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Integrating explainable machine learning
and transcriptomics data reveals cell-type
specific immune signatures underlying
macular degeneration

Check for updates

Khang Ma1, Hosei Nakajima1, Nipa Basak1, Arko Barman 2,3,4 & Rinki Ratnapriya 1,5

Genome-wide association studies (GWAS) have established key role of immune dysfunction in Age-
related Macular Degeneration (AMD), though the precise role of immune cells remains unclear. Here, we
develop an explainable machine-learning pipeline (ML) using transcriptome data of 453 donor retinas,
identifying 81 genes distinguishing AMD from controls (AUC-ROC of 0.80, CI 0.70–0.92). Most of these
geneswere enriched in their expressionwithin retinal glial cells, particularlymicroglia and astrocytes. Their
role in AMD was further strengthened by cellular deconvolution, which identified distinct differences in
microglia and astrocytes between normal and AMD. We corroborated these findings using independent
single-cell data, where severalML genes exhibited differential expression. Finally, the integration of AMD-
GWASdata identifieda regulatory variant, rs4133124atPLCG2, as a novel AMDassociation.Collectively,
our study provides molecular insights into the recurring theme of immune dysfunction in AMD and
highlights the significance of glial cell differences in AMD progression.

Variation in gene expression has emerged as a significant source of phe-
notypic diversity among individuals and populations1. Additionally, human
genetic studies have highlighted the critical role of gene expression dysre-
gulation in both rare2 and common3 diseases. Understanding the dysregu-
lation of gene expression in different diseases is essential for deciphering the
underlying molecular mechanisms and identifying potential targets for
therapeutic intervention. The cellular context has a profound influence on
gene expression and regulation, emphasizing the importance of compre-
hensively studying transcriptome regulation in disease-relevant cells and
tissues. However, the availability of disease-relevant tissues in a large
number of individuals presents a significant challenge. Additionally, gene
expression in humans is influenced by genetic variants, epigenetic changes,
environmental factors, or a combination of these factors4 making gene
expression studies uniquely challenging to identify consistent disease-
related patterns.

Age-related Macular Degeneration (AMD) is the leading cause of
irreversible vision loss in people over 50 years of age5. It is a neurodegen-
erative disease that afflicts almost 10million individuals in theUnited States
alone and this number is expected to double by 20506.AMDresults from the
deterioration of the photoreceptor support system, which includes the

retinal pigment epithelium (RPE), Bruch’s membrane (BrM), and the
choroidal vasculature, leading to the death of photoreceptors primarily in
the central region of the retina calledmacula7. It is a complex, multifactorial
disease that is caused by the cumulative impact of genetic predisposition,
environmental stress and aging8. Knowledge of genetic risk factors under-
lying AMD susceptibility has advanced rapidly with the advent of Genome-
wide Association Studies (GWAS), which have successfully identified 52
independent genetic variants at 34 loci9 establishing a strong genetic com-
ponent of AMD that is mostly driven by common variants10,11. These
findings have implicated immune, complement, cholesterol and lipid
metabolism, extracellular/collagen matrix, and angiogenesis pathways in
AMD pathogenesis9. Among them, variants identified in complement and
immunoinflammatory genes such as CFH, CFI and C3 have become the
essential core for AMD genetics because of the high effect size associated
with these genes9–11. Additionally, substantial clinical evidence underscores
the significant involvement of immunologic processes such as the produc-
tion of inflammatory molecules, recruitment of macrophages, complement
activation and microglial activation in AMD pathology12. The majority of
AMD-associated variants reside in the non-coding region of the genome
mediating the disease risk through gene expression regulation in retina13,14
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and RPE15. However, the molecular mechanisms underlying AMD, espe-
cially the cellular vulnerability, are poorly understood.

Recent advancements in genomics have transformed biomedical
research into digitalized, data-intensive science that has broadened its
application in biology and medicine. However, the scale, complexity and
high information content are significant barriers in its application. These
limitations have encouraged the application of machine learning (ML)
methods to help make informed decisions to drive novel biological
hypotheses and translate them into tangible therapeutics16,17. In particular,
ML-based approaches have been frequently used to obtain insights related
to regulatory regions of the genome and how they impact gene expression
andphenotypic changes18.Within ophthalmology,MLhas occupieda niche
based on studies of the retinal fundus and optical coherence tomography
(OCT) images and visual fields by achieving robust diagnosis performance
in detecting various diseases including diabetic retinopathy, retinopathy of
prematurity, glaucoma, macular edema and AMD19.

Comparative transcriptome studies in disease-relevant tissues and cell-
types hold great potential for identifying new genes as well as investigating
mechanisms underlying the disease. However, small sample sizes and the
high heterogeneity of study samples impose significant challenges in its
interpretation.ML-based feature selection offers a great tool to address these
limitations. Here we present the development of explainable MLmodels to
classify the AMD based on their expression profiles of 453 samples. To the
best of ourknowledge, this is thefirst study to rigorously test gene expression
data for their ability to accurately distinguish AMD from normal. We fur-
ther analyzed the features selected for ML models using pathways and co-
expression regulation networks. Finally, we integrate the data from AMD-
GWAS and single-cell transcriptomics to identify the genes and cell types
associated with AMD pathology.

Results
Feature selection andmachine learningmodel reveals a core set
of 81 AMD genes
Transcriptome data often suffers from the “curse of dimensionality” as tens
of thousands of genes can be profiled in a single RNA-seq experiment vs the
limited number of subjects. Thus, we developed a pipeline (Fig. 1A) to
reduce the dimension and improve the efficiency and interpretability of
downstream analyses using 105 controls and 61 advanced AMD samples13.
We implemented three feature selection methods, ANOVA (analysis of
variance) F-test, AUC (area under the curve), and Kruskal-Wallis test to
identify the most relevant features. We divided the dataset into an 80%
training set and a 20% testing set. We used the training set to identify the
most influential features within the training data and evaluated the model’s
performance on the separate 20% testing data, employing appropriate
evaluationmetrics. Comparing the features of top the 100 features identified
across 1000 iterations selected by each method, we identified 81 genes
(referred as ML-genes) that were common across three methods (Supple-
mentary Fig. 1).

Next, we applied four ML-based models: neural network, logistic
regression, eXtreme Gradient Boosting (XGB), and random forest for the
classification model for AMD based on 81 ML-genes. We randomly por-
tioned the data into 64% training (to learn potential underlying patterns),
16% validation (to tune the model’s performance across different hyper-
parameter choices) and 20% (to evaluate our model’s prediction perfor-
mance) external test sets. The optimal threshold for classification was
determined by Youden’s J statistic20. We evaluated classifier training and
discrimination performance in 100 iterations of repeated randomized data
splitting to ensure the robustness of the model and obtain confidence
intervals. The AUC-ROC of other methods varied from 0.61 (CI 0.5–0.73)
for Neural Network to 0.81 (CI 0.71–0.92) for random Forest (Fig. 1B)
(SupplementaryFig. 2).XGBwas found toperformthebestwithAUC-ROC
statistic (0.80,CI 0.70–0.92) (Fig. 1C) andhighest sensitivity (0.78) (Fig. 1D).
Thus, we applied XGB for all further analyses.

To test the robustness of the 81 ML-genes identified in our study, we
conducted comparisons of model performance using four additional gene

lists: (1) Genes within 500KB of the 34 AMD-GWAS loci9 (2) High con-
fidence AMD genes, comprising genes from the 34 loci with established
connections to AMD through rare variant discovery or eQTL analysis (3)
Genes deemed relevant to macular degeneration pathogenesis in the lit-
erature that emerged from extensive PubMed searched as previously
described13 and (4) 48 genes identified through 1000 iterations of label
shuffling,with control andAMD labels randomized. The performance of 81
features was superior compared to the genes within GWAS loci (AUC-
ROC= 0.72, CI 0.58–0.84), high-confidence genes (AUC-ROC= 0.64, CI
0.50–0.77), literature (AUC-ROC = 0.69, CI 0.56–0.84) and, shuffled, i.e.,
permutation testing (AUC-ROC= 0.60, CI 0.45–0.75) (Supplementary Fig.
3A–D). 48 genes identified in the permutation testing showed no overlap
with the set of 81 genes and performed poorly on both the true and shuffled
labels (Supplementary Fig. 4). These results further emphasize the specificity
of the 81 genes associated with AMD.

We next used SHAP (Shapley Additive exPlanations)21 to explain our
best transcriptome-basedAMDpredictionsby computing the contributions
of each feature (gene) to that prediction (i.e., rank feature importance on
classification). Shapley values indicate the contribution of every feature, i.e.,
gene expression value, towards the prediction for every individual sample,
i.e., patient or control, vis-a-vis an average prediction. A positive Shapley
value for a feature in each sample indicates that the feature value is favoring
the prediction of the sample as the disease class with the magnitude of the
Shapley value indicating the strengthof howmuch it favors theprediction.A
negative Shapley value for a feature in each sample can be considered vice
versa. The results showed that high gene expression of MOXD1 in AMD
(red, triangle) and low gene expression ofMOXD1 in controls (blue, dots)
contributedmost to themodel prediction. The trendwas similar for the top
10 genes (Fig. 1E).

Gene expression variation within humans arises from a complex
interplay of genetic, environmental, and epigenetic factors. Furthermore,
AMD manifests with a wide array of clinical presentations, encompassing
both dry andwet forms, each exhibiting varying rates of disease progression
and degrees of visual impairment. Thus, we next set out to identify whether
such heterogeneity existed at the molecular (transcriptome) level. To
achieve this, we harnessed the predictive capacity of the XGB model,
training it on our dataset through 100 iterations of repeated randomized
data splits.Wecompared thepredicted labels against the actual ground truth
(disease vs. control status) to uncover patterns.We systematically identified
samples for which the predicted labels consistently aligned or deviated with
the true labels in over 70% of instances. We categorize these samples into
two groups: the “70% right” group, comprising instances where predictions
align with true labels, and the “70%wrong” group, encompassing instances
where predictions deviate from true labels. Notably, our analysis revealed a
distinct pattern: a higher proportion of control samples (74%) exhibited
accurate labeling compared to AMD samples (60%) (Fig. 1F). This dis-
crepancy was further highlighted by the observation that nearly twice as
many AMD patients were subject to mislabeling (18%) compared to only
9% of control subjects (Fig. 1F). Additionally, the performance of XGB was
significantly improved (AUC-ROC= 0.94, CI 0.86–0.91) when 70% wrong
samples were excluded from the analysis (Supplementary Fig. 5). This
suggests that while heterogeneity exists within both groups, its manifesta-
tion is notably more pronounced within the disease population. These
differences could not be attributed to age aswithin the same age range, there
were several normal and AMD patients that were predicted accurately
(Supplementary Fig. 6A). Next, we compared the top 2 risk alleles for AMD
in CFH (Y402H; rs1061170) and ARMS2 (A69S;rs10490924) as well as the
polygenic risk scores (PRS) based on 52 known common risk factors across
34 loci9 (Supplementary Fig. 6C, D). We observed an expected, significant
difference in CFH and ARMS2 risk alleles and PRS in all samples, and
70% right group. This difference was notably absent in the 70% wrong
group (Supplementary Fig. 6E). These results suggest a potential invol-
vement of genetic risk factors in shaping the molecular landscape of the
disease in AMD. It’s important to note that the sample size remains small
within the 70% wrong group (consisting of 10 controls and 11 AMD
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cases), underscoring the need for validation within larger cohorts. A
heatmap of 81 ML-genes when plotted in these four groups (70% right
AMD and controls, and 70% wrong AMD and controls) highlights the
distinct gene expression patterns with the gene expression profiles within
the 70% wrong group aligning closely with their predicted labels
(Fig. 1G).

Gene co-expression network-based analysis connect the ML-
genes to AMD-relevant pathways
To gain further insight into the biological significance and relationships
among the 81 genes, we utilized Weighted Gene Co-expression Network
Analysis (WGCNA), known for its ability to associate gene co-expression
modules with specific biological functions and pathways22. WGCNA
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analysis was done using transcriptome data from 453 human retina and
identified 44 modules and used GO analysis to identify the top biological
pathways associated with these modules. We observed that majority of the
(62/81) ML-genes were enriched within three modules associated with
immune response (turquoise, p-value = 2.07 × 10−6), extracellular matrix
organization (ECM) (tan, p-value = 5.16 × 10−19), and complement
(magenta, p-value = 3.45 × 10−19) pathways (Fig. 2A). These results are
particularly interesting because of the putative role for these pathways in the
pathogenesis of AMD12,23. Additionally, these modules also harbor three
known AMD-GWAS genes, C3 and COL8A1 (tan) and CFB (magenta)23.
FBLN124 and MOXD113 were particularly interesting for their implicated
role in AMD. Additionally, we find several ML-genes involved in comple-
ment pathway such asC7,C1S,C1R andC1RL that have not been associated
with AMD. Next, we assessed the module trait correlation across normal
and AMDpatients to identify the gene networks associated with the disease
(Supplementary Fig. 7). Notably, all threeML-enrichedmodules exhibited a
positive correlation with AMD and the eigengene for these modules
demonstrated increased expression levels between normal and AMD
(Fig. 2B).

Expression correlations are often used to infer functionality and
regulatory relationships within specific biological contexts. As we did not
observe many known AMD-GWAS genes in 81 ML-genes, we further
explored the functional relationship between known AMD-GWAS genes
with the ML-genes identified in this study between controls and AMD
patients’ transcriptome data. We observed a strong correlation (r2 > 0.7)
in cases compared to controls with eight known AMD-GWAS genes
correlated with 70/81 ML-genes (Fig. 2C, Supplementary Fig. 8) in late
AMD whereas in controls only 2 known AMD-GWAS genes were cor-
related with 7/81 ML-genes (Supplementary Fig. 9). Additionally, these
correlations exhibited statistical differences between cases and controls
for most ML-genes (Supplementary Fig. 8). In comparison, in random
set of 81 genes, a much smaller number of genes showed correlation, and
they were comparable in cases (20/81) and controls (25/81) (Supple-
mentary Fig. 10). Furthermore, and even fewer of these correlations were
statistically different between cases and controls (Supplementary Fig. 11).
Taken together, these findings demonstrate that there is an enhanced
positive correlation and thus by extension functional relationship
between the expression ML-genes with known AMD-GWAS genes in
AMD transcriptomes.

Next, we analyzed the preservation of the three modules enriched for
ML-genes in normal and AMD networks using the density and
connectivity-based preservation statistics available within the mod-
ulePreservation in WGCNA. The overall measure of preservation was
defined asZsummary (Fig. 2D,E). The twomodules that functionally annotate
to immune response and ECM were well preserved between controls and
AMD (Zsummary >10). However, the module enriched for complement
pathway genes was found to be weakly preserved (Zsummary = 4.47)

25. Next,
we identified the top 20most connected genes (hub genes) and their top 10
connections within the complementmodule from controls andAMDusing
WGCNA. We identified two ML-genes (C1R and C1RL) as hub genes in
controls, whereas AMD network has six ML-genes (PSMB8, PSMB9,

PSMB8-AS1, B2M, HPC5, HLA-B) as hub genes (Fig. 2F). These findings
suggest these genes within complement pathways are modulators of
immune activity in the retina that play an important role in pathogenesis
in AMD.

AMD disease progression has shared and unique gene
signatures
AMD is a progressive disease with early, intermediate, and late stages of the
disease. Early/intermediate AMD is the most common and asymptomatic
form, characterized by pigmentary abnormalities in RPE of the macular
region and accumulation of extracellular aggregates of proteins, lipids and
cellular components (called drusen). Vision loss happens in the late stage,
which is usually subdivided into dry (geographic atrophy, or GA) and wet
(choroidal neovascularization, or CNV) forms26. The symptoms of AMD
worsen over time, although the rate at which the disease progresses varies
and not all patients with early/intermediate AMD develop late disease. In
the United States alone, over 1.75 million people have late stages of AMD,
and 7.3million people are affected with intermediate stages which are at the
risk of developing late AMD6. However, there is a paucity of studies on the
early and intermediate stages of AMD, and as a result, there are no reliable
biomarkers for predicting the disease progression. Thus, we next applied the
ML pipeline developed for late AMD in early (n = 175) and intermediate
(n = 112) AMD to identify the molecular events that lead to AMD. We
identified a set of 57 genes for early AMD that provided AUC-ROC statistic
of 0.62 (CI 0.51–0.74) (Fig. 3A), whereas a set of 62 genes gave AUC-ROC
statistic of 0.71 (CI 0.59–0.83) for intermediate AMD (Fig. 3B). The rela-
tively modest performance of these models can be attributed to subtle
alternations in gene expression during these initial stages, where vision loss
or cell death in early and intermediate stages is not yet prominent. Thus, we
next tested the performance of the features identified in early and inter-
mediate AMD in late AMD. This analysis showed notable enhancement in
predictive power with the 57 early AMD-associated genes, leading to an
AUC-ROC statistic of 0.74 (CI 0.58–0.86) (Fig. 3C). Conversely, the per-
formance remained comparable for the intermediate stage (AUC-ROC=
0.72, CI 0.58–0.89) (Fig. 3D). For both stages, the performance of the
features selected based on shuffled label did not perform well (Supple-
mentary Fig. 12). These findings are also consistent with a lower sensitivity
as well as a higher proportion of early (29%) (Fig. 3E) and intermediate
AMD (27%) (Fig. 3F) deviating from their ground truth prediction. Thus, it
is likely that intermediate AMD might have distinct molecular under-
pinning that does not represent a transitional stage between early and late
AMD. This was also reflected in the expression correlation of the can-
didate genes with known AMD-GWAS genes. 81 ML-genes identified in
the late AMD showed higher correlation in early AMD compared to the
intermediate AMD (Supplementary Fig. 13). Similarly, early AMD 57
gene signatures also showed higher correlation with late AMD and not
intermediate AMD (Supplementary Fig. 14). However, the gene identi-
fied in intermediate does not show correlation with known
AMD genes in any stages (Supplementary Fig. 15). Importantly,
genes identified across both early and intermediate stages were enriched
within modules associated with immune response and ECM pathways

Fig. 1 |Aflow-chart ofML-pipeline,models performance and results of lateAMD
classification. A Schematic representation ofMachine Learning pipeline, consisting
of threemain parts: normalization and batch correction, feature selection, andmodel
building. B Bar plot comparing eachmodel’s statistics when used to classify between
AMD cases and controls. Different colors represent the models built using logistic
regression, random forest, neural networks, andXGBoost separately.CAnROCplot
showing the performance of the XGBoost model using default parameters. The
closer the curve is to the top left corner, the more accurate the model will be at
classifying cases and controls. The numbers presented at the bottom right represent
the averages of 100 iterations of XGBoost models. D Boxplot showing the dis-
tribution of statistics (AUC, Sensitivity, Specificity, F-1 score Precision and Recall)
generated across the 100 iterations. E Feature importance plot using SHAP analysis
swarm plot showing the underlying weights of the top 10 genes for each sample. For

each gene, the top swarm line shows the distribution of weights for AMD samples,
while the bottom lines show the same information for Controls. The x-axis repre-
sents the SHAP value score each observation has within a gene. Observations are
assigned colors corresponding to the range of gene expression, with dots (controls)
and triangles (cases) closer to blue indicating lower gene expression values and those
closer to red signifying higher gene expression values. F Bar plot showing the dis-
tribution of samples being classified correctly 70% or more of the time, or samples
being classified wrongly 70% or more of the time. The sections are identified as blue
and pink respectively. Grey sections are for samples not making the right and wrong
predictions cutoff.GHeatmap showing the gene expression of selectedML-genes (as
rows) and 166 samples (as columns) divided into 4 groups: Controls, Controls being
predicted wrong 70% or more of the time, Cases, Cases being predicted wrong 70%
or more of the time.
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(Fig. 3G, H). While there exists a limited overlap in genes identified
among the three disease stages of AMD, they manifest enrichment within
identical modules associated with AMD-relevant pathways. This
underscores that majority of AMD-progression response includes sig-
natures reflecting immune response dysregulation, indicating a shared
biological basis.

ML-genes are expressed within specific cell types in retina that
are impacted in AMD
Our RNA-seq data was performed at the tissue level and yielded an average
of gene transcript abundance that reflects the average signal frommixtures
of cell-type-specific gene expression levels. This is particularly relevant for
tissues characterized by a highly heterogeneous cell type composition, such
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Fig. 2 | Gene co-expression network analysis to connect ML-genes to disease
pathways. A Table representing the number of ML genes included in the modules,
the p-value of the enrichment, the correlation value between the module’s eigengene
expression profile and the AMD status of the samples, and the correlation p-value.
The color in each correlation cell corresponds to the correlation value on the scale
provided at the top of the table. Notable, immune Response ranks highest in cor-
relation to a patient being diagnosed with AMD. B Boxplot showing the eigengene
value of eachmodule between cases and controls. Next to the boxplots are the subset
of 81 ML-genes that were identified as part of the top 10 hub genes within those
modules. CHeat maps illustrating the correlation values between 81 ML-genes and
known AMD-GWAS genes, categorized into control and AMD groups. ML-genes
with a correlation value ≥ 0.7with any knownAMDgenes in theAMDsample group
are included. That list of genes was used to generate the heatmap for the Control

group.DModule Preservation plot showing the preservation of gene composition in
immune response and ECM modules from the control network in the late AMD
network. The module enriched for complement pathways was weakly preserved in
the AMD network. E Hierarchical cluster dendrogram of control and AMD co-
expression networks. Each black branch (vertical line) corresponds to one gene. The
color rows below the dendrogram indicate module membership showing the labels
of genes in the Immune Response (Black), ECM (pink), and Complement (light-
green) from the AMD network when matching with their labels in control network.
F A Cytoscape visualization of the top 20 hub genes and their top 10 connections to
other genes. Round nodes are the top 20 hub genes while rectangular nodes depict
connected genes. ML-genes are highlighted in pink, and knownAMD-GWAS genes
are highlighted in green. Connections between genes are color-coded, with purple
indicating stronger connections, while blue represents weaker connections.

Fig. 3 | Performance ML methods in classifying early and intermediate-
stage AMD. A ROC and box plots illustrating the outcomes of classifying control
and early AMD samples across 100 iterations using a set of 57 genes generated by the
XGBoost model. B ROC and box plots display the outcomes of classifying control
and Intermediate AMD samples across 100 iterations using a set of 62 genes gen-
erated by the XGBoost model. C ROC and box plots illustrate the notable
enhancement in predicting late AMD outcomes by employing the XGBoost model
across 100 iterations with 57 genes selected for Early AMD and control samples but
applied to distinguish late AMD samples from the controls. D ROC and box plots
demonstrate that utilizing the XGBoost model across 100 iterations with 62 genes
associated with intermediate AMD did not improve performance in predicting late

AMD outcomes. E A bar plot displays the distribution of early AMD and controls
classified correctly 70% ormore of the time (blue), or samples classifiedwrongly 70%
or more of the time (pink). Grey sections represent samples that do not meet the
criteria for either correct or wrong predictions. F Bar plots distribution for the
intermediate AMD. Only ~40% of the intermediate AMD samples are predicted
right compared to the ~70% of the controls.G Table demonstrating the enrichment
of 57 early AMD genes within co-expression network modules associated with
immune response and extracellular matrix (ECM) pathways, as determined by
userListEnrichment within WGCNA. H A table depicting the enrichment of the
same pathways for the 62 intermediate AMD genes.

https://doi.org/10.1038/s41525-025-00507-2 Article

npj Genomic Medicine |           (2025) 10:48 6

www.nature.com/npjgenmed


as the retina, which is made of six different cell types27. To understand the
role of AMD-relevant cell type, we built a reference for the average
expression of retinal cell types using cell-type specific markers28 from six
human retinas across three different studies29–31 (Supplementary Table 1).
Next, we implemented three distinct methods- CIBERSORTx32,
dTangle33, and BayesPrism34—to deconvolute the cellular composition of
both control and AMD samples. Subsequently, we applied student t-test
to identify the cell types exhibiting significant changes associated with the
disease, revealing astrocyte, microglia, Müller glia, and rods proportion
to be significantly different between normal and late AMD (Supple-
mentary Fig. 16). Microglia, astrocyte, and Müller glia proportion

increase in the disease whereas the proportion of rods decreases (Fig. 4A).
The decrease in the rods is observed only in the late stage, which could be
the results of aging35,36 as well as disease-related photoreceptor
degeneration37. Notably, microglia were the only cell type that sig-
nificantly changed in cell proportion across all stages of AMD, while
alterations in astrocyte proportion were confined to early and late AMD
stages. (Fig. 4A). The three tools used differ in their underlying algo-
rithms, input requirements, and output formats. However, all of them
point to the involvement of microglia in AMD, suggesting microglial
activation and increased immune activity begin in early AMD much
before the onset of photoreceptor loss in late AMD.

Fig. 4 | Expression of ML-genes across various retinal cell types and their
alterations in AMD. AViolin plots illustrating the cell fraction of various cell types
in deconvolution results from 453 bulk RNA samples, utilizing a single-cell RNA
dataset as a reference. P-values are annotated to indicate significant differences in cell
fraction ranges between Control and different AMD stages. P-values are omitted
when they exceed 0.05, indicating a lack of statistical significance. B A heatmap
illustrating the average gene expression of 81 ML-genes (as rows) across 11 retinal
cell types (as columns). The color gradient indicates whether genes are pre-
dominantly expressed (positive value, yellow) or minimally expressed (negative
value, purple) in a particular cell type. Most ML-genes are expressed in astrocytes,
microglia and Müller glia. C Box plots showing the differences in ML-gene

expression between 20 normal and 20 AMD single nuclei data across astrocytes,
microglia, andMüller glia. The selected genes are those that have successfully passed
Differential Expression analysis utilizing DESeq2 with a false discovery rate (FDR)
threshold of 5%. D Volcano plot showing differentially expressed ML-genes within
microglia, with eleven genes (one upregulated, ten downregulated) passing the DE
threshold of Log2 fold change of 0.25 or higher and FDR 5%.EVolcano plot showing
differentially expressed genes within astrocytes. Two upregulated and two down-
regulated passing the DE threshold of Log2 fold change of 0.25 or higher and FDR
5%. F Volcano plot displaying significant ML-genes within Müller Glia (three
upregulated and six downregulated) using the same threshold as mentioned above.
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To validate the results of the deconvolution, we analyzed single-nuclei
data from20 controls and 20 lateAMDpatients from four published studies
(Zenodo 753211538, GSE22104239, GSE20843440 and GSE203499) (Sup-
plementary Table 2, Supplementary Fig. 17). Microglia cluster was further
subdivided into microglia, perivascular macrophages, monocyte-derived
macrophages andmonocytes based on the top differentially expressed genes
identified in human donor retina data from a recently published study40, as
well as cell-type specific markers genes40–44 (Supplementary Fig. 18). A
heatmap of 81 ML-genes across retinal cell types showed that majority of
them were enriched in their expression in microglia, astrocytes, Müller glia
(Fig. 4B). In addition, identified several ML-genes (21/81) that were dif-
ferentially expressed acrossmicroglia, astrocyte andMüller glia (Fig. 4C). In
microglia, 11 genes were differentially expressed (one upregulated, ten
downregulated (Fig. 4D). In astrocytes, four gene were differentially
expressed (two upregulated and two downregulated) (Fig. 4E). For Müller
glia, three genes were upregulated and six were downregulated (Fig. 4F). In
addition, several knownAMDgenes includingAPOE andVEGFAwere also
found to be differentially expressed within glial population of normal and
AMDpatients (Supplementary Table 3). These findings collectively provide
support for the consistency and validity of the genes identified using theML
approach and cell types identified using the deconvolution method in an

independent dataset, reinforcing the relevance of the identified gene
expression alterations in the context of AMD.

AMD signature genes are enriched for AMD associated variants
Comparing transcript levels between healthy and diseased individuals
cannot separate the cause vs consequences of the disease under scrutiny.
Thus, we resorted to the published AMD-GWAS data on late AMD,
comprising 16,144 patients and 17,832 controls9 as well as early AMD data
consisting of 14,034 cases and 91,214 controls45 to access the potential
association of genetic variants within ML-genes with AMD. The Quantile-
Quantile (Q-Q) plot in late AMD-GWAS data (Fig. 5A) showed the largest
deviation from the null p-value of theML-genes identified in lateAMD (red
line) followed by earlyAMD(green line) suggesting that a subset of theML-
genes had genetic variants associated with AMD. In early AMD data, the
gene identified in early AMD showed the largest deviation (green line)
succeeded by late AMD (Fig. 5B). Interestingly, neither dataset exhibited
apparent deviation for intermediate AMD (indicated by the blue line) (Fig.
5A, B). Furthermore, the ML-genes within theWGCNAmodules enriched
for complement and ECM organization individually also showed enrich-
ment within late AMD-GWAS (Fig. 5C). By applying a suggestive asso-
ciation threshold (p-value < 5 × 10−5), we identified two candidates,PLCG2;

Fig. 5 | ML-genes are enriched for AMD-associated variants. AQuantile-quantile
(Q-Q) plot using summary statistics data from late AMD demonstrates a greater
deviation from the null distribution (solid black line) forML-genes identified in early
(green dots) and late AMD (red dots) compared to intermediate AMD (blue dots).
B Q-Q plot using the early AMD data reveals similar but less pronounced trends
across early, intermediate, and late AMD. C Q-Q plot for the 81 ML-genes, further
segregated into 3 groups based on the modules identified in the WGCNA network,
also demonstrates deviation for the complement (purple dots) and ECM pathways
(tan dots), but not for the immune response (turquoise dots).DRegional association
plot generated using LocusZoom plots displays the most strongly associated SNP,
rs4133124 (purple diamond), along with other suggestively associated SNPs (p-
value < 5 × 10-5) within the intron of PLCG2. E A schematic representation of the

luciferase assay, and the relative locations of the six SNPs around PLCG2 that were
tested in the assays. F The luciferase assay results for four constructs (E30-E33)
indicate that construct E31, which contains rs4133124, exhibits a 3.5-fold increase in
luciferase activity compared to the empty vector in HMC3 and a 2.2-fold increase in
ARPE19. Error bars represent the standard error of themean (SEM) calculated from
three independent experiments.G eQTL violin plots sourced fromGTEx to illustrate
the correlation between the SNP rs4133124 and PLCG2 gene expression specifically
within the hippocampus region of the brain. H The UCSC Genome Browser graph
displaying custom tracks fromhuman retina, astrocytes, andARPE19 cells shows the
overlap of rs4133124 with open chromatin regions of AMD-relevant tissues and cell
types. Additionally, the genomic region spanning rs4133124 shows conservation in
primates as highlighted through multi-species alignment.
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rs4133124, p-value = 2.59 × 10−6 (Fig. 5D) and IGFBP7; rs1718877, p-
value = 2.83 × 10−6 (Supplementary Fig. 19A) for late AMD and USP7;
rs1471435, p-value = 7.27 × 10−6 (Supplementary Fig. 19B) and NEIL1;
rs11634109,p-value = 4.27 × 10−5 (SupplementaryFig. 19C) for earlyAMD.

Next, we accessed the functional relevance of the suggestive associated
SNPs, we selected four genomic regions spanning six SNPs around PLCG2
and six genomics regions spanning seven SNPs around IGFBP7 (Supple-
mentary Table 4). We cloned these elements upstream of a minimal
promoter-driven firefly luciferase gene in pGL4.23 (Fig. 5E) and tested for
enhancer activity of the elements in the human microglia cell line, HMC3
andhumanRPEcell line,ARPE19.We identified that one element spanning
rs4133124within PLCG2 showed 3.5- and 2.2-fold higher luciferase activity
compared to the empty vector inHMC3andARPE19, respectively (Fig. 5F).
We also tested the effect of reference T allele with the alternative G allele but
found no change in enhancer activity in the rs4133124 region (data not
shown).Additionally, this variant has been identified as an eQTL forPLCG2
in hippocampus in the GTEx data (Fig. 5G)4. We did not find this eQTL in
the retina (datanot shown),which couldbe attributed to small proportionof
glial cell in the bulk retina data13. The variant, rs4133124 reside in the
intronic region, which is highly conserved in primates, but not inmice (Fig.
5H). It is noteworthy that macular degeneration is also caused by the
degeneration of photoreceptors and underlying RPE in the central region
called macula, which is a primate specific structure46. Additionally, this
variant resides within the open chromatin region in retina, ARPE19 and
astrocyte shown as custom track, suggesting a regulatory role (Fig. 5H).
These results suggest that including the biological context of the genes can
reveal additional genetic association within current GWAS datasets.

Discussion
For most complex diseases, including AMD, we have not exhausted the
search for the disease genes as a significant proportion of heritability
remains unexplained9,23. Identification of additional lociwarrants large case-
control cohorts, which can be cost-prohibitive and limited by sample
availability. Most AMD-GWAS variants reside in the non-coding region
and mediate their effects through gene expression regulation13,15,47. Conse-
quently, gene expression profiling in normal and disease samples provides
valuable resource for studying disease mechanisms and discovering addi-
tional causal genes. Gene expression data exhibits high heterogeneity, with
significant natural variation present within and among human
populations1, a phenomenon exacerbated in diseases. Moreover, non-linear
behavior is common in human systems due to their complex dynamics.
Consequently, relying solely on a simple linear model, as often employed in
the most common methods of differential gene expression analysis48, har-
bors inherent limitations and pitfalls. Additionally, arbitrary cutoffs of fold-
change and statistical thresholds does not necessarily reflect biological
relevance49. In contrast, our approach can detect and learn from non-linear
data patterns to identify a robust molecular classifier through a series of
rigorous feature recognition and dimensionality reduction.

Integration of prior knowledge from AMD biology with molecular
networksbe leveraged tounderstand the functional relevanceofnovel genes.
The interconnected nature of gene regulatory networks implies that the
expression of all genes in disease-relevant cells has the potential to influence
the functions of core disease-related genes50. Co-expression networks are
particularly useful for this purpose becausewhen constructed using disease-
relevant expression profiles, they can capture the tissue and cell-type-
specific nature of the disease51,52. It was notable that 76% (62/81) of ML-
genes were involved in AMD-relevant immune response, complement and
ECM pathways. Additionally, these genes had a much stronger pair-wise
correlation with known AMD genes in cases compared to controls sug-
gesting that during the disease process, they work closely with knownAMD
genes. Network preservation analysis further identified the modules
involved in complement pathways to be not well preserved in the disease
network affirming the well-established role of complement dysfunction in
AMD53. The central regulatory hub genes of the complementmodules were
different in disease and controls. Among several ML-genes that were

identified as hubs in the late AMD network, genes related to proteasome
complex (PSMB8, PSMB9) are particularly interesting because of their role
in immune systemregulation54. It is therefore conceivable that dysregulation
of proteasome activity-led immune response may contribute to the patho-
genesis of AMD55. These results highlight the benefits of integrative analy-
tical approaches to regain the holistic view of the AMD that is lost in
experimentally tested reductionist approaches or hard statistical cut-offs.

Progression of early and intermediate to late AMD is observed fre-
quently are attributed to multiple risk factors56,57. However, the role of
known genetic risk factors doesn’t seem to contribute significantly to the
progressionof intermediate to lateAMD58.Additionally, in a sample of 6657
cases of intermediate AMD, 10 out of 34 late AMD loci did not show
association, despite having adequate statistical power9. This is further
strengthened by our findings of intermediate AMD that showed modest
improvement in model performance in late AMD. Similarly, digital
deconvolution analyses revealed the changes in the astrocyte in the early and
late AMD stage but not in the intermediate stage. However, the changes in
the microglia proportion were observed across all three stages. Finally,
integration of the AMD-GWAS data from early and late AMD does not
show deviation for the genes associated with intermediate AMD. Taken
together, our results suggest that AMD progression may not be linear and
involve both shared and stage-specific genes, pathways, and cellular
perturbations.

Thedysregulated immune response is ahallmarkofnormal aging59 and
a prominent feature in many neurodegenerative diseases60 including
AMD61. However, molecular, and cellularmechanisms underlying immune
dysregulation-mediated neurodegeneration are multifaceted and have not
been completely resolved in AMD. In the human retina, immune responses
are orchestrated by three distinct glial cell types:Müller cells, astrocytes, and
microglia62. Microglia, akin to macrophages, serve as the resident immune
cells and clear cellular debris through complement pathay63. They then
maintain immune surveillance in the retina, supporting neuroprotection
and homeostasis63 and can have different function based on anatomical
location42. However, in disease conditions, they can get activated, migrate to
the site of degeneration, andundergomorphological transformation leading
to excessive release of inflammatory mediators and exacerbation of
neurodegeneration64. Ocular sections from AMD samples shows the pre-
sence of activatedmicroglia near the disease site that are thought to promote
degeneration65, and activated glial populations are enriched in AMD and
related neurodegenerative diseases39. In contrast, a neuroprotective role of
microglia has also been described in neurodegeneration40,66. Our data fur-
ther emphasizes the role of microglia at a molecular and cellular level in a
large cohort (105 controls and 348 AMD). We show that genes associated
withAMDhave abundant expression inmicroglia and astrocytes. Secondly,
we detected distinct differences in the cellular composition of microglia
between normal and diseased individuals based on digital deconvolution of
transcriptome profiles. These results suggest that gene relevant to AMD
pathologymodulate the retinal glial function that are driving force indisease
progression and photoreceptor degeneration in AMD.

Reaching significant association signals (p < 5 × 10−8) in traditional
GWAS requires increasingly larger sample sizes to overcome statistical
correction for multiple testing. Our approach of integrating the biological
context, specifically genes exhibiting altered expression in disease-relevant
cell type, with the GWAS data revealed novel genes within suggestive
association signals (p < 5 × 10−5). PLCG2 encodes for an enzyme that cat-
alyzes the hydrolysis of phospholipids and releases critical signaling mes-
sengers involved in diverse cellular functions67. Genetic variants in PLCG2
have been associated with autoinflammation, antibody deficiency, and
immune dysregulation syndrome68. Recently, the identification of PLCG2
rare variants in Alzheimer’s patients has brought the focus on its role in
neurodegenerative disease69, that is likely to cause the disease through
microglia-mediated innate immune response70. A pathway-based analysis
implicated the role of PLCG2 in AMD71, however, our study presents the
first convincing genetic andmolecular evidence including the identification
of rs4133124 as a single variant that is associated in both GWAS and eQTL

https://doi.org/10.1038/s41525-025-00507-2 Article

npj Genomic Medicine |           (2025) 10:48 9

www.nature.com/npjgenmed


analyses. The lack of observed differences in enhancer activity between the
two alleles of rs4133124 could be due to the limitations of the luciferase
construct used in the assay, potentially lacking crucial genomic elements
necessary for detecting allele-specific effects. IGFBP7 represents another
such example which was identified as an AMD locus in the Japanese
population72, but was not replicated in Caucasian-dominant AMD-
GWAS23. Taken together, our study shows that the integration of gene
expression data from normal and disease individuals with existing GWAS
data provides a powerful approach for gaining systems-level insights into
AMD pathogenesis.

Methods
Cohort and data processing
This study was performed in accordance with the ethical standards of the
Declaration of Helsinki and informed consent were taken from all the
participants in original study13. The study was approved by the institutional
review board of Baylor College of Medicine. We used RNA-seq data from
453 post-mortem donor retina that were evaluated to determine the level of
AMD based on the Minnesota Grading System (MGS)73, with criteria
similar to theAge-relatedEyeDisease Study (AREDS)26.MGS1donor retina
had noAMD features and served as controls, whereasMGS2-4 represented
early, intermediate and late stages of AMD, respectively. A total of 105
controls, 175 early AMD, 112 intermediate AMD, and 61 late AMD were
included in the dataset13, which were primarily of Caucasian origin. Tran-
scriptome analysis of donor retina was performed using RNA-Seq after
enriching for poly-adenylated RNA. RawRNA-Seq reads were processed as
described earlier13. Briefly, trimmed reads were aligned to the Ensembl
release 85 (GRCh38.p7) human genome using STAR version 2.5.2a74

RSEM75 was used to obtain estimated gene expression levels. Gene
expression matrix was normalized using Trimmed Mean of M-values
(TMM) in Counts perMillion (CPM) using edgeR76 and genes were filtered
by setting a threshold of 1 CPM in 10% of all samples. After initial quality
control, 105 normal, 175 early, 112 intermediate and 61 late AMD samples
were used in subsequent analyses.

Feature selection
Normalized RNA-seq data was used to select the best features to be used in
machine learning models. We applied three different feature selection
methods ANOVA, AUC and Kruskal using mlr3filters (version 0.7.1) in R.
All three methods are filter-based on scoring all the available features and
then selecting features with the highest scores. ANOVA calculates the
F-score to test the significance of each gene based on the analysis of variance.
AUC computes a score called Area Under the Curve, also known as clas-
sification accuracy. The Kruskal method estimates the score for each gene
utilizing the Kruskal-Wallis rank sum test, which is non-parametric com-
pared to ANOVA.

We applied the feature selection 1000 times. For each iteration, we
randomly sampled80%of the data, used the threemethods to obtain a score
for each gene, and then filtered for the top five hundred genes. At the end of
one thousand iterations, we obtained the list of genes and calculated how
many times they were in the top five hundred in each iteration for each
method. Finally, we took the top one hundred genes from eachmethod and
proceeded with the genes that appeared in all three methods.

Machine learning models
We employed four machine learning models: neural network, logistic
regression, eXtreme Gradient Boosting (XGB), and random forest. All
machine learning models are available in Python as separate libraries. To
train the model, we first randomly split the data into an 80% train and
validation set and a 20% test set. Then we further split the train-validate set
into eighty percent training set and twenty percent validation set. In other
words, we randomly divided into 64% training set, 16% validation set, and
20% testing set. Subsequently, we fed the data into the models to train and
generate predictions for each sample, validating the results.Once themodels
were trained, we evaluated their performance on the test set using metrics

such as sensitivity, specificity, recall, precision, F-1 score, and AUROC. To
handle the class imbalance between cases and controls, we applied the
Youden J20 method to adjust the threshold for each iteration. The p-value
cutoff was set to 0.05, and the best thresholdwas calculatedusingYouden’s J
statistic20,77. The maximum distance to the diagonal line was considered as
the optimal cutoff point value. We then used the binary predictions to
determine the frequency of correct predictions for each sample. Subse-
quently, we categorized the samples into two groups: those predicted cor-
rectly at least 70% of the time and those predicted incorrectly at least 70% of
the time.

The following gene lists were used to compare the performance of
chosen feature selectionmethods: (1)Genes within 500KB of the 34 AMD-
GWAS loci9 (2)High confidence AMD genes, including genes from the 34
loci for which the connection with AMD has been establish either through
rare variant discovery, QTL analyses or functional validation (3) Genes
deemed relevant tomacular degeneration pathogenesis in the literature that
emerged from extensive PubMed searched described before13 and (4) Fea-
tures obtained by randomly swapping the labels of our dataset and rerun
feature selection to obtain another set of genes.

We then tested both the original set of 81 genes and the later set of 48
genesobtainedusing shuffled labels by running themodelusingboth sets. In
one iteration, we ran themodelwith each set of genes using the true label. In
another iteration, we shuffled all the labels in the training, validating, and
testing set, and then ran the model. Finally, we ran the model with the
training and validation set having shuffled labels, while keeping the labels of
the testing set true.

SHAP (SHapley Additive exPlanations) was used for interpreting
the output of the models by attributing the contribution of each feature to
the final prediction. We used the model parameters built using the
training data and the original gene expression as inputs for the SHAP
library in Python to compute SHAP values for each instance78. The
analysis shows a view of how each gene, or variable, will affect the model
and alter the prediction.

Weighted gene-correlation network analysis
Weighted co-expression networks were constructed using theWGCNA22

using the Bioconductor R package. Briefly, a similarity matrix between
each gene was obtained and the adjacency was calculated using Spearman
correlation. We then used hypergeometric testing at a significance
threshold of 0.05 alpha-level after Bonferroni correction accessing
enrichment of genes for enrichment across identified modules. Pathway
analysis was performed on each module using Gene Ontology biological
process terms.

For module preservation, we first built the co-expression networks
separately on controls and AMD samples. Next, we used the preservation
statistics available within the modulePreservation function in the
WGCNA22 in R. We then employed a permutation test (number of per-
mutations = 500), which randomly permutes themodule assignment in the
control and AMD networks to assess if the observed value of preservation
statistic is higher thanwhat is expected by chance and assigns a permutation
test p-value. The observed preservation values were then standardized with
regard to the mean and variance and a significance Z score was defined for
each preservation statistic. In order to compare the degree of preservation of
modules between the normal and AMD networks, differential module
preservation”—ΔZsummary, which is the arithmetic difference between the
two preservation scores was calculated.

Hub genes were identified using the signedKME function, which
calculated the KME values between a gene and all the modules in the
network. With the corOptions parameter: “use = ‘p’, method = ‘spear-
man’”. This calculates the correlation between the expression patterns of
each gene and the module eigengene. Genes with the largest kME are
considered ‘hub’ genes within the modules. We selected the genes from
their respective modules and sorted in descending order the KME value
for that module. Genes with the largest kME we assigned ‘hub’ genes
within the modules.
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Polygenic risk score
We obtained the beta coefficient of common, independently associated
AMD-risk variants at 34 loci from published AMD-GWAS data9. 42
common, independently associated risk variants out of 52were found in our
data as the remaining were rare variants. To compute the polygenic risk
score for each individual, wemultiplied the genotype (coded as 0, 1, or 2) by
its corresponding beta coefficient and sum up the weighted beta coefficient
values across all variants. To test the difference between the PRS of Control
and AMD, we used the Mann-Whitney U Test through the wilcox.test()
function in R.

Heat map
We created the gene expression heatmaps using pheatmap() function in R.
First, we extracted the genes of interest’s expressions from the normalized
bulk data and performed log 2-based transformation. The function pheat-
map takes in amatrix.We defined the columns as the samples and the rows
as the genes. Samples from control and AMD groups are separated to
investigate the difference in gene expression between the two groups.

Correlation with known AMD genes
We utilized the CPM normalized counts matrix to generate two distinct
matrices: one comprising the 81 genes and the other containing the known
AMD genes, separately for cases and controls. Subsequently, we employed
the “cor” function in R to establish the correlationmatrix between these two
matrices. A threshold of 0.7 was applied, indicating that correlation coef-
ficients greater than 0.7 or smaller than −0.7 would be considered sig-
nificant. The “pheatmap” function inRwas utilized to generate a correlation
heat map between 81 ML-genes and known AMD genes between the
control and AMD group. We used the “cocor” package in R to test the
difference between the correlationof eachgenepair inControl vsAMD.The
“cocor” analysis was performed using a formula in the form “Gene1 +
Gene2 | Gene1 + Gene2”, where two independent datasets, the controls
group, and the cases group were specified. cocor automatically selected
Fisher’s test to determine the significance of differences between correlation
coefficients. The resulting p-values were used to determine whether the
correlation coefficients between the two groups were significantly different.

Integration of GWAS data and Q-Q plot
We first removed of variants in the major histocompatibility complex
region, andwithin+/− 1Mbof the knownGWAS signals9,45. The data used
for generating the Q-Q plot consists of a matrix derived from SNPs located
within the gene bodies of the genes identified through feature selection (57
for early AMD, 62 for intermediateAMDand 81 genes for lateAMD). Each
entry in the matrix represents the negative base-10 logarithm of the quan-
tiles for the corresponding SNP’s p-value. G-G Plot was used to plot the
quantile on the x-axis and the minus log 10 p-value on the y-axis.

Single cell RNA-seq analysis
FASTQ files were downloaded from the GEO databases from three pub-
lished studies: 2 samples from GSE20274730, 1 sample from GSE13063631

and3 samples from theUKBioStudies database29. Subsequently, sequencing
reads weremapped to the available hg38 genome using CellRanger (version
6.1.2). The gene expression matrices generated by Cell Ranger were filtered
to remove cells with unique molecular identifier (UMIs) less than 200 or
more than 6000 or with more than twenty percent mitochondrial reads.
Data was normalized and transformed using SCTransformV2 from Seurat.
To annotate the data with a UMAP visualization, we initially conducted
dimensionality reduction using RunPCA (seed.use = 1) and corrected batch
effects with Harmony (group.by.vars = “samples”), followed by applying
RunUMAP to create the visual matrix, identifying nearest neighbors with
FindNeighbors (reduction = “umap”, dims = 1:2) and group into clusters
with FindClusters (resolution = 0.5, random.seed = 1, algorithm = 1). Cells
were annotated using the gene expression heatmap of curated cell-type-
specific marker genes27,79,80 (Supplementary Table 5). The gene expression
heatmap was made with DoHeatmap function from Seurat.

Deconvolution
The bulk RNA-seq data containing 453 samples consisting of 105 control,
175 early AMD, 112 intermediate AMD, and 61 late AMD were used as
mixture dataset13. We used Seurat-generated reference to implement three
deconvolution methods: CIBERSORTx32, dTangle33, and BayesPrism34. For
CIBERSORTx, the normalized count matrix of 3,956 differentially expres-
sed genes across cell types was uploaded to the CIBERSORTx web appli-
cation to generate the custom signature matrix of 2002. Normalized RNA-
seq CPM counts data of the bulk data was used to perform the deconvo-
lution. For dTangle on R, we used the CPM normalized counts RNA-seq
counts data thatwas log2normalized.The average expressionof genes in the
Seurat object was log2 normalized and used for dTangle. 14,705 genes that
were present in both the bulk and single cell data were used in the decon-
volution.BayesPrismanalysis employedrawcounts fromourbulkRNA-seq
dataset and SCT-normalized cell type-specific data from single-cell analysis.
Geneson sex chromosomes and ribosomal geneswere excluded, resulting in
13,716 genes used in the analysis. All threemethods output cell fractions for
each sample. Afterward, we performed a t-test on the cell fractions between
the AMD samples and the control samples, specifically, samples from each
stage of AMD against the samples from the control. From the cell fraction
output of the deconvolution, we plotted the violin plots using “vioplot”
package in R to visualize the difference in cell fractions across disease levels.
We removed outliers in each disease stage level by setting a quantile range of
0.05 to 0.95.

Single nuclei RNA-seq analysis
Single nuclei data containing 20 control and 20 AMD samples from four
datasets was used for this analysis (Zenodo 753211538, GSE22104239,
GSE20843440, GSE203499). Counts data provided by the study or as the
output of Cell Ranger (v6.1.2) was loaded into a Seurat object for each
sample. They were then merged based on which dataset they belonged and
performedquality control to remove bad quality cells and doublets based on
counts not less than 200 and more than 7500, not more than ten percent
mitochondrial reads per cell. We implemented the fast integration pipeline
from Seurat 4.4 by performing normalization with SCTransform V2, used
RunPCA (seed.use = 1) on eachdataset.We feed the list of Seurat objects for
all datasets to SelectIntegrationFeatures (nFeatures = 3000), Pre-
pSCTIntegration, and FindIntegrationAnchors (normalization.method =
“SCT”, dims = 1:30, reduction = “rpca”, k.anchors = 20)81. With the list of
anchors, we integrate using IntegrateData (normalization.method = “SCT”,
dims = 1:30). After the integration, cell embeddings for projections were
calculated using RunPCA (seed.use = 1) andRunUMAP(reduction = “pca”,
dims = 1:30, min.dist = 0.2, seed.use = 1). Unsupervised clustering and
cluster identification were done using FindNeighbors (reduction = “umap”,
dims = 1:30) and FindClusters (algorithm = 1, resolution = 0.25, ran-
dom.seed = 1). To annotate the cell-types, we used addModuleScore func-
tion fromSeurat to generate the scores for each cell type for each cellwith the
list of cell-type-specific marker genes curated from literature27,79,80 (Sup-
plementary Table 5).

To further refine the specificity of glial cell annotations, we isolated
clusters with the highest microglia module scores and re-clustered the
data to annotate microglia, monocyte-derived macrophages, perivas-
cular macrophages, and monocytes. This process followed the same
steps for generating cell embeddings, and unsupervised clustering as
described above. Additionally, we implemented a two-step approach to
annotate the cell types. First, we calculated the gene module scores for
homeostatic microglia, perivascular macrophages, and monocyte-
derived macrophages based on the top differentially expressed genes
(DEGs) ranked by fold change, as identified in human donor retina data
from a recently published single cell atlas of human retinal mononuclear
phagocytes in AMD and age match controls40. Secondly, we utilized
curated marker genes40–44 to generate the module scores (Supplementary
Table 5). Data visualization was performed using dot plots, and cell
types were assigned based on the consensus of module scores derived
from both methods.
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Differential expression analysis between normal and AMD
samples was conducted using the FindMarkers function (logfc_thres-
hold = 0.25, min.pct = 0.1, test.use = ‘wilcox’, assay = ‘RNA’) in Seurat,
comparing control and AMD groups for microglia, astrocyte, and
Müller glia cell types. The resulting differentially expressed genes
(DEGs) were visualized using the EnhancedVolcano package. An
expression heatmap of 81 genes was generated based on the control
group across all 11 retinal cell types using the DoHeatmap function
from Seurat.

Luciferase assay
We cloned 10 genomic regions spanning 13 SNPs (6 in PLCG2, and 7 in
IGFBP7) upstream of a minimal promoter-driven firefly luciferase gene
in pGL4.23 (Promega). HMC3, and ARPE19 cells were plated in 24-well
plates (28 K cells/well) and were transiently transfected after 24 h with
test luciferase constructs (500 ng) and Renilla luciferase vector (10 ng for
transfection normalization) in duplicates in three independent experi-
ments using 2 μL of FuGENE HD transfection reagent (Roche Diag-
nostic) in 100 μL of Opti-MEM medium (Invitrogen). Cells were grown
for 48 h and luminescence was measured using a dual luciferase reporter
assay system on a Texan Spark Multimode Microplate Reader per the
manufacturer’s instructions.

Data availability
The transcriptome data from 453 human donor retina used in this study are
available in GEO (accession code GSE115828). Summary Statistics of
advanced AMD is available at http://amdgenetics.org/ and early AMD is
available for the download from www.genepi-regensburg.de/earlyamd.
Single-cell retina data are available from GSE202747 and GSE130636 and
single nuclei data was available under the accession code GSE196235,
GSE203499, GSE208434, GSE221042 and from Zenodo data repository
number 7532115 (https://zenodo.org/records/7532115).

Code availability
No customized code was used in this manuscript.
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