIV-1 Vpu does not possess

ubiquitin-ligase activity on its own but interacts with the

cellular F-Box protein b-TRcP, a subunit of the cellular

SCF-complex. The finding that BST2/Tetherin is targeted

by different viral immune evasion proteins raised this

protein from obscurity, particularly since recent work

revealed that BST-2 is responsible for tethering mature

HIV-1 particles to the cell membrane in the absence of Vpu

[60��,61]. As recently reviewed elsewhere [62], this seminal

work stimulated extensive research by a number of groups

revealing that this IFN-induced protein prevents the

egress of several unrelated viral families, including

gamma-2 herpesviruses (KSHV), lentiviruses (EIAV,

FIV) retroviruses (SIV, RSV, MPMV, HTLV-1, PFV),

Filoviruses (Ebola, MV), and arena viruses (Lassa). While

the exact details of this retention require identification, it

seems that unlike other ISGs, BST2/Tetherin acts at a very

late stage of infection. Many viruses counteract BST-2

function using different molecular mechanisms. In

addition to KSHV-K5 and HIV-1 Vpu, Ebolavirus envel-

ope protein, and the nef protein of SIV and HIV-2 have

been implicated in inhibiting BST2/Tetherin [62]. Since

these evasion mechanisms are often highly species-

specific, they probably contribute to host restriction.

The molecular mechanism of BST2 downregulation by

most viral proteins is not known, but some details emerged

for KSHV-K5 and HIV-1 Vpu. In the case of KSHV-K5,

cytosolic lysines of BST2 are directly ubiquitinated and

this is required for lysosomal targeting [63]. By contrast,

lysine-deleted BST2 is still targeted to lysosomes by HIV-1

Vpu in a bTRcP-dependent manner, suggesting that ubi-

quitination is indirectly involved in this process [57,64]. In

addition, Vpu can initiate the proteasomal destruction of

BST2, particularly in situations when BST2 resides in the

ER owing to overexpression [65,66]. Thus, ubiquitination

is central to counteracting the anti-viral activity of BST2.

Conclusions
Ubiquitin-enabled interference of viruses with the innate

immune response emerges as a central immune evasion
www.sciencedirect.com
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mechanism in almost every viral species studied. Since

viruses specifically target those innate immune responses

that are particularly detrimental to a given viral species,

studying the manipulation of ubiquitination has revealed

novel host defense mechanisms. The identification of

novel targets for viral ubiquitin ligases has been acceler-

ated by proteomics approaches suggesting that it will be

possible to use viral ubiquitin ligases to identify novel

important key elements of host defense pathways

[56,67,68�,69]. Studying ubiquitination events in virally

infected cells thus holds great promise to unravel import-

ant modulators of the intricate relationship between host

and pathogen.
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