1	Pattern-based genome mining guides discovery of
2	the antibiotic indanopyrrole A from a marine
3	streptomycete
4	Douglas Sweeney* ⁺ , Alexander Bogdanov* ⁺ , Alexander B. Chase [‡] , Gabriel Castro-Falcón ⁺ , Alma
5	Trinidad-Javier [†] , Samira Dahesh [§] , Victor Nizet ^{§,#} , Paul R. Jensen ^{¶†}
6	⁺ Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093,
7	USA
8	[‡] Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
9	§ Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
10	[#] Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La
11	Jolla, CA 92093, USA
12	*These authors contributed equally
13	
14	
15	

16 ABSTRACT

17	Terrestrial actinomycetes in the genus Streptomyces have long been recognized as prolific
18	producers of small molecule natural products, including many clinically important antibiotics
19	and cytotoxic agents. Although Streptomyces can also be isolated from marine environments,
20	their potential for natural product biosynthesis remains underexplored. The MAR4 clade of
21	largely marine-derived Streptomyces has been a rich source of novel halogenated natural
22	products of diverse structural classes. To further explore the biosynthetic potential of this
23	group, we applied pattern-based genome mining leading to the discovery of the first
24	halogenated pyrroloketoindane natural products, indanopyrrole A (1) and B (2), and the
25	bioinformatic linkage of these compounds to an orphan biosynthetic gene cluster (BCG) in 20
26	MAR4 genomes. Indanopyrrole A displays potent broad-spectrum antibiotic activity against
27	clinically relevant pathogens. A comparison of the putative indanopyrrole BGC with that of the
28	related compound indanomycin provides new insights into the terminal cyclization and
29	offloading mechanisms in pyrroloketoindane biosynthesis. Broader searches of public
30	databases reveal the rarity of this BGC while also highlighting opportunities for discovering
31	additional compounds in this uncommon class.

32

33 **GRAPHICAL ABSTRACT**

34

INTRODUCTION 36

52

Twenty-eight percent of drugs approved by the FDA in 2021 contained at least one halogen 37 atom.¹ The presence of these electronegative atoms can enhance compound bioactivity² as 38 39 observed in the antibiotic vancomycin³ and the anticancer drug salinosporamide A.⁴ The biological activity of halogenated natural products makes them attractive targets for drug 40 discovery, and the abundance of halogen atoms in the marine environment offers a unique 41 opportunity for discovering new halogenated metabolites. In 2015, it was estimated that more 42 than 5,000 halogenated natural products had been discovered, with the majority produced by 43 marine organisms, including bacteria.⁵ Among marine bacteria, the MAR4 group of marine-44 derived Streptomyces have yielded a wide diversity of halogenated natural products⁶ including 45 phenazines,⁷ nitropyrroles,^{8,9} and tetrahydroxynaphthalene (THN)-derived molecules.^{10–14} In 46 47 addition to these diverse halogenated compounds, genome mining has revealed halogenases in 48 orphan MAR4 biosynthetic gene clusters (BGCs), suggesting that additional halogenated metabolites await discovery.^{15,16} 49 One approach to facilitate natural product discovery involves the pairing of genomic and 50 metabolomic data collected from closely related strains, a process known as pattern-based 51 genome mining or metabologenomics.^{17,18} This method correlates gene cluster families with

ions detected by mass spectrometry (MS), enabling the connection of metabolites to orphan 53 BGCs, as shown in the marine actinomycete *Salinispora*¹⁷ and other bacteria.¹⁸ The technique is 54 55 also applicable to BGC subclusters, as shown for the pyrrole-containing compounds chlorizidine,¹⁹ armeniaspirol,²⁰ and marinopyrrole.²¹ Recent advances in pattern-based genome 56 mining include automated tools such as NPLinker²² and NPOmix,²³ which use correlation-based 57

statistics and machine learning to computationally link metabolites to their cognate BGCs.
Halogenated natural products are especially well suited for pattern-based genome mining due
to their distinct isotopic signatures and biosynthetic genes that can be used as 'hooks' to detect
candidate BGCs. Linking metabolomic and biosynthetic sequence data in this way can facilitate
the discovery of novel halogenated metabolites, with deeper BGC analyses facilitating structure
assignments.²⁴

64 Pyrroloketoindanes are characterized by indane and pyrrole systems bridged via a ketone.

65 Compounds containing these ring systems are rare and often biologically active, making them

66 logical targets for natural product discovery. Prior to this study, only six pyrroloketoindanes had

67 been reported, none of which were halogenated (Chart 1). These compounds, all of bacterial

origin, are the products of polyketide synthase (PKS) BGCs. The first pyrroloketoindane

described was indanomycin, which contains a tetrahydropyran and was discovered in 1979

from *Streptomyces antibioticus* NRRL 8167²⁵. Indanomycin has activity against Gram-positive

⁷¹ bacteria²⁶ and acts as an ionophore. ^{27,28} Later work has shown that indanomycin has

⁷² insecticidal²⁹ and antiviral activities.³⁰ The indanomycin analogue cafamycin was identified from

a *Streptomyces* species in 1987.³¹ Shortly thereafter, 16-deethylindanomycin was isolated from

74 Streptomyces setonii A80394A and reported to be active against Gram-positive bacteria and

75 protist parasites.³² A compound with the same structure as 16-deethylindanomycin was

published in 1990 under the name omomycin and reported to elevate cyclic guanosine

77 monophosphate levels in rat heart cells.³³ The pyrroloketoindane containing compound

homoindanomycin was described in a patent from 1989 without any information about

79 activity.³⁴ Stawamycin inhibits Epstein-Barr viral transcription factor BZLF1 binding to DNA and

80	was the first indanomycin analogue described to lack a tetrahydropyran. ³⁵ Finally, JBIR-11 was
81	reported in 2008 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830. This
82	unusual analogue of stawamycin contains a tryptophan moiety and was shown to be cytotoxic
83	to HT-1080 fibrosarcoma cells. ³⁶
84	Here we describe the discovery of novel di- and trichlorinated pyrroloketoindane antibiotics
85	using paired metabolomic and genomic datasets. The candidate BGC provides new insights into
86	pyrroloketoindane biosynthesis while its distribution in bacterial genomes reveals opportunities
87	for additional compound discovery.
88	RESULTS AND DISCUSSION
89	Isolation and structure elucidation. A search for novel, halogenated natural products from
89 90	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an m/z of
89 90 91	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an m/z of 458.1060 [M+H] ⁺ and an isotopic pattern characteristic of a trichlorinated molecule in the
89 90 91 92	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an <i>m/z</i> of 458.1060 [M+H] ⁺ and an isotopic pattern characteristic of a trichlorinated molecule in the culture extract of strain CNX-425 (Figure S1). A Dictionary of Natural Products database search
89 90 91 92 93	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an <i>m/z</i> of 458.1060 [M+H] ⁺ and an isotopic pattern characteristic of a trichlorinated molecule in the culture extract of strain CNX-425 (Figure S1). A Dictionary of Natural Products database search retrieved no matches, suggesting it represented a new compound. The compound, which we
89 90 91 92 93 94	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an <i>m/z</i> of 458.1060 [M+H] ⁺ and an isotopic pattern characteristic of a trichlorinated molecule in the culture extract of strain CNX-425 (Figure S1). A Dictionary of Natural Products database search retrieved no matches, suggesting it represented a new compound. The compound, which we have named indanopyrrole A (1), was isolated and structurally characterized as described
89 90 91 92 93 94 95	Isolation and structure elucidation. A search for novel, halogenated natural products from <i>Streptomyces</i> strains in the MAR4 clade led to the detection of a compound with an <i>m/z</i> of 458.1060 [M+H] ⁺ and an isotopic pattern characteristic of a trichlorinated molecule in the culture extract of strain CNX-425 (Figure S1). A Dictionary of Natural Products database search retrieved no matches, suggesting it represented a new compound. The compound, which we have named indanopyrrole A (1), was isolated and structurally characterized as described below. During the isolation of 1, we obtained and characterized a minor related compound (2)

- 99 **Chart 1.** Indanopyrroles A and B (1-2) and previously reported pyrroloketoindane natural
- 100 products. Pyrroloketoindane moieties are colored green. Absolute configurations for **1-2** are
- 101 based on bioinformatic prediction.

114	carbonyl C-1 (δ C 182.7 ppm), C-2, and C-3. The substructure composed of the tetrahydroindane
115	core and the C-6 substituent accounted for 17 carbons, 25 protons, two oxygens, and five
116	degrees of unsaturation. The remaining C_5HCl_3NO was suggested to be a trichlorinated pyrrole-
117	2-carbonyl substituent on C-14 based on a fragment of 195.9127 <i>m/z</i> in the MS/MS spectrum of
118	${f 1}$ (Figure S3). ^{32,35–37} The UV maximum absorbance at 295 nm provided further support for the
119	pyrrole moiety. HMBC correlations from H-14 to the carbonyl C-15 and a sp ² hybridized carbon
120	C-16 (δ C 128.0 ppm) established the connection of the trichloropyrrole moiety to the indane
121	core via a ketone bridge. Analysis of the ¹³ C NMR spectrum revealed the chemical shifts for the
122	remaining chlorinated carbons (C-17, C-18 and C-19) that were not observed by indirect
123	detection experiments (HSQC and HMBC) and secured the planar structure of indanopyrrole A
124	(1, Chart 1). The configuration of the C-4, C-5 olefin was assigned as <i>trans</i> (<i>E</i>) based on the
125	shielded ^{13}C resonance of the methyl substituent CH_3-21 (δC 15.7 ppm) and on a clear NOE
126	correlation between H-5 and H-3a. The relative configuration of the five stereocenters on the
127	indane was established using NOESY experiment (NOE correlations observed between H-6, H-9
128	and H-14, as well as from H-13 to H_3 -20) and is in accordance with previously reported
129	pyrroloketoindanes (Chart 1). The absolute configurations at C-2 and C-12 in the linear
130	biosynthetic precursor were predicted bioinformatically as 2R and 12S (12R after indane
131	formation) based on an analysis of the candidate biosynthetic gene cluster (see below). This, in
132	turn, led to the absolute configuration of all stereocenters in 1 (2 <i>R</i> , 6 <i>R</i> , 9 <i>R</i> , 12 <i>R</i> , 13 <i>S</i> , 14 <i>R</i> Figure
133	S3B-C) and differences in the indane core compared to other pyrroloketoindanes (Chart 1). Raw
134	NMR data files can be accessed from the Natural Product Magnetic Resonance Database
135	Project (<u>NP-MRD https://np-mrd.org/</u>) under identifiers NP0341895 (1) and NP0341896 (2).

136	HR-ESI-TOFMS/MS analyses of ${f 2}$ revealed the molecular formula $C_{22}H_{27}Cl_2NO_3$ and a prominent
137	dichloropyrrole containing MS/MS fragment (m/z 161.9527 calcd for C ₅ H ₂ Cl ₂ NO ⁺ , 161.9513, -
138	8.65 ppm, Figures S4-5). These data indicated that compound 2 is a dichlorinated analogue of 1 .
139	To assign the positions of the two chlorines on the pyrrole, we recorded 1 H, HSQC, and HMBC
140	NMR spectra using a 600 MHz NMR instrument equipped with a 5 mm cryoprobe (Table S2). As
141	expected, the ¹ H spectrum was almost identical with that of 1 , except for an additional sharp
142	singlet at 7.04 ppm, the shielded of H-6 and H-14 resonances (from 3.65 to 3.50 and 3.88 to
143	3.49 ppm, respectively), and the slightly shielded H_3 -20 resonance from 0.99 to 0.92 ppm. In the
144	HMBC spectrum of 2 , we observed a long-range correlation from the proton resonance at 7.04
145	ppm to the C-15 carbonyl, which established the structure of indanopyrrole B (2) as a 17-
146	deschloro derivative of 1.
147	Pattern-based identification of the candidate indanopyrrole (idp) BGC. Based on biosynthetic
147 148	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹
147 148 149	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is
147 148 149 150	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND
147 148 149 150 151	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND BLAST ³⁸ database containing 42 MAR4 genomes was created using cblaster ³⁹ and queried for
147 148 149 150 151 152	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND BLAST ³⁸ database containing 42 MAR4 genomes was created using cblaster ³⁹ and queried for the proline adenyltransferase (<i>idmJ</i>) and prolyl-carrier protein dehydrogenase (<i>idmI</i>) gene
147 148 149 150 151 152 153	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND BLAST ³⁸ database containing 42 MAR4 genomes was created using cblaster ³⁹ and queried for the proline adenyltransferase (<i>idmJ</i>) and prolyl-carrier protein dehydrogenase (<i>idmI</i>) gene sequences from the indanomycin (<i>idm</i>) BGC (MIBiG #: BGC000079). ⁴⁰ This analysis returned 33
147 148 149 150 151 152 153 154	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND BLAST ³⁸ database containing 42 MAR4 genomes was created using cblaster ³⁹ and queried for the proline adenyltransferase (<i>idmJ</i>) and prolyl-carrier protein dehydrogenase (<i>idmI</i>) gene sequences from the indanomycin (<i>idm</i>) BGC (MIBIG #: BGC0000079). ⁴⁰ This analysis returned 33 hits in 25 MAR4 genomes all within the bounds of BGCs called by AntiSMASH 5.0. ⁴¹
147 148 149 150 151 152 153 154	Pattern-based identification of the candidate indanopyrrole (<i>idp</i>) BGC. Based on biosynthetic precedent for the pyrrole containing natural products indanomycin, ²⁷ chlorizidine, ¹⁹ armeniaspirol, ²⁰ and marinopyrrole, ²¹ we anticipated that indanopyrrole biosynthesis is initiated using a proline derived di- or trichloropyrrole starter unit. As such, a DIAMOND BLAST ³⁸ database containing 42 MAR4 genomes was created using cblaster ³⁹ and queried for the proline adenyltransferase (<i>idmJ</i>) and prolyl-carrier protein dehydrogenase (<i>idmI</i>) gene sequences from the indanomycin (<i>idm</i>) BGC (MIBiG #: BGC0000079). ⁴⁰ This analysis returned 33 hits in 25 MAR4 genomes all within the bounds of BGCs called by AntiSMASH 5.0. ⁴¹

157	extracts of the same 42 strains for the indanopyrrole A molecular ion (m/z of 458.1060 ± 0.01)
158	and detected it in seven. These seven strains shared one BGC with the pyrrole biosynthetic
159	hooks, and it had the highest antiSMASH similarity score (39%) with <i>idm</i> . Using this pattern-
160	based genome mining approach, ¹⁷ we identified this conserved BGC as the top candidate for
161	indanopyrrole biosynthesis and named it <i>idp</i> (Figure 1A, S6). In total, 15 of the 42 MAR4
162	genomes contained full-length <i>idp</i> BGCs, while five additional strains contained partial BGCs
163	located on contig edges (Figure S6). Among the seven strains found to produce indanopyrroles,
164	two contained partial BGCs suggesting that the truncations are artifacts of the sequencing and
165	assembly process. While some strain-level variation among <i>idp</i> BGCs was observed (Figure S6),
166	there is little evidence to suggest that some may be nonfunctional.
167	Noting low production in CNX-425, we scaled-up the cultivation of additional <i>idp</i> containing
168	MAR4 strains and found the highest production (5 mg indanopyrrole A and 0.5 mg
169	indanopyrrole B from a 3 L culture) in strain CNY-716. Interestingly, indanopyrrole was not
170	originally observed in this strain (Figure S6), but was instead observed in a scale up-
171	fermentation following the addition of XAD-7 resin (Figure S7, see Methods). The additional
172	compound obtained from this strain facilitated the structure elucidation and was used for
173	expanded antibiotic screening.
174	Biosynthesis of the indanopyrroles. A comparison of the <i>idp</i> and <i>idm</i> BGCs provides insight into
175	the structural differences between their small molecule products (Figure 1A-B). As expected,
176	both BGCs contain homologous genes encoding proline adenyltransferases (<i>idpE/idmJ</i>), proline
177	carrier proteins (<i>idpF/idmK</i>), and dehydrogenases (<i>idpD/idmI</i>) to account for the generation of

178	the pyrrole moieties from proline (Figure 1C). <i>Idp</i> then diverges by the presence of the
179	halogenase gene <i>idpG</i> , which was annotated as a tryptophan halogenase. Unlike other BGCs
180	linked to halogenated MAR4 natural products, <i>idp</i> does not contain a vanadium haloperoxidase
181	encoding gene. Instead, <i>IdpG</i> shares homology with halogenase genes in the BGCs of other
182	chlorinated pyrrole containing natural products ^{19,20,42} and likely accounts for the tri- and
183	dichlorinated pyrrole moieties observed in 1 and 2 , respectively. The chlorinated pyrrole
184	generated from <i>idpD-G</i> then serves as the starter unit for seven polyketide extensions encoded
185	by the three T1PKS genes (<i>idpH-J</i>). Notably, a NaPDoS2 ^{43,44} analysis of the module 1 (loading
186	module) ketosynthase (KS) domain within <i>IdpH</i> places it in a clade with other pyrrole accepting
187	KSs, further supporting the functional prediction for the starter unit (Figure S8).

197	Following starter unit selection, the acyltransferase (AT) domains associated with modules two,
198	six, and seven are predicted to select for methylmalonyl-CoA. Based on conserved tryptophan
199	and histidine residues, the ketoreductase (KR) domain within module 2 is assigned to the A2-
200	type, which produce 2 <i>S</i> -methyl-3 <i>S</i> -hydroxy intermediates (Figure S9). ⁴⁵ Module 3 (<i>idpH</i>)
201	contains the full suite of domains (KR, DH, and ER) to generate the alkane while modules 4-6
202	(<i>idpl</i>) contain KR and dehydratase (DH) domains that would afford a conjugated triene. Module
203	7 contains the full suite of domains to generate a branched alkane that, based on the lack of a
204	conserved tyrosine residue in the active site of the <i>idpJ</i> enoylreductase (ER) domain, is
205	predicted to install <i>R</i> configuration (Figure S10). ⁴⁵
206	The terminal T1PKS module (module 8, <i>idpK</i>) is comprised of a KS and AT domain and was
207	observed in all <i>idp</i> BGCs except for one that appears to be truncated before this gene. This
208	unusual domain organization resembles the terminal PKS module reported for <i>idm</i> , ²⁷ which
209	differs only by the presence of a terminal cyclase domain. In both <i>idp</i> and <i>idm</i> , the AT domain
210	within the terminal module lacks the active site residues required for selection and loading of
211	the extender unit and is therefore predicted to be nonfunctional (Figure S11). However, <i>idp</i>
212	further differs from <i>idm</i> in that the KS domain of the terminal module lacks the active site
213	residues required for decarboxylative condensation and is therefore also predicted to be
214	inactive (Figure S12). The inability of this module to support chain extension is supported by the
215	structures of 1-2 . A stand-alone thioesterase (TE) domain (<i>idpL</i>) located immediately after <i>idpK</i>
216	is homologous to <i>idmA</i> , which was presumed to be associated with chain release from the
217	megasynthase during indanomycin biosynthesis. ⁴⁶ However, an analysis using the THYME
218	thioesterase database of the <i>idpL</i> and <i>idmA</i> genes places them in the TE18 family of "editing"

219	type II TEs, which remove prematurely decarboxylated extender units, stalled intermediates, or
220	improperly edited CoA-bound starter units. ^{47,48} Thus, it does not appear that <i>idpL</i> is involved in
221	chain release. In the case of indanomycin, offloading has been proposed to involve the terminal
222	cyclase domain within <i>idmP</i> , ^{27,49} however the lack of this domain in <i>idpK</i> suggests either a
223	different mechanism for 1-2 or that the cyclase is not involved (Figure S13). Finally, while
224	antiSMASH calls a larger BGC, manual analyses have led us to propose that the <i>idp</i> BGC is best
225	represented by <i>idpA-idpL</i> . As in indanomycin biosynthesis, questions remain about how the
226	linear precursor predicted from the BGC is offloaded and cyclized to yield the final
227	pyrroloketoindane products.
228	Indane formation. Further comparison of the <i>idm</i> and <i>idp</i> BGCs and their products provides
229	insight into the formation of the indane. In the case of indanomycin, it was suggested that <i>idmH</i>
230	is an indane cyclase catalyzing a Diels-Alder [4+2] cycloaddition reaction. However, genetic
231	knockout experiments lowered but did not abolish compound production ⁵⁰ and molecular
232	modelling of the crystal structure did not reveal the potential for enzymatic activity. ⁵¹ Notably,
233	only one gene with similarity to <i>idmH</i> was detected among the indanopyrrole producing MAR4
234	strains (CNY-716, 36% amino acid similarity) and it was not located within any of the BGCs
235	identified in that genome. Thus, the <i>idmH</i> mediated mechanism of indane ring formation
236	proposed for indanomycin does not appear to apply to indanopyrrole. While several
237	unannotated <i>idp</i> open reading frames could account for indane formation, it is intriguing to
238	consider that the conserved KS domain associated with the non-elongating, terminal PKS
239	module observed in <i>idm</i> and all <i>idp</i> gene clusters may be involved. KS functional diversification
240	is well documented and includes the non-elongating, terminal KS domain in salinosporamide A

241	biosynthesis, which was recently shown to catalyze the formation of an alkene which then
242	facilitates intramolecular carbon-carbon bond formation and the cyclized end product. ⁵²
243	Notably, both <i>idm</i> and <i>idp</i> lack a dehydratase domain in the second PKS module, which would
244	provide the alkene dienophile required for indane ring formation via a Diels-Alder [4+2]
245	cycloaddition reaction. ^{27,53–56} It is intriguing to speculate that the terminal, non-elongating, KS
246	domains observed in both <i>idm</i> and <i>idp</i> catalyze this cryptic dehydration step.

247 To address the potential neofunctionalization of the *idpK* KS domain, we modelled the 3D 248 protein structure using the open-source implementation of AlphaFold 2⁵⁷ in ColabFold.⁵⁸ The 249 model showed strong structural homology with the crystal structure of the KS domain from 6-250 deoxyerythronolide B synthase (DEBS), with the active site residues collocated within the 251 substrate binding pocket (Figure S14A). Molecular docking studies using the AMDock suite⁵⁹ 252 showed that indanopyrrole A (1) fits within the predicted substrate binding pocket of the IdpK253 KS domain. In the model, the carboxylic acid moiety of **1** is adjacent to the active site cysteine 254 (Cys-167). This position is homologous to DEBS Cys-211, which forms a thioester bond with the polyketide intermediate generated by the preceding PKS module (Figure S14A inset). This 255 256 spatial orientation aligns active site histidine-302 above C-14 in the indanopyrrole structure. 257 Positioning this residue above the carbon alpha to the carbonyl group could allow the active site histidine to abstract a hydrogen and initiate a cascade reaction that ends with the 258 259 elimination of water from the C-13 hydroxy group thus accounting for the cryptic dehydration 260 step and the formation of the alkene dienophile (Figure S14B). Finally, the shape of the 261 substrate binding pocket conforms to the shape of indanopyrrole A, suggesting it could promote a conformational change in the linear precursor that facilitates a spontaneous Diels-262

263 Alder reaction following dehydration (Figure S14A, inset). However, we were unable to model 264 the proposed linear precursor within the active site to address this hypothesis. It should be noted that the absolute configuration of the indane ring systems in 1 and 2 are opposite from 265 266 the indanomycins, which could account for the low KS domain sequence similarity and the 267 differences in active site residues. While speculative, assigning dehydratase activity to the terminal KS domains in *idm* and *idp* would indicate a new mechanism for indane formation in 268 269 the indanopyrroles and other pyrroloketoindanes. 270 Gene cluster and metabolite distribution. To more broadly explore *idp* and *idm* distributions, we used cblaster⁶⁰ to remotely query the NCBI nr database using the respective 271 adenyltransferase (*idpE/idmJ*) and proline dehydrogenase (*idpD/idmJ*) genes, which returned 272 273 3,283 (*idp*) and 3,198 (*idm*) hits. After filtering to include only those that contained at least one gene with >70% homology to a PKS gene within *idp* or *idm* and duplicate removal, 40 BGCs 274 275 were identified and manually assigned to seven BGC groups and nine singletons based on gene 276 synteny (Figure S15). AntiSMASH analyses revealed top matches to the indanomycin, nargenicin, and calcimycin BGCs along with three with no known product (Figure S15). Three 277 278 complete idm BGCs were identified in Streptomyces albireticuli strains, NRRL B1670 (JAJQQQ010000001.1), NRRL B1670 Type B (JAJQQR010000001.1), and NRRL B1670 Type C 279 (JAJQQS010000003.1) (Figure 2), all of which lacked the terminal cyclase domain observed in 280 281 idmP (Figure S13). Additionally, two fragmented idm BGCs were detected on contig edges in S. 282 ureilyticus (NZ JAAKZX010000175.1) and S. coffeae (NZ JAERRF010000046.1). One putative 283 full-length *idp* BGC was observed in *Micromonospora* sp. WMMC 250 (NZ JAPZBJ010000002.1) (Figure 2) and one fragmented BGC was identified on a contig edge in the genome of 284

- 285 Streptomyces sedi JCM 16909 (VDGT01000017.1). These results indicate that, despite being
- 286 detected in genetically distant actinobacterial lineages (Streptomyces and Micromonospora),
- both *idm* and *idp* are rare in publicly available sequence data.

Figure 2. Distribution of *idp* and *idm*. The seven closest *idp* and *idm* homologs identified from
GenBank searches highlight the rarity of these BGCs and presents opportunities for discovery. A
full list of BGC hits is provided in Supplementary Figure S15.

We next used the Mass Spectrometry Search Tool⁶¹ (MASST) within the Global Natural Products 292 Social Molecular Networking⁶² (GNPS) platform to search for the MS/MS spectrum of 293 indanopyrrole A within public datasets. After detecting no hits using the default parameters, we 294 lowered the minimum cosine score to 0.6 and the minimum matched fragments to 2 and 295 detected 71 hits when allowing for analogue searching. Upon manual inspection, none of the 296 m/z values or fragmentation spectra matched indanopyrrole A. The lack of any significant 297 298 matches among 2,709 public datasets highlights the rarity of these natural products. 299 **Bioactivity.** Indanopyrrole A demonstrated significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 4 μ g/mL against membrane-deficient *Escherichia coli* 300 lptD4213⁶³ (Table 1). Broader testing revealed potent activity against several clinically relevant 301 Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus TCH1516 (MIC = 302

303	2 μ g/mL), group A <i>Streptococcus</i> M1T1 (MIC = 4 μ g/mL), vancomycin-resistant <i>Enterococcus</i>
304	faecium DAPS (MIC = 2 μ g/mL), and methicillin-resistant Staphylococcus epidermis (MIC = 4
305	μ g/mL) (Table 1). To our best knowledge, $f 1$ is the first pyrroloketoindane natural product to
306	show activity against Gram-negative organisms, showing MIC values of 1-2 μ g/mL against
307	Haemophilus influenzae (Table 1). In contrast, indanopyrrole B (2) was inactive at all
308	concentrations tested, likely due to differences in chlorination between the two compounds.
309	The cytotoxicity of ${\bf 1}$ was measured at 16 $\mu g/mL$ after 24 hours of exposure in an A549 cell line
310	viability assay (Figure S16), indicating an antibiotic therapeutic index of 4-8 (ratio of antibiotic
311	to cytotoxic activity).

- 312 Table 1. Antibacterial activities of indanopyrroles A and B reported as minimum inhibitory
- 313 activity. N.T. = Not Tested

Strains tested	Gram	Indanopyrrole	Indanopyrrole
	+/-	Α	В
MRSA TCH1516	+	2 μg/mL	>16 µg/mL
Group A Streptococcus M1T1	+	4 μg/mL	>16 µg/mL
Vancomycin-resistant Enterococcus faecium DAPS	+	2 μg/mL	>16 µg/mL
MRSE (Staphylococcus epidermidis)	+	4 μg/mL	N.T.
Haemophilus influenzae 1	-	1 μg/mL	N.T.
Haemophilus influenzae 2	-	2 μg/mL	N.T.
Escherichia coli LptD4213	-	4 μg/mL	N.T.
Escherichia coli K1 RS218	-	>32 µg/mL	>16 µg/mL
Acinetobacter baumannii 5075	-	>32 μg/mL	N.T.

Given the antibiotic activity of indanopyrrole A, it is unclear how producing strains maintain

resistance. However, a drug resistance transporter related to the *Burkholderia thailandensis*

317 *EmrB* multidrug efflux pump is conserved in all *idp* BGCs suggesting a possible resistance

318	mechanism. Similar mechanisms of drug resistance in Gram-negative organisms such as
319	Acinetobacter baumanii and Escherichia coli are mediated by upregulation or genomic
320	expansion of efflux pumps and may explain the lack of activity against these strains. ^{64,65}
321	Conclusions. The MAR4 group of marine actinomycetes has been a prolific source of
322	halogenated natural products. ⁶ To further explore their biosynthetic potential, we applied
323	pattern-based genome mining to 42 strains, focusing on identifying new halogenated
324	metabolites and their candidate BGCs. This effort led to the discovery of the pyrroloketoindane
325	natural products indanopyrroles A and B (1-2), which are the seventh and eighth
326	pyrroloketoindane natural products described and the only halogenated members of this rare
327	compound class. Comprehensive 1D and 2D NMR spectroscopy facilitated the structure
328	elucidation of 1-2 including their relative configuration, while their absolute configuration was
329	proposed based on bioinformatic prediction of the stereoselective KR and ER domains in the
330	candidate BGC.
331	Indanopyrrole production was linked to a BGC (<i>idp</i>) containing genes associated with
332	chloropyrrole biosynthesis. As in the biosynthesis of the related compound indanomycin, a
333	cryptic dehydration step is predicted to facilitate an intramolecular Diels-Alder cycloaddition
334	that yields the final cyclized product. Comparisons between the <i>idp</i> and <i>idm</i> BGCs suggest that
335	the terminal, non-elongating KS domains observed in these BGCs could account for this cryptic
336	dehydration. While in-silico docking studies support this hypothesis, experimental verification is
337	still needed. A search of the NCBI nr database revealed seven BGCs with similarity to <i>idp</i> or <i>idm</i> ,
338	supporting the rarity of pyrroloketoindane natural products. All seven of these BGCs, present in

diverse actinomycetes, contain terminal KS domains homologous to *idpK* and *idmP*, supporting
a functional role for this domain in the pathway.

341 Indanopyrrole A (1) exhibits potent, broad-spectrum antibiotic activity and, to the best of our 342 knowledge, is the first compound in this class with reported activity against Gram-negative bacteria. The inactivity of indanopyrrole B (2) emphasizes the importance of the tri-chlorinated 343 pyrrole molety for the activity of **1**. Unlike the pyrroloketoindane antibiotic indanomycin, which 344 acts as an ionophore for divalent cations, **1** lacks the tetrahydrofuran moiety known to 345 coordinate metals²⁷ indicating it may function via a different mechanism. The promising 346 347 therapeutic index of indanopyrrole A (1) supports further structure-activity studies and 348 antibiotic lead development. 349 This work showcases the value of pattern-based genome mining for discovering new antibiotics and their BGCs within the biosynthetically gifted MAR4 group of marine bacteria. It also 350 351 expands the breadth of halogenated natural products reported from the MAR4 actinomyces and provides new insights into potential KS functional diversification and indane ring formation 352 353 in the rare pyrroloketoindane compound class.

354 EXPERIMENTAL SECTION

355 General experimental procedures. Optical rotations were recorded on a Jasco P-2000

356 polarimeter. UV spectra were measured on a Jasco V-630 spectrophotometer. IR spectra were

- 357 acquired on a JASCO FTIR-4100 spectrometer (Jasco Corp., Tokyo, Japan). NMR spectra (1D and
- 358 2D) were measured at 23°C on a JEOL ECZ spectrometer (500 MHz) equipped with a 3 mm
- ¹H¹³C} room temperature probe (JEOL, Akishima, Tokyo, Japan) or on a Bruker Avance III (600

360	MHz) NMR spectrometer with a 5 mm 1 H{ 13 C/ 15 N} room temperature or cryo probe (Billerica,
361	MA). ¹³ C NMR spectrum was recorded on a Varian 500 MHz spectrometer equipped with a 5
362	mm ¹ H{ ¹³ C} XSens cold probe (Varian Inc., Palo Alto, CA, USA, now Agilent Technologies). NMR
363	spectra were referenced to the solvent signals (CHD2OD, δ_H 3.31 and CD3OD, δ_C 49.00 ppm). LC-
364	HR-ESIMS was performed on an Agilent 1260 Infinity HPLC system equipped with a degasser,
365	binary pump, autosampler, DAD detector, coupled to an Agilent 6530 Accurate-Mass QToF with
366	ESI-source coupled with an Agilent 1260 Infinity HPLC and calibrated using the Agilent
367	Reference Calibration Mix. Compounds were isolated on an Agilent HPLC system with 1100
368	G1312A binary pump, 1100 G1315A DAD UV/Vis detector, 1100 G1313A autosampler, and 1100
369	G1322A degasser (Agilent Technologies, Santa Clara, CA).
370	Small-scale strain cultivation and metabolite extraction. All cultures were grown at 28°C and
371	shaken at 230 rpm with metal springs in A1 media containing potassium bromide (10 g/L starch,
372	4 g/L yeast extract, 2 g/L peptone, 22 g/L instant ocean, 0.1 g/L KBr). Cryogenic stocks of 40
373	MAR4 strains as well as lyophilized material for the two MAR4 type strains purchased from the
374	DSMZ (DSM 41644, DSM 41902) were inoculated as a preculture into 50 mL of media. After 7
375	days, 0.5 mL was transferred into 50 mL of the same medium for a second seed culture. After 5
376	days, 5 mL of the second seed culture was frozen for DNA analysis and 0.5 mL was used to
377	inoculate 50 mL of fresh media. After four days, HP-20 resin (1 g, wet weight) was added to
378	each flask. After three days of incubation with resin, all cultures were extracted with 50 mL
379	EtOAc. Organic extracts were separated, dried with anhydrous Na ₂ SO ₄ , filtered, concentrated
380	by rotary evaporation, and stored at -20°C until further analysis.

381	Large-scale cultivation and extraction of strain CNY-716. Aliquots (10 mL) of a 50 mL
382	preculture of Streptomyces sp. CNY-716 were inoculated into three 2.8 L Fernbach flasks
383	containing 1 L of A1 medium and incubated at 28°C and 120 rpm. On day 10, activated sterile
384	XAD-7 resin (20 g, ThermoFisher Scientific) was added to each flask and the cultures incubated
385	for an additional 4 days. After 14 days, the resin and the cellular material were filtered through
386	cheesecloth, washed with deionized H_2O , and extracted with MeOH (4 x 200 mL). The solvent
387	was removed from the pooled extracts under reduced pressure to yield a black oily material
388	(2.0 g).
389	Fractionation and Isolation. The CNY-716 crude extract was fractionated using vacuum liquid
390	chromatography (15 g C_{18} silica gel) and a step gradient of MeOH:H ₂ O (50 mL each; 25:75,
391	50:50, 60:40, 70:30, 80:20, 90:10, and 2x 100:0) into eight fractions (LC1-8). Fractions
392	containing indanopyrroles (LC6-7) were further purified using HPLC (Phenomenex Kinetex $C_{18,}$ 5
393	μ m, 150x4.6 mm column, isocratic ACN:H $_2$ O 68:32 with 0.05% formic acid mobile phase, 1.3
394	mL/min flow rate) to yield 5 mg of indanopyrrole A (1, retention time t_R = 12 min) and 0.5 mg
395	indanopyrrole B (2 , $t_R = 6$ min).
396	Compound characterization. Indeperformed A (1): amorphous white solid: $[\alpha]^{22} - 214$ (c.0.26).

Compound characterization. Index provide A (1): amorphous white solid; $[\alpha]^{22} - 214$ (c 0.26,

397 MeOH); UV (MeOH) λ_{max} (log ϵ) 200 (3.59), 261 (sh) (2.97) 295 ((3.34); IR (neat) v_{max} 3186 cm⁻¹,

398 2938 cm⁻¹,2866 cm⁻¹, 1707 cm⁻¹, 1639 cm⁻¹, 1445 cm⁻¹, 1396 cm⁻¹, 1372 cm⁻¹, 1226 cm⁻¹, 1018

399 cm⁻¹; ¹H, ¹³C and 2D NMR, Table S1; HR-ESI-TOF-MS *m*/*z* 458.1060 [M+H]⁺ (calcd for

400 C₂₂H₂₇Cl₃NO₃⁺, 458.1052, 1.75 ppm).

401	Indanopyrrole B (2): amorphous white solid; $[\alpha]^{22}_{D}$ -111 (c 0.26, MeOH); UV (MeOH) λ_{max} (log ϵ)
402	200 (3.51), 245 (3.01) 296 (3.51); IR (neat) v_{max} 3326 cm ⁻¹ , 2952 cm ⁻¹ ,2866 cm ⁻¹ , 1644 cm ⁻¹ ,
403	1410 cm ⁻¹ , 1027 cm ⁻¹ ; ¹ H, ¹³ C and 2D NMR, Table S2; HR-ESI-TOF-MS <i>m/z</i> [M+H] ⁺ 424.1451
404	(calcd for $C_{22}H_{28}Cl_2NO_3^+$, 424.1441, 2.36 ppm).
405	Genomic DNA Extraction. DNA was extracted from frozen aliquots (5 mL) of the 42 MAR4
406	strains using the Promega Wizard Genomic DNA Purification Kit with suggested modifications
407	for Gram-positive bacteria. DNA purity, concentrations, and size were assessed using
408	NanoDrop, Qubit, and gel electrophoresis. Short-read, paired-end Illumina sequencing (PE150)
409	was performed at SeqCenter (Pittsburgh, PA). Initial genome assembly was performed by
410	quality filtering raw reads with the BBMap Toolkit ⁶⁶ followed by a preliminary assembly using
411	SPAdes. ⁶⁷ All assemblies were compared for whole-genome average nucleotide identity (ANI)
412	using fastANI ⁶⁸ to identify strains sharing 95% ANI. Ten representative strains from each 95%
413	ANI clade were selected for long-read Nanopore sequencing (Oxford) and compiled with public
414	SRA data from previously sequenced strains (N=12 Illumina, N=3 PACBIO). Data were combined
415	for each strain to perform a hybrid assembly with unicycler ⁶⁹ using a kmer count
416	31,41,51,61,71,81,91,95,101,105,111 and "mode" determined by ANI similarity to a reference
417	strain (i.e., "bold" with ANI=100%, "normal" with ANI>99%, "conservative" with ANI >97%). All
418	assemblies were checked for quality, completeness, and contamination with checkM. ⁷⁰
419	Biosynthetic gene clusters (BGCs) were predicted using antiSMASH v5 ⁴¹ and clustered into gene
420	cluster families using BiG-SCAPE ⁷¹ with GCFs defined at 0.4 dissimilarity based on a combined
421	metric of gene synteny, protein domain structure, and homology. MAR4 BGCs were annotated
422	using the MIBiG 2.7 database. ⁷² Network files from BIG-SCAPE were visualized in Cytoscape

423 3.10.⁷³ Synteny plots were generated from GBK files created by AntiSMASH using the clinker
424 package with default parameters.

425	BGC amino acid sequences were sourced from NCBI GenBank and the AntiSMASH output. For
426	each gene alignment Muscle5 ⁷⁴ was used to create a stratified ensemble of 16 alignments using
427	the default parameters. The alignment with the highest column confidence value was extracted
428	from the ensemble using the maxcc option and used for comparison of active site residues.
429	Metabolomics and Mass Spectrometry. Dried crude extracts were resuspended in MeOH (1
430	mg/mL) and centrifuge filtered using 0.2 μ m filters (American Chromatography Supply,
431	Vineland NJ). Samples (5 μL) were injected into an Agilent 1290 HPLC coupled to an Agilent
432	6530 quadrupole time-of-fight (QToF) spectrometer. Parameters were set to a flow rate of 0.75
433	mL/min through a Kinetex C_{18} reversed-phase column (5 μm , 150x4.6 mm) under the following
434	conditions: 0-4 min 5% acetonitrile (0.1% TFA) in water (0.1% TFA) with this first 4 minutes
435	diverted to waste, 4-34 min: 10-100% acetonitrile (0.1% TFA) in water (0.1% TFA), 34-36 min
436	100% acetonitrile, 36-36.5 min 100-5% acetonitrile, 36.5-40 min 5% acetonitrile. MS1 data was
437	collected in positive and negative over two runs with a mass range of 80-1700 <i>m/z</i> acquiring
438	three spectra per second, MS2 fragmentation data were collected using two scans per second
439	with a collision energy of 30eV. The source gas temperature was 300 $^\circ$ C at a flow rate of 11 L
440	per minute at 35 psig.

Molecular modelling and docking studies. A 3D model of indanopyrrole A (1) was built in
Spartan'24 V1.1.0 and minimal energy conformers searched using molecular mechanics
(CorrMMFF, ΔE <25 kJ/mol) and further optimized using DFT (Est. Density Functional ωB97X-
D/6-31G*). The online version of ColabFold

445	(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb)
446	was used to generate a 3D structure from the amino acid sequence of the <i>IdpK</i> KS domain.
447	Default parameters were used except the "template_mode" was changed to include the pdb70
448	reference library. Both 3D models were used as input for docking analysis using AMDock. ⁷⁵ The
449	default search parameters were used in an Autodock Vina model. ^{76,77}
450	Antibacterial testing. 1 was ten-fold serially diluted (from 128 μ g/mL to 0.25 μ g/mL) in a 96-
451	well plate using sterile medium (Muller-Hinton broth; 50 μ L of each solution per well). An <i>E. coli</i>
452	LptD 4213 inoculum (50 μ L) was added to reach a final concentration of 2e5 CFU/mL
453	(determined via OD ₆₀₀). The final test concentrations ranged from 64 μ g/mL to 0.125 μ g/mL.
454	After incubation for 18 hours at 37 °C, the well with the lowest concentration of compound that
455	did not exhibit microbial growth was determined to be the MIC.
456	Additional MIC values were determined using broth microdilution in accordance with the
457	Clinical Laboratory Standards Institute (CLSI) guidelines using cation-adjusted Mueller Hinton
458	Broth (MHB) with minor modifications. Briefly, bacteria were grown to mid-log phase
459	(OD _{600nm} = 0.4) at 37 °C while shaking except for GAS which was grown under static condition.
460	Bacterial cells were then centrifuged, washed, and diluted in PBS to obtain 2×10^6 cfu/mL with
461	10 μL added to individual wells of a 96-well plate containing 170 μL MHB. Serial dilutions of
462	indanopyrroles A and B starting at 32 μ g/mL or 16 μ g/mL, respectively, were made in a
463	separate plate, 20 μ L of the compound was then added to the test plate. The plates were
464	sealed with parafilm and incubated at 37 $^\circ$ C for 24 h. Turbidity was measured at OD $_{600nm}$ using
465	an EnSpire Alpha plate reader. MIC was defined as the lowest concentration of the test
466	compounds that inhibited bacterial growth.

467	Cell Viability	y Assay	. A549	cells w	ere seede	d in 24	well pla	ates ((Corning,	United States) at
-----	----------------	---------	--------	---------	-----------	---------	----------	---------	----------	---------------	------

- 2×10^5 cells/well. Cells were left untreated or treated with 16, 32, and 128 μ g/mL of
- 469 indanopyrrole A, or with corresponding amounts of the H2O:DMSO (1:2) solvent vehicle as a
- 470 negative control. As a positive control, A549 cells were lysed with Triton X-100. Cell culture
- 471 supernatants were collected at two time points: 2 and 24 hrs. Cellular cytotoxicity was assessed
- 472 by measuring the levels of lactate dehydrogenase (LDH; Promega, United States) released by
- the host cell into supernatant. The percentage of cell death was calculated after subtracting the
- 474 levels found in untreated control cells and dividing by the levels in a positive control of cells
- treated with a lysis solution (Triton X-100).
- 476 ASSOCIATED CONTENT
- 477 Supporting Information:
- 478 Supplemental figures including MS and NMR spectra for all compounds, Genetic analyses, and
- 479 3D modeling (PDF)
- 480 AUTHOR INFORMATION
- 481 Corresponding Author
- 482 [¶]Email: pjensen@ucsd.edu

483 Author Notes

*D.S. and A.B. contributed equally to this work. The manuscript was written through
contributions of all authors. All authors have given approval to the final version of the manuscript.

486 **ACKNOWLEDGEMENT**

493	REFERENCES
492	PRJ.
491	recording. This work was supported by the National Institutes of Health grant R01GM085770 to
490	Anthony Mrse (Department of Chemistry, UCSD) for expert guidance and help in the NMR
489	instruments and expert guidance, as well as Brendan Duggan (Skaggs School of Pharmacy) and
488	Department, Skaggs School of Pharmacy) for providing access to optical rotation, UV and IR
487	The authors acknowledge assistance from Tadeusz Molinski (UCSD Chemistry and Biochemistry

- 494 (1) Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. New Halogen495 Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical
 496 Use. *Molecules* 2022, *27* (5), 1643. https://doi.org/10.3390/molecules27051643.
- 497 (2) Elsocht, M.; Giron, P.; Maes, L.; Versées, W.; Gutierrez, G. J.; De Grève, J.; Ballet, S. Structure–
 498 Activity Relationship (SAR) Study of Spautin-1 to Entail the Discovery of Novel NEK4 Inhibitors. *Int*499 J Mol Sci 2021, 22 (2), 635. https://doi.org/10.3390/ijms22020635.
- (3) Harris, C. M.; Kannan, R.; Kopecka, H.; Harris, T. M. The Role of the Chlorine Substituents in the
 Antibiotic Vancomycin: Preparation and Characterization of Mono- and Didechlorovancomycin. J
 Am Chem Soc 1985, 107 (23), 6652–6658. https://doi.org/10.1021/ja00309a038.
- Groll, M.; Huber, R.; Potts, B. C. M. Crystal Structures of Salinosporamide A (NPI-0052) and B
 (NPI-0047) in Complex with the 20S Proteasome Reveal Important Consequences of β-Lactone
 Ring Opening and a Mechanism for Irreversible Binding. *J Am Chem Soc* 2006, *128* (15), 5136–
 5141. https://doi.org/10.1021/ja058320b.
- 507 (5) Gribble, G. Biological Activity of Recently Discovered Halogenated Marine Natural Products. *Mar* 508 *Drugs* 2015, *13* (7), 4044–4136. https://doi.org/10.3390/md13074044.
- 509 (6) Sweeney, D.; Chase, A. B.; Bogdanov, A.; Jensen, P. R. MAR4 *Streptomyces* : A Unique Resource
 510 for Natural Product Discovery. *J Nat Prod* 2024, *87* (2), 439–452.
 511 https://doi.org/10.1021/acs.jnatprod.3c01007.
- (7) Asolkar, R. N.; Singh, A.; Jensen, P. R.; Aalbersberg, W.; Carté, B. K.; Feussner, K.-D.; Subramani,
 R.; DiPasquale, A.; Rheingold, A. L.; Fenical, W. Marinocyanins, Cytotoxic Bromo-Phenazinone
 Meroterpenoids from a Marine Bacterium from the Streptomycete Clade MAR4. *Tetrahedron*2017, 73 (16), 2234–2241. https://doi.org/10.1016/j.tet.2017.03.003.
- 516 (8) Kwon, H. C.; Espindola, A. P. D. M.; Park, J.-S.; Prieto-Davó, A.; Rose, M.; Jensen, P. R.; Fenical, W.
 517 Nitropyrrolins A–E, Cytotoxic Farnesyl-α-Nitropyrroles from a Marine-Derived Bacterium within

518 519		the Actinomycete Family Streptomycetaceae. <i>J Nat Prod</i> 2010 , <i>73</i> (12), 2047–2052. https://doi.org/10.1021/np1006229.
520 521 522	(9)	Raju, R.; Piggott, A. M.; Barrientos Diaz, L. X.; Khalil, Z.; Capon, R. J. Heronapyrroles A–C: Farnesylated 2-Nitropyrroles from an Australian Marine-Derived Streptomyces Sp. <i>Org Lett</i> 2010 , <i>12</i> (22), 5158–5161. https://doi.org/10.1021/ol102162d.
523 524 525 526	(10)	Carretero-Molina, D.; Ortiz-López, F. J.; Martín, J.; Oves-Costales, D.; Díaz, C.; de la Cruz, M.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. New Napyradiomycin Analogues from Streptomyces Sp. Strain CA-271078. <i>Mar Drugs</i> 2019 , <i>18</i> (1), 22. https://doi.org/10.3390/md18010022.
527 528 529 530	(11)	Pereira, F.; Almeida, J. R.; Paulino, M.; Grilo, I. R.; Macedo, H.; Cunha, I.; Sobral, R. G.; Vasconcelos, V.; Gaudêncio, S. P. Antifouling Napyradiomycins from Marine-Derived Actinomycetes Streptomyces Aculeolatus. <i>Mar Drugs</i> 2020 , <i>18</i> (1), 63. https://doi.org/10.3390/md18010063.
531 532 533	(12)	Cheng, Y. Bin; Jensen, P. R.; Fenical, W. Cytotoxic and Antimicrobial Napyradiomycins from Two Marine-Derived Streptomyces Strains. <i>European J Org Chem</i> 2013 , <i>2013</i> (18), 3751–3757. https://doi.org/10.1002/ejoc.201300349.
534 535 536	(13)	Pathirana, C.; Jensen, P. R.; Fenical, W. Marinone and Debromomarinone: Antibiotic Sesquiterpenoid Naphthoquinones of a New Structure Class from a Marine Bacterium. <i>Tetrahedron Lett</i> 1992 , <i>33</i> (50), 7663–7666. https://doi.org/10.1016/0040-4039(93)88010-G.
537 538 539	(14)	Hardt, I. H.; Jensen, P. R.; Fenical, W. Neomarinone, and New Cytotoxic Marinone Derivatives, Produced by a Marine Filamentous Bacterium (Actinomycetales). <i>Tetrahedron Lett</i> 2000 , <i>41</i> (13), 2073–2076. https://doi.org/10.1016/S0040-4039(00)00117-9.
540 541 542 543 544	(15)	Bauermeister, A.; Pereira, F.; Grilo, I. R.; Godinho, C. C.; Paulino, M.; Almeida, V.; Gobbo-Neto, L.; Prieto-Davó, A.; Sobral, R. G.; Lopes, N. P.; Gaudêncio, S. P. Intra-clade Metabolomic Profiling of MAR4 <i>Streptomyces</i> from the Macaronesia Atlantic Region Reveals a Source of Anti-biofilm Metabolites. <i>Environ Microbiol</i> 2019 , <i>21</i> (3), 1099–1112. https://doi.org/10.1111/1462- 2920.14529.
545 546 547	(16)	Gallagher, K. A.; Jensen, P. R. Genomic Insights into the Evolution of Hybrid Isoprenoid Biosynthetic Gene Clusters in the MAR4 Marine Streptomycete Clade. <i>BMC Genomics</i> 2015 , <i>16</i> (1), 960. https://doi.org/10.1186/s12864-015-2110-3.
548 549 550 551	(17)	Duncan, K. R.; Crüsemann, M.; Lechner, A.; Sarkar, A.; Li, J.; Ziemert, N.; Wang, M.; Bandeira, N.; Moore, B. S.; Dorrestein, P. C.; Jensen, P. R. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and Their Products from Salinispora Species. <i>Chem Biol</i> 2015 , <i>22</i> (4), 460–471. https://doi.org/10.1016/j.chembiol.2015.03.010.
552 553 554 555 556	(18)	Goering, A. W.; McClure, R. A.; Doroghazi, J. R.; Albright, J. C.; Haverland, N. A.; Zhang, Y.; Ju, K. S.; Thomson, R. J.; Metcalf, W. W.; Kelleher, N. L. Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer. <i>ACS Cent Sci</i> 2016 , <i>2</i> (2), 99–108. https://doi.org/10.1021/acscentsci.5b00331.

557 Mantovani, S. M.; Moore, B. S. Flavin-Linked Oxidase Catalyzes Pyrrolizine Formation of (19) 558 Dichloropyrrole-Containing Polyketide Extender Unit in Chlorizidine a. J Am Chem Soc 2013, 135 559 (48), 18032–18035. https://doi.org/10.1021/ja409520v. 560 (20) Fu, C.; Xie, F.; Hoffmann, J.; Wang, Q.; Bauer, A.; Brönstrup, M.; Mahmud, T.; Müller, R. 561 Armeniaspirol Antibiotic Biosynthesis: Chlorination and Oxidative Dechlorination Steps Affording 562 Spiro[4.4]Non-8-Ene. ChemBioChem 2019, 20 (6), 764-769. https://doi.org/10.1002/cbic.201800791. 563 564 (21) Yamanaka, K.; Ryan, K. S.; Gulder, T. A. M.; Hughes, C. C.; Moore, B. S. Flavoenzyme-Catalyzed 565 Atropo-Selective N.C -Bipvrrole Homocoupling in Marinopvrrole Biosynthesis, J Am Chem Soc 566 2012, 134 (30), 12434–12437. https://doi.org/10.1021/ja305670f. 567 (22) Hjörleifsson Eldjárn, G.; Ramsay, A.; van der Hooft, J. J. J.; Duncan, K. R.; Soldatou, S.; Rousu, J.; 568 Daly, R.; Wandy, J.; Rogers, S. Ranking Microbial Metabolomic and Genomic Links in the NPLinker 569 Framework Using Complementary Scoring Functions. PLoS Comput Biol 2021, 17 (5), e1008920. 570 https://doi.org/10.1371/journal.pcbi.1008920. 571 (23) Leão, T. F.; Wang, M.; da Silva, R.; Gurevich, A.; Bauermeister, A.; Gomes, P. W. P.; Brejnrod, A.; 572 Glukhov, E.; Aron, A. T.; Louwen, J. J. R.; Kim, H. W.; Reher, R.; Fiore, M. F.; van der Hooft, J. J. J.; Gerwick, L.; Gerwick, W. H.; Bandeira, N.; Dorrestein, P. C. NPOmix: A Machine Learning Classifier 573 574 to Connect Mass Spectrometry Fragmentation Data to Biosynthetic Gene Clusters. PNAS Nexus 575 **2022**, 1 (5), 1–15. https://doi.org/10.1093/pnasnexus/pgac257. 576 (24) Shin, Y.-H.; Im, J. H.; Kang, I.; Kim, E.; Jang, S. C.; Cho, E.; Shin, D.; Hwang, S.; Du, Y. E.; Huynh, T.-577 H.; Ko, K.; Ko, Y.-J.; Nam, S.-J.; Awakawa, T.; Lee, J.; Hong, S.; Abe, I.; Moore, B. S.; Fenical, W.; 578 Yoon, Y. J.; Cho, J.-C.; Lee, S. K.; Oh, K.-B.; Oh, D.-C. Genomic and Spectroscopic Signature-Based 579 Discovery of Natural Macrolactams. J Am Chem Soc 2023, 145 (3), 1886–1896. 580 https://doi.org/10.1021/jacs.2c11527. (25) 581 WESTLEY, J. W.; EVANS Jr., R. H.; SELLO, L. H.; TROUPE, N. Isolation and Characterization of Antibiotic X-14547A, a Novel Monocarboxylic Acid Ionophore Produced by Streptomyces 582 583 Antibioticus NRRL 8167. J Antibiot (Tokyo) 1979, 32 (2), 100–107. https://doi.org/10.7164/antibiotics.32.100. 584 (26) 585 LIU, C.-M.; HERMANN, T. E.; LIU, M.; BULL, D. N.; PALLERONI, N. J.; PROSSER, B. L. T.; WESTLEY, O. 586 W.; MILLER, P. A. X-14547A, a New Ionophorous Antibiotic Produced by Streptomyces 587 Antibioticus NRRL 8167. Discovery, Fermentation, Biological Properties and Taxonomy of the Producing Culture. J Antibiot (Tokyo) 1979, 32 (2), 95-99. 588 589 https://doi.org/10.7164/antibiotics.32.95. 590 Li, C.; Roege, K. E.; Kelly, W. L. Analysis of the Indanomycin Biosynthetic Gene Cluster from (27) 591 Streptomyces Antibioticus NRRL 8167. ChemBioChem 2009, 10 (6), 1064–1072. 592 https://doi.org/10.1002/cbic.200800822. 593 (28) Roege, K. E.; Kelly, W. L. Biosynthetic Origins of the lonophore Antibiotic Indanomycin. Org Lett 594 2009, 11 (2), 297–300. https://doi.org/10.1021/ol802422n.

595 596	(29)	ZHANG, D.; G. NAIR, M.; MURRY, M.; ZHANG, Z. Insecticidal Activity of Indanomycin. <i>J Antibiot</i> (<i>Tokyo</i>) 1997 , <i>50</i> (7), 617–620. https://doi.org/10.7164/antibiotics.50.617.
597 598 599	(30)	Aherfi, S.; Pradines, B.; Devaux, C.; Honore, S.; Colson, P.; Scola, B. La; Raoult, D. Drug Repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. <i>Future Microbiol</i> 2021 , <i>16</i> (17), 1341–1370. https://doi.org/10.2217/fmb-2021-0019.
600 601	(31)	Murenets, N. V; Kudinova, M. K.; Korobkova, T. P.; Drobysheva, T. N.; Kliuev, N. A. [Kafamycina New Pyrrol Ether Antibiotic]. <i>Antibiot Med Biotekhnol</i> 1987 , <i>32</i> (11), 811–814.
602 603 604 605	(32)	LARSEN, S. H.; BOECK, L. V. D.; MERTZ, F. P.; PASCHAL, J. W.; OCCOLOWITZ, J. L. 16- Deethylindanomycin (A83094A), a Novel Pyrrole-Ether Antibiotic Produced by a Strain of Streptomyces Setonii. Taxonomy, Fermentation, Isolation and Characterization. <i>J Antibiot (Tokyo)</i> 1988 , <i>41</i> (9), 1170–1177. https://doi.org/10.7164/antibiotics.41.1170.
606 607 608	(33)	Gerasimova, T. I.; Stvolinskaia, N. S. [The Effect of the Polyether Antibiotic Omomycin on the Activity of Cyclic Nucleotides in the Primary Culture of Newborn Rat Heart Cells]. <i>Vopr Med Khim</i> 1990 , <i>36</i> (5), 39–41.
609 610 611	(34)	Toth, Piroska; Szell, Valeria; Koczka, Istvan; Horvath, Gyula; Szabo, Istvan Mihaly; Szayly, Marta; Ambrus, Gabor; Bedo, Julianna; Berdy, J. Producing Indanomycin and Homoindanomycin Using Streptomyces Galbus. HU49909 A2, 1989.
612 613 614	(35)	Miao, S.; Anstee, M. R.; Baichwal, V.; Park, A. Stawamycin, a New Pyrroloketoindane Natural Product from the Cultures of Streptomyces Sp. <i>Tetrahedron Lett</i> 1995 , <i>36</i> (32), 5699–5702. https://doi.org/10.1016/0040-4039(95)01127-4.
615 616 617	(36)	Izumikawa, M.; Komaki, H.; Hashimoto, J.; Takagi, M.; Shin-ya, K. Stawamycin Analog, JBIR-11 from Streptomyces Viridochromogenes Subsp. Sulfomycini NBRC 13830. <i>Journal of Antibiotics</i> 2008 , <i>61</i> (5), 326–329. https://doi.org/10.1038/ja.2008.47.
618 619 620 621	(37)	Beloeil, J. C.; Delsuc, M. A.; Lallemand, J. Y.; Dauphin, G.; Jeminet, G. Application of Homonuclear and Heteronuclear Two-Dimensional Chemical-Shift Correlation NMR Spectroscopy to the Complete Assignment of Proton and Carbon-13 NMR Spectra of Ionophorous Antibiotic X.14547 A. <i>J Org Chem</i> 1984 , <i>49</i> (10), 1797–1800. https://doi.org/10.1021/jo00184a025.
622 623	(38)	Buchfink, B.; Reuter, K.; Drost, HG. Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND. <i>Nat Methods</i> 2021 , <i>18</i> (4), 366–368. https://doi.org/10.1038/s41592-021-01101-x.
624 625 626	(39)	Gilchrist, C. L. M.; Booth, T. J.; van Wersch, B.; van Grieken, L.; Medema, M. H.; Chooi, Y. Cblaster: A Remote Search Tool for Rapid Identification and Visualization of Homologous Gene Clusters. <i>Bioinformatics Advances</i> 2021 , <i>1</i> (1), 1–10. https://doi.org/10.1093/bioadv/vbab016.
627 628 629 630 631 632	(40)	Terlouw, B. R.; Blin, K.; Navarro-Muñoz, J. C.; Avalon, N. E.; Chevrette, M. G.; Egbert, S.; Lee, S.; Meijer, D.; Recchia, M. J. J.; Reitz, Z. L.; van Santen, J. A.; Selem-Mojica, N.; Tørring, T.; Zaroubi, L.; Alanjary, M.; Aleti, G.; Aguilar, C.; Al-Salihi, S. A. A.; Augustijn, H. E.; Avelar-Rivas, J. A.; Avitia- Domínguez, L. A.; Barona-Gómez, F.; Bernaldo-Agüero, J.; Bielinski, V. A.; Biermann, F.; Booth, T. J.; Carrion Bravo, V. J.; Castelo-Branco, R.; Chagas, F. O.; Cruz-Morales, P.; Du, C.; Duncan, K. R.; Gavriilidou, A.; Gayrard, D.; Gutiérrez-García, K.; Haslinger, K.; Helfrich, E. J. N.; van der Hooft, J. J.

633 J.; Jati, A. P.; Kalkreuter, E.; Kalyvas, N.; Kang, K. Bin; Kautsar, S.; Kim, W.; Kunjapur, A. M.; Li, Y.-634 X.; Lin, G.-M.; Loureiro, C.; Louwen, J. J. R.; Louwen, N. L. L.; Lund, G.; Parra, J.; Philmus, B.; 635 Pourmohsenin, B.; Pronk, L. J. U.; Rego, A.; Rex, D. A. B.; Robinson, S.; Rosas-Becerra, L. R.; 636 Roxborough, E. T.; Schorn, M. A.; Scobie, D. J.; Singh, K. S.; Sokolova, N.; Tang, X.; Udwary, D.; 637 Vigneshwari, A.; Vind, K.; Vromans, S. P. J. M.; Waschulin, V.; Williams, S. E.; Winter, J. M.; Witte, 638 T. E.; Xie, H.; Yang, D.; Yu, J.; Zdouc, M.; Zhong, Z.; Collemare, J.; Linington, R. G.; Weber, T.; 639 Medema, M. H. MIBiG 3.0: A Community-Driven Effort to Annotate Experimentally Validated 640 Biosynthetic Gene Clusters. Nucleic Acids Res 2023, 51 (D1), D603–D610. 641 https://doi.org/10.1093/nar/gkac1049. 642 (41) Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S. Y.; Medema, M. H.; Weber, T. 643 AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res 644 **2019**, 47 (W1), W81–W87. https://doi.org/10.1093/nar/gkz310. 645 (42) Purdy, T. N.; Kim, M. C.; Cullum, R.; Fenical, W.; Moore, B. S. Discovery and Biosynthesis of 646 Tetrachlorizine Reveals Enzymatic Benzylic Dehydrogenation via an Ortho -Quinone Methide. J Am Chem Soc 2021, 143 (10), 3682–3686. https://doi.org/10.1021/jacs.0c12415. 647 Ziemert, N.; Podell, S.; Penn, K.; Badger, J. H.; Allen, E.; Jensen, P. R. The Natural Product Domain 648 (43) 649 Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene 650 Diversity. PLoS One 2012, 7 (3), e34064. https://doi.org/10.1371/journal.pone.0034064. 651 (44) Klau, L. J.; Podell, S.; Creamer, K. E.; Demko, A. M.; Singh, H. W.; Allen, E. E.; Moore, B. S.; Ziemert, N.; Letzel, A. C.; Jensen, P. R. The Natural Product Domain Seeker Version 2 (NaPDoS2) 652 653 Webtool Relates Ketosynthase Phylogeny to Biosynthetic Function. Journal of Biological 654 Chemistry 2022, 298 (10), 102480. https://doi.org/10.1016/j.jbc.2022.102480. 655 (45) Kwan, D. H.; Schulz, F. The Stereochemistry of Complex Polyketide Biosynthesis by Modular 656 Polyketide Synthases. Molecules 2011, 16 (7), 6092-6115. 657 https://doi.org/10.3390/molecules16076092. 658 (46) Keatinge-Clay, A. T. The Uncommon Enzymology of Cis-Acyltransferase Assembly Lines. Chem Rev 659 **2017**, *117* (8), 5334–5366. https://doi.org/10.1021/acs.chemrev.6b00683. 660 (47) Cantu, D. C.; Chen, Y.; Reilly, P. J. Thioesterases: A New Perspective Based on Their Primary and 661 Tertiary Structures. Protein Science 2010, 19 (7), 1281–1295. https://doi.org/10.1002/pro.417. 662 (48) Cantu, D. C.; Chen, Y.; Lemons, M. L.; Reilly, P. J. ThYme: A Database for Thioester-Active 663 Enzymes. Nucleic Acids Res 2011, 39 (Database), D342–D346. 664 https://doi.org/10.1093/nar/gkq1072. 665 (49) Ichikawa, N.; Sasagawa, M.; Yamamoto, M.; Komaki, H.; Yoshida, Y.; Yamazaki, S.; Fujita, N. 666 DoBISCUIT: A Database of Secondary Metabolite Biosynthetic Gene Clusters. Nucleic Acids Res 667 2013, 41 (D1), 408–414. https://doi.org/10.1093/nar/gks1177. 668 (50) Rommel, K. R.; Li, C.; Kelly, W. L. Identification of a Tetraene-Containing Product of the 669 Indanomycin Biosynthetic Pathway. Org Lett 2011, 13 (10), 2536–2539. 670 https://doi.org/10.1021/ol200570u.

(51) Drulyte, I.; Obajdin, J.; Trinh, C. H.; Kalverda, A. P.; van der Kamp, M. W.; Hemsworth, G. R.; Berry,
A. Crystal Structure of the Putative Cyclase IdmH from the Indanomycin Nonribosomal Peptide
Synthase/Polyketide Synthase. *IUCrJ* 2019, 6 (6), 1120–1133.
https://doi.org/10.1107/S2052252519012399.

- 675 (52) Bauman, K. D.; Shende, V. V.; Chen, P. Y.-T.; Trivella, D. B. B.; Gulder, T. A. M.; Vellalath, S.; Romo,
 676 D.; Moore, B. S. Enzymatic Assembly of the Salinosporamide γ-Lactam-β-Lactone Anticancer
 677 Warhead. *Nat Chem Biol* **2022**, *18* (5), 538–546. https://doi.org/10.1038/s41589-022-00993-w.
- (53) Roush, W. R.; Myers, A. G. Antibiotic X-14547A: Total Synthesis of the Right-Hand Half. *J Org Chem* 1981, *46* (7), 1509–1511. https://doi.org/10.1021/jo00320a060.
- (54) Rousch, W. R.; Peseckis, S. M. Studies on the Total Synthesis of Antibiotic X-14547A: The
 Pentaene Approach. *Tetrahedron Lett* **1982**, *23* (47), 4879–4882. https://doi.org/10.1016/S0040 4039(00)85737-8.
- (55) Roush, W. R.; Peseckis, S. M.; Walts, A. E. Synthesis of Antibiotic X-14547A. *J Org Chem* 1984, 49
 (18), 3429–3432. https://doi.org/10.1021/jo00192a052.
- (56) Stocking, E. M.; Williams, R. M. Chemie Und Biologie Natürlicher Diels-Alder-Reaktionen.
 Angewandte Chemie 2003, 115 (27), 3186–3223. https://doi.org/10.1002/ange.200200534.
- (57) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.;
 Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.;
 Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.;
 Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals,
 O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure
 Prediction with AlphaFold. *Nature* 2021, *596* (7873), 583–589. https://doi.org/10.1038/s41586021-03819-2.
- 694 (58) Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making
 695 Protein Folding Accessible to All. *Nat Methods* 2022, *19* (6), 679–682.
 696 https://doi.org/10.1038/s41592-022-01488-1.
- (59) Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. AMDock: A Versatile
 Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4. *Biol Direct*2020, 15 (1), 12. https://doi.org/10.1186/s13062-020-00267-2.
- Sayers, E. W.; Bolton, E. E.; Brister, J. R.; Canese, K.; Chan, J.; Comeau, D. C.; Connor, R.; Funk, K.;
 Kelly, C.; Kim, S.; Madej, T.; Marchler-Bauer, A.; Lanczycki, C.; Lathrop, S.; Lu, Z.; Thibaud-Nissen,
 F.; Murphy, T.; Phan, L.; Skripchenko, Y.; Tse, T.; Wang, J.; Williams, R.; Trawick, B. W.; Pruitt, K.
 D.; Sherry, S. T. Database Resources of the National Center for Biotechnology Information. *Nucleic Acids Res* 2022, *50* (D1), D20–D26. https://doi.org/10.1093/nar/gkab1112.
- Wang, M.; Jarmusch, A. K.; Vargas, F.; Aksenov, A. A.; Gauglitz, J. M.; Weldon, K.; Petras, D.; da
 Silva, R.; Quinn, R.; Melnik, A. V.; van der Hooft, J. J. J.; Caraballo-Rodríguez, A. M.; Nothias, L. F.;
 Aceves, C. M.; Panitchpakdi, M.; Brown, E.; Di Ottavio, F.; Sikora, N.; Elijah, E. O.; Labarta-Bajo, L.;
 Gentry, E. C.; Shalapour, S.; Kyle, K. E.; Puckett, S. P.; Watrous, J. D.; Carpenter, C. S.; Bouslimani,
 A.; Ernst, M.; Swafford, A. D.; Zúñiga, E. I.; Balunas, M. J.; Klassen, J. L.; Loomba, R.; Knight, R.;

Bandeira, N.; Dorrestein, P. C. Mass Spectrometry Searches Using MASST. *Nat Biotechnol* 2020, 38 (1), 23–26. https://doi.org/10.1038/s41587-019-0375-9.

- 712 (62) Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, 713 J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, 714 W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; 715 Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; 716 Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; 717 Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; 718 Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. 719 M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; 720 Silva, D. B.; Margues, L. M.; Demargue, D. P.; Pociute, E.; O'Neill, E. C.; Briand, E.; Helfrich, E. J. N.; 721 Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; 722 Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; 723 Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, 724 S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; 725 Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; 726 Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; 727 Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu,
- X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.;
 Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community
 Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. *Nat Biotechnol* 2016, *34* (8), 828–837. https://doi.org/10.1038/nbt.3597.
- (63) Nonejuie, P.; Burkart, M.; Pogliano, K.; Pogliano, J. Bacterial Cytological Profiling Rapidly Identifies
 the Cellular Pathways Targeted by Antibacterial Molecules. *Proceedings of the National Academy*of Sciences 2013, 110 (40), 16169–16174. https://doi.org/10.1073/pnas.1311066110.
- 735 (64) Vila, J.; Martí, S.; Sánchez-Céspedes, J. Porins, Efflux Pumps and Multidrug Resistance in
 736 Acinetobacter Baumannii. *Journal of Antimicrobial Chemotherapy* 2007, *59* (6), 1210–1215.
 737 https://doi.org/10.1093/jac/dkl509.
- (65) Soto, S. M. Role of Efflux Pumps in the Antibiotic Resistance of Bacteria Embedded in a Biofilm. *Virulence* 2013, 4 (3), 223–229. https://doi.org/10.4161/viru.23724.
- 740 (66) Work, R. BBMap : A Fast , Accurate , Splice-Aware Aligner. **2014**, 3–5.
- (67) Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A. A.; Dvorkin, M.; Kulikov, A. S.; Lesin, V. M.;
 Nikolenko, S. I.; Pham, S.; Prjibelski, A. D.; Pyshkin, A. V.; Sirotkin, A. V.; Vyahhi, N.; Tesler, G.;
 Alekseyev, M. A.; Pevzner, P. A. SPAdes: A New Genome Assembly Algorithm and Its Applications
 to Single-Cell Sequencing. *Journal of Computational Biology* 2012, *19* (5), 455–477.
- 745 https://doi.org/10.1089/cmb.2012.0021.
- (68) Jain, C.; Rodriguez-R, L. M.; Phillippy, A. M.; Konstantinidis, K. T.; Aluru, S. High Throughput ANI
 Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. *Nat Commun* 2018, *9* (1),
 5114. https://doi.org/10.1038/s41467-018-07641-9.

(69) Wick, R. R.; Judd, L. M.; Gorrie, C. L.; Holt, K. E. Unicycler: Resolving Bacterial Genome Assemblies
from Short and Long Sequencing Reads. *PLoS Comput Biol* 2017, *13* (6), 1–22.
https://doi.org/10.1371/journal.pcbi.1005595.

- (70) Parks, D. H.; Imelfort, M.; Skennerton, C. T.; Hugenholtz, P.; Tyson, G. W. CheckM: Assessing the
 Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. *Genome Res* 2015, *25* (7), 1043–1055. https://doi.org/10.1101/gr.186072.114.
- Navarro-Muñoz, J. C.; Selem-Mojica, N.; Mullowney, M. W.; Kautsar, S. A.; Tryon, J. H.; Parkinson,
 E. I.; De Los Santos, E. L. C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; Roeters, A.; Lokhorst, W.;
 Fernandez-Guerra, A.; Cappelini, L. T. D.; Goering, A. W.; Thomson, R. J.; Metcalf, W. W.; Kelleher,
 N. L.; Barona-Gomez, F.; Medema, M. H. A Computational Framework to Explore Large-Scale
 Biosynthetic Diversity. *Nat Chem Biol* **2020**, *16* (1), 60–68. https://doi.org/10.1038/s41589-0190400-9.
- (72) Kautsar, S. A.; Blin, K.; Shaw, S.; Navarro-Muñoz, J. C.; Terlouw, B. R.; Van Der Hooft, J. J. J.; Van
 Santen, J. A.; Tracanna, V.; Suarez Duran, H. G.; Pascal Andreu, V.; Selem-Mojica, N.; Alanjary, M.;
 Robinson, S. L.; Lund, G.; Epstein, S. C.; Sisto, A. C.; Charkoudian, L. K.; Collemare, J.; Linington, R.
 G.; Weber, T.; Medema, M. H. MIBiG 2.0: A Repository for Biosynthetic Gene Clusters of Known
 Function. *Nucleic Acids Res* 2020, *48* (D1), D454–D458. https://doi.org/10.1093/nar/gkz882.
- (73) Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski,
 B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular
 Interaction Networks. *Genome Res* 2003, *13* (11), 2498–2504.
 https://doi.org/10.1101/gr.1239303.
- (74) Edgar, R. C. Muscle5: High-Accuracy Alignment Ensembles Enable Unbiased Assessments of
 Sequence Homology and Phylogeny. *Nat Commun* 2022, *13* (1), 6968.
 https://doi.org/10.1038/s41467-022-34630-w.
- 773 (75) Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. AMDock: A Versatile
 774 Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4. *Biol Direct*775 2020, 15 (1), 12. https://doi.org/10.1186/s13062-020-00267-2.
- Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New
 Scoring Function, Efficient Optimization, and Multithreading. *J Comput Chem* 2010, *31* (2), 455–
 461. https://doi.org/10.1002/jcc.21334.
- (77) Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. AutoDock Vina 1.2.0: New Docking
 Methods, Expanded Force Field, and Python Bindings. *J Chem Inf Model* 2021, *61* (8), 3891–3898.
 https://doi.org/10.1021/acs.jcim.1c00203.