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ABSTRACT Incorporating measurements on correlated traits into genomic prediction models can increase
prediction accuracy and selection gain. However, multi-trait genomic prediction models are complex and
prone to overfitting which may result in a loss of prediction accuracy relative to single-trait genomic
prediction. Cross-validation is considered the gold standard method for selecting and tuning models for
genomic prediction in both plant and animal breeding. When used appropriately, cross-validation gives an
accurate estimate of the prediction accuracy of a genomic prediction model, and can effectively choose
among disparate models based on their expected performance in real data. However, we show that a naive
cross-validation strategy applied to the multi-trait prediction problem can be severely biased and lead to
sub-optimal choices between single and multi-trait models when secondary traits are used to aid in the
prediction of focal traits and these secondary traits are measured on the individuals to be tested. We use
simulations to demonstrate the extent of the problem and propose three partial solutions: 1) a parametric
solution from selection index theory, 2) a semi-parametric method for correcting the cross-validation
estimates of prediction accuracy, and 3) a fully non-parametric method which we call CV2�: validating model
predictions against focal trait measurements from genetically related individuals. The current excitement
over high-throughput phenotyping suggests that more comprehensive phenotype measurements will be
useful for accelerating breeding programs. Using an appropriate cross-validation strategy should more
reliably determine if and when combining information across multiple traits is useful.
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Genomic Selection (GS) aims to increase the speed and accuracy of
selection in breeding programs by predicting the genetic worth of
candidate individuals or lines earlier in the selection process, or for
individuals that cannot be directly phenotyped (Meuwissen et al. 2001;
Hayes et al. 2009; Crossa et al. 2017). Genomic selection works by
training statistical or Machine Learning models on a set of completely
phenotyped and genotyped individuals, and then using the trained
model to predict the genetic worth of unmeasured individuals.
If the predictions are reasonably accurate, selection intensity can be

increased either because the population size of candidate individuals
is larger or their true genetic worth is estimated more accurately.

Predictions of genetic values are usually based only on the genotypes
or pedigrees of the new individuals. However predictions can in some
cases be improved by includingmeasurements of “secondary” traits that
may not be of direct interest but are easier or faster to measure
(Thompson and Meyer 1986; Pszczola et al. 2013; Lado et al. 2018).
This is one goal of multi-trait genomic prediction. Multi-trait pre-
diction is most useful for increasing the accuracy of selection on a
single focal trait when that trait has low heritability, the “secondary”
traits have high heritability, and the genetic and non-genetic correla-
tions between the traits are large and opposing (Thompson and Meyer
1986; Jia and Jannink 2012; Cheng et al. 2018). With the advent of
cheap high-throughput phenotyping, there is great interest in using
measurements of early-life or easily accessible traits to improve pre-
diction of later-life or more expensive traits, and multi-trait prediction
models are attractive methods for leveraging this information (Pszczola
et al. 2013; Rutkoski et al. 2016; Fernandes et al. 2017; Lado et al. 2018).

A large number of genomic prediction methods are available,
and the best model varies across systems and traits (Heslot et al. 2012;
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de Los Campos et al. 2013). Due to their complexity and often
high-dimensional nature, genomic prediction methods are prone
to overfitting and require regularization to perform well on new
data. Therefore, comparing models based on their ability to fit existing
data (ex. with R2) is unreliable; every candidate model could explain
100% of the variation in a typical-size dataset.

Instead, prediction models are generally compared by cross-
validation (Meuwissen et al. 2001; Utz et al. 2000; Gianola and Schon
2016). The basic idea of cross-validation is to separate the model
fitting and tuning process from the model evaluation process by using
separate datasets for each (Hastie et al. 2009). This penalizes models
that fit too closely to one data set at the expense of generalization.
In this way, cross-validation is meant to accurately simulate the
real-world usage of the model: predicting the genetic values of
un-phenotyped individuals; i.e., those not available during the
model fitting process itself. Rather than requiring new data per se,
cross-validation works by splitting an existing dataset into non-
overlapping “training” and “testing” partitions, fitting the candidate
model to the former, and then evaluating it on its accuracy at predict-
ing the latter. Common measures of accuracy include Pearson’s r

or the square root of the average squared error (RMSE) (Daetwyler
et al. 2013). This process of splitting, training, and predicting is typ-
ically repeated several times on the same dataset to get a combined or
averaged measure of accuracy across different random partitions of
the data.

Estimates of model accuracy by cross-validation are not perfect
(Hastie et al. 2009). They are subject to sampling error as are any other
statistic. They are also typically downwardly biased because smaller
training datasets are used for the cross-validation than in the actually
application of a model. However in typical cases, this downward bias is
the same for competingmodels and thus does not impact model choice
(Hothorn et al. 2005).

However, cross-validation can give upwardly biased estimates of
model accuracy when misused due to various forms of “data-leakage”
between the training and testing datasets, leading to overly optimistic
estimates of model performance (Kaufman et al. 2012). Several
potential mistakes in cross-validation experiments are well known:

Biased testing data selection. The individuals in the model testing
partitions should have the same distribution of genetic (and envi-
ronmental) relatedness to the training population as individuals in
the remaining target population (Amer and Banos 2010; Daetwyler
et al. 2013). For example, if siblings or clones are present in the data,
they should not be split between testing and training partitions un-
less siblings or clones of individuals in the training partition are also
at the same frequency in the target population. Similarly, if the goal
is to predict into a diverse breeding population, the cross-validation
should not be performed only within one F2 mapping population.
Overlap between the testing and training datasets. The obser-
vations used as testing data should be kept separate from the training
data at all stages of the cross-validation procedure. For exam-
ple, if data from individuals in the testing dataset are used to
calculate estimated genetic values (EBVs) for model training,
then the testing and training datasets are overlapping, even if the
testing individuals themselves are excluded from model training
(Amer and Banos 2010).
Pre-selection of features (e.g., markers) based on the full dataset
before cross-validation. All aspects of model specification and train-
ing that rely on the observed phenotypes should be performed only
on the training partitions, without respect to the testing partition.
For example, if a large number of candidate markers are available

but only a portion will be included in the final model, the selection
of markers (i.e., features) should be done using only the training
partition of phenotypes and the selection itself should be repeated
each replicate of the cross-validation on each new training dataset.
If the feature selection is only done once on the whole dataset before
cross-validation begins, this can lead to biased estimates of model
accuracy (Hastie et al. 2009).

If these mistakes are avoided, cross-validation generally works
well for comparing among single-trait methods, and in some cases
formulti-trait methods. However, our goal in this paper is to highlight
a challenge with using cross-validation to choose between single-trait
methods andmulti-traitmethods; specificallymulti-traitmethods that
use information from “secondary” traits measured on the target
individuals to inform the prediction of their focal trait(s). In this
case, standard cross-validation approaches lead to biased results.
As we discuss below, the source of bias is not data leakage between
the training and testing data per se, but correlated errors with re-
spect to the true genetic merit between the secondary traits in the
training data and the focal train in the testing data. Note that this
issue only occurs when the multiple traits are measured on the same
individuals, and the traits share non-genetic covariance. When traits
are measured on different individuals, the standard cross-validation
approach is appropriate.

In the following sections, we first describe the opportunity offered by
multi-trait genomic predictionmodels in this setting, and the challenge
in evaluating them.We then develop a simulation study that highlights
the extent of the problem. Next, we propose three partial solutions that
lead to fairly consistent model selections between single and multi-trait
models under certain situations. Finally, we draw conclusions on when
this issue is likely to arise and when it can be safely ignored.

General Setting
Multi-trait genomicprediction is useful in two general settings: 1)When
the overall value of an individual depends on each trait simultaneously
(ex. fruit number and fruit size) and these traits are correlated, and
2) When a focal trait is difficult or expensive to measure on every
individual, but other correlated traits are more readily available
(Thompson and Meyer 1986; Pszczola et al. 2013; Lado et al.
2018). While multi-trait models are clearly necessary in the first
setting, in the second the value of the secondary traits depends on
several factors including i) the repeatability of the focal and sec-
ondary traits, ii) the correlations among the traits and the cause of
the correlations (i.e., genetic vs. non-genetic), and iii) the relative
expenses of collecting data on each trait.

Here we focus on the goal of predicting a single focal trait using
information from both genetic markers (or pedigrees) and phenotypic
information on other traits. Even within this context, there are also two
distinct prediction settings: 1) Predicting the focal trait value for new
individuals that are yet to be phenotyped for any of the traits, and
2) Predicting the focal trait value for individuals that have been partially
phenotyped; phenotypic values for the secondary traits are known and
we wish to predict the individual’s genetic value for the focal trait. These
settings were described by (Burgueño et al. 2012) as CV1 and CV2,
respectively, although those authors focused on multi-environment
trials rather than single experiments with multiple traits per individ-
ual. The same naming scheme has since been extended to the more
general multiple-trait prediction scenarios (Lado et al. 2018).

The key difference between CV1 and CV2-style multi-trait pre-
diction is that in the former, the secondary traits help refine estimates
of the genetic values of relatives of the individuals we wish to predict,
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while in the latter, the secondary traits provide information directly
about the genetics of the target individuals themselves. This direct
information on the target individuals is generally useful (as we dem-
onstrate below). However, it comes with a cost for the evaluation of
prediction accuracy by cross-validation. Since we do not know the
true genetic values for the testing individuals, we must either use a
model to estimate the genetic values or simply use their phenotypic
value as a proxy. Unfortunately, if we use our genetic model to esti-
mate these values, we are breaking the independence between the
testing and training data, and therefore have biased estimates of
cross-validation accuracy. On the other hand, if we simply use the
phenotypic values of the focal trait as our predictand, these may be
biased toward or away from the true genetic values depending on the
non-genetic correlation between the focal and secondary traits. This
leads to either over- or under-estimation of the prediction accuracy
of our multi-trait models. In realistic scenarios, this can lead users to
select worse models.

MATERIALS AND METHODS
We used a simulation study to explore conditions when naive cross-
validation experiments as described above lead to sub-optimal choices
between single and multi-trait genomic prediction methods. Our sim-
ulations were designed to mimic the process of using cross-validation
to compare single and multi-trait models based on their prediction
accuracies. We repeated this simulation across scenarios with different
genetic architectures for two traits: a single “focal” trait and a single
“secondary” trait. Specifically, we modified the heritability and cor-
relation structure of the two traits. These are the most important
parameters for determining the relative efficiencies of single- and
multi-trait prediction models (Thompson and Meyer 1986). Sam-
ple size and level of genomic relatedness will also affect the com-
parisons, but are likely to only quantitatively (but not qualitatively)
change the relative performances of the models and the accuracy
of cross-validation.

Tomakeoursimulationsrealistic,webasedthemongenomicmarker
data from 803 lines from a real wheat breeding program (Lopez-Cruz
et al. 2015). We downloaded the genomic relationship matrix K based
on 14,217 GBSmarkers from this population.We used this relationship
matrix to generate a set of simulated datasets covering all combinations
of the following parameters: the relative proportions of genetic and
non-genetic variation for each trait (h2 ¼ f0:2; 0:6g), and the genetic
and non-genetic correlations between the traits rg ¼ f0; 0:3; 0:6g,
rR ¼ f20:6; 2 0:4; 2 0:2; 0; 0:2; 0:4; 0:6g, drawing trait values for
each simulation from multivariate normal distributions. In particular,
we set:

Y ¼ Uþ E;U � MNð0;K;GÞ;E � MNð0; In;RÞ
G ¼

�
g11 g12
g21 g22

�
¼
"
h21 rgh1h2
g12 h22

#

R ¼
�
r11 r12
r21 r22

�
¼
" �

12 h21
�

rR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
12 h21

��
12 h22

�q
r12

�
12 h22

�
# (1)

where MNð:Þ is the Matrix normal distribution, Y ¼ ½y1; y2� are the
phenotypic values for the two traits in the n individuals, U ¼ ½u1; u2�
are the true genetic values for the two traits, and E ¼ ½e1; e2� are the
true non-genetic deviations for the two traits. We repeated this
process 500 times for each of the 42 combinations of the genetic
architecture parameters and for each of the simulation settings we
describe below. To improve the consistency of the simulations, we
used the same draws from a standard-normal distribution for

all 42 parameter combinations, but new draws for each of the
500 simulations.

After creating the 803 simulated individuals, we randomly divided
them into a training partition and a testing partition. We arranged the
rows of Y so that the testing individuals were first, and correspondingly
partitioned K into:

K ¼
�
Knn Kno

Kon Koo

�
: (2)

Here and below, the subscript n refers to the testing partition (i.e.,
“new” individuals) and the subscript o refers to the training partition
(i.e., “old” individuals). We use the hat symbol (^) to denote parameter
estimates or predictions.

We then fit single- and multi-trait linear mixed models to the train-
ing data and used these model fits to predict the genetic values for the
focal trait (trait 1) in the testing partition.

Specifically, for the single-trait method we fit a univariate linear
mixed model to the training data yo1:

yo1 ¼ m1 þ uo1 þ eo1; uo1 � N
�
0; g11Koo

�
; eo1 � Nð0; r11InoÞ

(3)

by Restricted Maximum Likelihood using the relmatlmer function
of R package (Ziyatdinov et al. 2018) and extracted the BLUPs ûo1.
Note: an expanded version of these derivations are provided in the
Appendix. We then calculated predicted genetic values for the testing
partition un1 as:

ûð1Þn1

���ûo1 ¼ KnoK
21
oo ûo1: (4)

For themulti-traitmodel, we stacked the vectors of the two traits in the

training dataset into the vector yo ¼
�
yo1
yo2

�
and fit:

yo ¼ mþ uo þ eo; uo � Nð0;G5KooÞ; eo � Nð0;R5InoÞ (5)

using the relmatLmer function, extracted estimates m̂ ¼ ½m̂⊺
1 ; m̂

⊺
2 �⊺, Ĝ,

R̂, and BLUPs ûo.
To make predictions of the genetic values for the focal trait in the

testing partition in the CV1 case without use of yn2, we calculated:

ûð2Þn1

���ûo1 ¼ KnoK
21
oo ûo1 (6)

which has the same form as for the single trait model, but the input
BLUPs ûo1 are different.

To make predictions of the genetic values for the focal trait in the
testing partition in the CV2 case, using the phenotypic observations of
the secondary trait yn2, we used a two step method. First, we estimated
ûo above based on both traits in the training data. Then we combined
these estimates with the observed phenotypes of the testing data to
calculate genetic predictions for the testing data:

û ð3Þ
n1 jyn2; ûo ¼ KnoK

21
oo ûo1þĝ12

�
K21�

nnðV̂cÞ21

�
yn2 2 m̂2 2KnoK

21
oo ûo2

�
; (7)

where V̂c ¼ ĝ22ðK21Þnn þ r̂22In. This two-step method will be slightly
less accurate than a one-step method that used yn2 during the estima-
tion of ûo, but is much easier to implement in breeding programs
because no genotype or phenotype data of the evaluation individuals
is needed during the model training stage.
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Wemeasured the accuracy of these three predictions by calculating
the correlation between the prediction ûðiÞn1 and three predictands over
the 500 simulations:

un1: The true genetic value.
yn1: The phenotypic values of the testing individuals.
~un1: The estimated genetic values of the validation individuals
using the full dataset (including yn1).

For the second accuracy measure that uses phenotypic values as
predictands, we “corrected“ the correlations by dividing by the true
value of

ffiffiffiffiffi
h2

p
to account for the larger variance of yn1 relative to

un1. This impacts the denominator of the correlation (Daetwyler
et al. 2013), but since it is the same across methods, does not impact
their comparison.

As described below, we also simulated phenotypes for an addi-
tional set of individuals yx not included in either the validation or
testing partitions. These individuals were selected to be close relatives
of each of the validation partition individuals but experienced different
micro-environments.

For each combination of genetic parameters, we declared the “best”
prediction method to be the one with the highest average correlation
with the true genetic values across the 500 simulations. Then we
counted the proportion of the simulations in which this “best”
method actually had the highest estimated accuracy when scored
against yn1.

Data Availability
Scripts for running all simulations and analyses described here are avail-
able at https://github.com/deruncie/multiTrait_crossValidation_scripts.
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.9762899.

RESULTS
Although we ran simulations for two levels of heritability for the focal
trait (h21 ¼ f0:2; 0:6g) we present results only for h21 ¼ 0:2. This is the
“most-difficult” setting for prediction–when the heritability of the trait
is low–but also the setting when we would expect the greatest benefit
of using multi-trait models. Results for h21 ¼ 0:6 were qualitatively
similar, but with higher overall prediction accuracies of all methods.

Accuracy of single and multi-trait methods in
simulated data
With h21 ¼ 0:2 the true accuracy of prediction was moderate for all
methods (corðûn1; un1Þ � 0:42 0:6, Figure 1). Prediction accuracies
for the single-trait method were constant across settings with different
correlation structures because information from the secondary trait was
not used.

The “standard” muti-trait model (i.e., CV1-style) that used pheno-
typic information only on the training partition slightly out-performed
the single-trait model in some settings, more-so when the genetic and
non-genetic correlations between traits were large and opposing
and when the genetic determinacy of the secondary trait was high
(Thompson and Meyer 1986). However it performed slightly worse
whenever the genetic and residual correlations between traits were
low. This was caused by inaccuracy in the estimation of the two co-
variance parameters (ĝ12; r̂12). Neither multi-trait model performed
worse than the single-trait model when the true G and R matrices
were used (Figure S1), which we also verified by calculating the
expected prediction accuracies analytically (See Appendix). In real
data, multi-trait models require estimating more (co)variance pa-
rameters and therefore can show reduced performance when data
are limited.

The CV2-style multi-trait method, which leverages additional
phenotypic information on the secondary trait from the testing
partition itself, showed dramatic improvements in prediction ac-
curacy whenever genetic correlations among traits were large, irre-
gardless of the non-genetic correlation between the traits. This is
similar to the benefits seen by (Rutkoski et al. 2016) and (Lado
et al. 2018). When the heritability of the secondary trait was high,
the improvement in prediction accuracy was particularly dra-
matic (increasing to � r ¼ 0:6). This is the potential advantage
of incorporating secondary traits into prediction methods. However,
the CV2 method also requires estimating G and R, and its perfor-
mance was lower than the single-trait method whenever both genetic
and residual correlations were low.

Therefore, multi-trait methods will not always be useful and it
is important to test the relative performance of the different methods
in real breeding scenarios. Unfortunately, we never know the true
genetic values (un1), and so must use proxy predictands to evaluate
our methods in real data (Daetwyler et al. 2013; Legarra and Reverter
2018). In Figures 2A-B, we compare the prediction accuracies of the
three methods using two candidate predictands: the observed phe-
notypic values (yn1) and estimated genetic values from a joint model
fit to the complete dataset (~un1).

Using the observed phenotypic values (yn1) as the predictand, the
estimated accuracy of both the single-trait and CV1-style multi-trait
prediction methods consistently under-estimated their true prediction
accuracies. This is expected because in this setting 80% of the phenotypic
variation is non-genetic and cannot be predicted based on relatives
alone. We therefore follow common practice to report a “corrected”
estimate of the prediction accuracy by dividing by

ffiffiffiffiffi
h2

p
in Figure 2A.

This correction factor itself must be estimated in real data, but when
comparing models the same value of ĥ

2
should be used for each model

so that differences in these estimates do not bias model selection.
In contrast, the estimated accuracy of the CV2-style multi-trait

method varied dramatically across simulated datasets. We tended to
overestimate the true accuracy when both genetic and non-genetic
correlations were large and in the same direction, and dramatically
underestimate the true accuracy when the two correlations were op-
posing. Importantly, there are situations where the CV2-style method
appears to performworse than the single-trait method based on yn1 but
actually performs better. Therefore, the observed phenotypic values
are not reliable predictands to evaluate CV2-style methods when the
intent is to estimate true genetic values and rR 6¼ 0.

On the other hand, using estimated genetic values from a joint model
fit to the complete dataset (~un1) as the predictand led to dramatic over-
estimation of the true prediction accuracy for all methods. This is also
expected because the training data are used both to train the prediction
model and also to create the testing dataset, a clear violation of the cross-
validation rules that these datasets must be kept separate at all stages of
the analysis. Again, the bias was most severe for the CV2-style method.
Since this method is clearly invalid, we do not consider it further.

Effects of predictand on model selection
To demonstrate the impact of biased estimates of model accuracy
using yn1 on the effectiveness of model selection, we assessed in each
simulation whether the single-trait or multi-trait methods had
a higher estimated accuracy, and compared this result to the true
difference in prediction accuracies in that simulation setting.

Figure 3 shows that selecting between the single-trait and CV1-style
multi-trait models based on estimated accuracy using yn1 generally
works well. Whenever one method is clearly better, we are able
to choose that method . 50% of the time. But we never choose
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correctly , 50% of the time, even when the methods are approxi-
mately equivalent.

In contrast, when selecting between the single-trait and CV2-style
multi-trait methods based on estimated accuracy using yn1, the differ-
ential bias in estimated accuracy between the two methods frequently
lead to sub-optimal model selection (Figure 3B).With opposing genetic
and non-genetic covariances between the two traits, the better model
was chosen , 10% of the time. In these situations, using yn1 to select
a prediction method will obscure real opportunities to enhance
prediction accuracy using multi-trait prediction models.

Alternative estimates of multi-trait prediction accuracy
TheCV2-style predictionmethod can be powerful because yn2 provides
information on the genetic value of the testing individuals themselves
(through un2), while yo1 only provides indirect information on the ge-
netic values of the testing individuals through the relatives. However,
estimating prediction accuracy using yn1 fails for the CV2-style predic-
tion method because both the focal and secondary traits are observed on
the same individual and therefore share the same non-genetic sources
of variation. Since the CV2 method uses yn2, non-genetic deviations
for the secondary trait en2 push ûn1 either toward or away from yn1
depending on the estimated correlation r̂12. This either inflates or
deflates the estimated accuracy, leading to incorrect model choices.

We now compare the effectiveness of three strategies for estimat-
ing cross-validation accuracy of CV2-stylemethods. To our knowledge,
the second and third strategies are novel. Because the three methods
have different data requirements, we implemented different experi-
mental designs for each evaluation strategy.

Parametric estimate of accuracy: Our prediction ûn1 is similar to a
selection index because it combines multiple pieces of information into
a linear prediction. The accuracy of an index I is: corgðI; yÞ

ffiffiffiffiffi
h2I

p
, the

genetic correlation between the index and phenotype multiplied by the
heritability of the index (Falconer and Mackay 1996; Lopez-Cruz et al.
2019). Neither the genetic correlation nor the heritability can be directly
observed, but we can estimate both as parameters of a multi-trait linear
mixed model with the same form as (5). To be a valid cross-validation
score, these parameters must be estimated with data only in the vali-
dation partition, rather than reusing estimates from model training.

Since both model training and model evaluation equally require es-
timates of G and R, we divided the data 50:50 into training and val-
idation partitions in each simulation, thus using 404 lines to train the
prediction models and 403 lines to evaluate the prediction accuracy.

Theparametric estimatesof prediction accuracy for theCV2method
were less biased than the corðûð3Þn1 ; yn1Þ, the non-parametric estimates
using yn1 as a predictand (Figure 4A, compare to Figure 2). This led to
more consistent model selections between the CV2 and single-trait
methods (Figure 4B). However, the parametric approach still under-
estimated the accuracy of the CV2 method when the genetic and
residual correlations were in opposite directions, leading to model
selection accuracies ,50%. This negative bias was due to poor esti-
mation of G and R for the selection indices, given the limited sample
sizes remaining after the data were partitioned.

Semi-parametric estimate of accuracy: In principle, we can correct
for the bias in the non-parametric accuracy estimate (corðûð3Þn1 ; yn1Þ)
from the CV2-style method by calculating an adjustment factor based
on the theoretical bias relative to the true accuracy (corðûð3Þn1 ; un1Þ).
This is similar to the semi-parametric accuracy estimates presented
by (Legarra and Reverter 2018), and the “correction” of accuracy esti-
mates by 1=

ffiffiffiffiffi
h2

p
used above to account for the difference in variance

between yn1 and un1. As we derive in the Appendix, the difference
between the true correlation from a CV2-style methods and its CV2
cross-validation estimate when a single secondary trait is used is:

ĝ12r21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
ûð3Þn1

	
var
�
yn1
�r tr
�
SðK21ÞnnV̂

21
c Knn

�
n2 1

: (8)

withVc defined above and S ¼ I2 11⊺
n . The bias is a function of the the

correlation among traits through the product ĝ12r21 (as the second
term does not involve these parameters, and inmost cases is� 1), and
is large and positive (i.e., accuracy is overestimated) when ĝ12 and
r12 are large and in the same direction, and large and negative
(i.e., accuracy is underestimated) when these covariances are in
opposite directions. Given this result, we can correct corðûð3Þn1 ; yn1Þ by
subtracting 8 from the estimated correlation, again corrected by
1=

ffiffiffiffiffi
h2

p
(Figure 5).

Figure 1 True prediction accuracy of single-trait
and multi-trait prediction methods in simulated
data. 500 simulations were run for each heritability
of the secondary trait (h22 ¼ f0:2;0:6g), and each
combination of genetic and non-genetic corre-
lation between the two traits (rg ¼ f0; 0:3;0:6g;
rR ¼ f20:6; 20:4; 20:2;0;0:2;0;4; 0:6g), all with
h21 ¼ 0:2. For each simulation, we used 90% of the
individuals as training to fit linear mixed models
(either single or multi-trait), predicted the genetic
values of the remaining validation individuals, and
then measured the Pearson’s correlation between
the predicted (ûn1) and true (un1) genetic values. In
the CV1 method, we used only information on the
training individuals to calculate ûn1. In the CV2 method,
we used the training individuals to calculate ûo and
combined this with the observed phenotypes for
the secondary trait on the validation individuals
(yn2). Curves show the average correlation for each
method across the 500 simulations. Ribbons show
61:96· SE over the 500 simulations.
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Clearly, the quality of this correction will depend on the accuracy of
ĝ12 and r̂12 as estimates of g12 and r12. In Figure 5A, we show that the
corrected correlation estimate has greatly reduced bias, particularly the
dependence of the bias on the non-genetic covariance between the traits
r12. However the correction is not perfect. Corrected accuracy estimates
tend to overestimate the true accuracy. This over-estimation is caused
by error in Ĝ and R̂ as estimates of the true covariances: The correction
factor is nearly perfect when the true covariance matrices are used in
place of their estimates (Figure S2).

Using the semi-parametric accuracy estimates, we aremore success-
ful at selecting the best model over the range of genetic architectures
(Figure 5B). The frequency of selecting the correct model rarely drops
below 50% and is relatively constant with respect to the residual
correlation between traits.

CV2� cross-validation strategy: Since the biased estimate of predic-
tion accuracy for CV2-style methods is due to non-genetic correlations
between yn2 used for prediction and the predictand yn1, an alternative
strategy, which we call CV2�, is to use phenotypic information on close
relatives of the testing individuals (yx1) to validate the model
predictions in place of their own focal trait phenotypes (yn1).
These “surrogate” validation individuals must also be excluded from
the model training and raised so that they do not share the same non-
genetic deviations as the testing individuals: corðex1; en1Þ ¼ 0. There-
fore, ûx1 will not be artificially pushed toward or away from ux1
(measured on relatives) by yn2 (measured on testing individuals),
preventing this source of bias in the estimated accuracy.

We implemented the CV2� cross-validation strategy in two ways,
simulating two different breeding schemes.

First, we considered the situation common in plant breeding where
inbred lines (i.e., clones) are tested, and each line is grown in several
plots in a field Bernardo (2002). Here, we can use one set of clones for
prediction (yn2), and the other set of clones as trait-1 surrogates (yx1).
Since they are clones, ux1 ¼ un1 and yy2 is just as good for predicting
ux1 as yx2. Generally in this type of experiment, replicate plots of
each line will be combined prior to analysis into a single line mean (or
BLUP). But since we require yn2 and yx1 to be recorded from separate

individuals, each value will have 2 · the residual variance because it is
based on 1=2 as much data as the line means used for model training.
Therefore, in our simuulations we drew two independent residual
values for each line in the validation partition, each with a variance
of 2R. For these simulations, we used a 90:10 training:validation
split.

Second, we considered the situation more common in animal
breeding where clones are not available. In this case, the best option
for CV2� would be to select pairs of closely related individuals to
include in the training set; we use the first individual of the pair
as yn2 and the second as yx1. To implement this strategy, we again
started with a validation partition of 10% of the lines. Then for each

Figure 3 Impact of using phenotypic data to select between single-
trait and multi-trait prediction methods. For each of the 500 simulations
per genetic architecture described in Figure 1, we compared the es-
timated accuracy of a multi-trait prediction to the single-trait predic-
tion. We then calculated the fraction of times that the selected model
had higher average true accuracy in that setting (as shown in Figure 1).

Figure 2 Estimated prediction accuracies based on candidate predictands. For the same set of simulations described in Figure 1, we estimated
the prediction accuracies of the three methods using two different candidate predictands: (A) The observed phenotypic value yn1 for each training

individual (with the correlation corrected by 1=
ffiffiffiffiffi
h21

q
), or (B) An estimate of the genetic value of each training individual based on BLUPs calculated

using the complete phenotype data (~un1). Solid lines in each panel show the average estimated accuracy for each method across the
500 simulations. Ribbons show 61:96· SE over the 500 simulations. Dotted lines show the average true accuracy from Figure 1.
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line, we selected the most closely related remaining line (arg maxjKij

for validation line i) and held this additional set of 10% of the lines
as yx1. This left a training partition with only 80% of the lines. The
average genetic relatedness of validation partition pairs in these
simulations was 0.38.

Figure 6A shows that for the first setting with split clones, estimates
of prediction accuracy for CV2-style predictions by CV2� are vastly
more accurate than the naive estimates based on yn1, but they are
slightly downwardly biased because of the increased residual variance
of yn1 and yx2. Model selection works fairly well across all settings when
clones are used (Figure 6B, blue lines), although with slightly lower
success rates than for the semi-parametric method. However,
when we implementing the second approach with nearest relatives
(not clones), model selection was rarely successful - we consistently
chose the wrong model across most simulation settings unless the
genetic and residual correlations were opposing. This is because the
validation pairs were too distantly related to provide any additional
information on genetic merit relative to individuals in the training
partition. Interestingly, this method is relatively successful in the
situations where the parametric method fails (see Figure 4B), and
so may be complimentary.

DISCUSSION
Our study highlights a potential pitfall in using cross-validation to
estimate the accuracy of multi-trait genomic prediction methods.
When secondary traits are used to aid in the prediction of focal
traits and these secondary traits are measured on the individuals to
be tested, cross-validation evaluated against phenotypic observations
can be severely biased and result in poormodel choices.Unfortunately,
we rarely know the true genetic value of any individual and therefore
can only evaluate our models with phenotypic data (since multi-
trait-derived estimated genetic values are even more severely biased
as we demonstrated above (Figure 2B)). We cannot find earlier
discussions of this problem in the literature. However a growing
number of studies aim to use cheap or early-life traits to improve
predictions of genetic worth for individuals in later-life traits
(ex. Pszczola et al. 2013; Rutkoski et al. 2016; Fernandes et al.
2017; Lado et al. 2018). Therefore the issue is becoming more
important.

The problematic bias in the cross-validation-based accuracy esti-
mates is caused by non-genetic correlations between the predictors that
we want to use (i.e., the secondary traits) and our best predictand (the
phenotypic value of the trait in the testing individuals) – non-genetic
correlations between two traits measured on the same individual are
expected. However, in some cases this correlation is zero by construc-
tion, and standard cross-validation approaches can be valid. For exam-
ple, in the original description of the CV2 cross-validation method by
(Burgueño et al. 2012), each trait was measured in a different envi-
ronment. In this case, the traits were measured on different individ-
uals and therefore did not share any non-genetic correlation. Also,
CV1-style methods do not suffer from this problem because pheno-
typic information on the secondary traits in the testing individuals
is not used for prediction. Similarly, this bias does not occur
when the target of prediction is the phenotypic value itself (rather
than the individual’s genetic value). For example, in medical ge-
netics the aim is to predict whether or not a person will get a
disease or not, not her genetic propensity to get a disease had
she been raised in a different environment (ex Spiliopoulou
et al. 2015; Dahl et al. 2016).

We note that the common strategy of two-step genome selection:
using single-trait methods to calculate estimated genetic values for each
line:trait and then using these estimated genetic values as training (and
validation) data, does not get around the problem identified here.
Using estimated genetic values instead of phenotypic values will
tend to increase the genetic repeatability of the training and vali-
dation values, and therefore increase the overall prediction accu-
racy of all methods. But these estimated genetic values will still
be biased by the non-genetic variation, and the biases across traits
will still be correlated by the non-genetic correlations. Therefore
the same issue will arise.

Also, while we have used a GBLUP-like genomic predictionmethod
for the analyses presented here, the same result will hold for any
multi-trait prediction method that aims to use information from yn2
when there are non-genetic correlations with yn1, i.e., any method
that is evaluated with the CV2 cross-validation method on multiple
traits measured on the same individual (Calus and Veerkamp 2011;
Jia and Jannink 2012; Fernandes et al. 2017). This includes multi-trait
versions of the Bayes Alphabet methods (Calus and Veerkamp 2011;

Figure 4 Parametric accuracy estimates. Estimated prediction accuracies and model selection accuracies for CV2-style methods using the
parametric method. (A) Solid curves: estimates of prediction accuracy. Dashed curves: true prediction accuracy based on un1. Dotted curves:
estimated prediction accuracy using yn1 from Figure 2A. Ribbons show 61:96· SE over the 500 simulations. (B) Solid curves: Fraction of the
500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values was correctly selected. Dotted
curve: model selection based on the naive prediction accuracy.
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Cheng et al. 2018), or neural network or Deep Learning methods
(Montesinos-López et al. 2018).

We presented three partial solutions to this problem, spanning from
fully parametric to fully non-parametric.

The parametric solution relies on fitting a new multi-trait mixed
model to the predicted values and the predictand, with the accuracy
estimated as the genetic correlation scaled by the heritability of the
prediction. This solution is always available as long as the individuals
in the validation partition have non-zero genomic relatedness and the
full dataset is large enough to estimate genetic correlations in both
training and validation partitions. However it generally worked poorly
in our simulations because G and R were not estimated accurately.
It may work better with very large datasets. Also, because this para-
metric approach relies on the same assumptions about the data (i.e.,
multivariate normality) as the prediction model, it loses some of

the guarantees of reliability that completely non-parametric cross-
validation methods can claim.

The semi-parametric solution aims to correct the non-parametric
correlation estimate for the bias caused by the non-null residual
correlation among traits. This correction factor is only needed for
CV2-style multi-trait prediction approaches, and is similar to the
approach of (Legarra and Reverter 2018) for single-trait models. We
show that this correction factor can work well, particularly if the
covariances among traits are well estimated. We only derived this
correction method for prediction methods based on linear mixed
effect models with a single known genetic covariance structure (i.e.,
GBLUP and RKHS-style methods with fixed kernels), although the

approximation ĝ12 r̂12ffiffi
ð

p
varðûÞvarðuÞ will probably be approximately correct

for other methods. However, when covariances are poorly estimated,
the correction factor can still lead to biased estimates of model

Figure 6 Non-parametric CV� accuracy estimates. Estimated prediction accuracies and model selection accuracies based on the phenotypic
values of close relatives. (A) Solid curves: Estimated prediction accuracies of the CV2-style and Single-trait methods evaluated against yx1 using
clones. Dashed curves: True prediction accuracies of each method. Ribbons show 61:96· SE over the 500 simulations. (B) Solid curves: Fraction
of the 500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values was correctly selected
based on the phenotypes of relatives of the testing individuals. Dotted curve: Fraction of correct models selected based on the naive estimator.

Figure 5 Semi-parametric accuracy estimates. Estimated prediction accuracies and model selection accuracies for CV2-style methods after semi-
parametric correction. (A) Solid curves: corrected estimates of prediction accuracy. Dashed curves: uncorrected estimates of prediction accuracy
based on yn1 (mirroring Figure 3). Dotted curves: true prediction accuracy. Ribbons show 61:96· SE over the 500 simulations. (B) Solid curves:
Fraction of the 500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values was correctly
selected. Dotted curve: model selection based on the naive un-corrected prediction accuracy.
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accuracy. We are currently investigating whether Bayesian methods
that sample over this uncertainty can be useful, and will implement
this method in JWAS (Cheng et al. 2018). This method is semi-para-
metric, so also relies on distributional assumptions about the data and
may fail when these assumptions are not met.

As a third alternative, we proposed the CV2� cross-validation
method, a fully non-parametric approach for assessing CV2-style
multi-trait prediction accuracy. CV2� uses phenotypic values of the
focal trait from relatives of the testing individuals in place of the phe-
notypic values of that trait from the testing individuals themselves.
If the close relatives are raised independently, they will not share
non-genetic variation, removing the source of bias in the cross-valida-
tion estimate (Figure 6A). The CV2�methodworks best when clones of
the testing individuals are available. With clones, secondary trait phe-
notypes of the testing individuals can be used directly to predict focal
trait genetic values of their clones because the genetic values are iden-
tical. Replicates of inbred lines are frequently used in plant breeding
trials (Bernardo 2002). In this case, all replicates should be held-out as
a group from the training data. Then the replicates can be partitioned
again into two sets; secondary trait phenotypes from one set can be
incorporated into the genetic value predictions for the lines, and
these predictions evaluated against the phenotypic values of the
other set. To compare this estimate of CV2-style prediction accu-
racy to the prediction accuracy for a single-trait method, the single-
trait method’s predictions should be compared against the same set
of replicates of each line (i.e., not a joint average over all replicates of
the line as would be typical for single-trait cross-validation). How-
ever, because of the separation of the replicates, each replicate will
have higher residual variance, which reduces the accuracy of this
method. Clones are less common outside of plant breeding, so more
distant relatives need to be used instead. In this case, the estimated
prediction accuracies of CV2-style methods will be downwardly bi-
ased. In our simulations, despite relatively close relatives for each
validation line being available, this approach was not successful.

In our simulations, the semi-parametric approach was the most
reliable, andthe fullyparametric approachthe least reliable.However the
fully parametric approach is always possible to implement while our
semi-parametric and non-parametric approaches may not be possible
depending on the prediction model used and the structure of the
experimental design.

CONCLUSIONS
We expect that multi-trait methods for genomic prediction carry great
promise to accelerate both plant and animal breeding. However there is
a need to design better methods to evaluate and train the prediction
methods to ensure that models can be accurately compared. We have
presented and compared three contrasting methods to evaluating multi-
traitmethods. Eachof thesemethods is preferred tonaive cross-validation
when secondary traits of the target individuals are used to predict their
focal traits. However, the methods can give contrasting answers for
different datasets, so careful consideration ofwhich evaluationmethod
to use is critical when choosing among prediction methods.

ACKNOWLEDGMENTS
We would like to thank Erin Calfee and Graham Coop for suggesting
the CV2� method, Gustavo de los Campos for pointing us toward
the parametric approach, and helpful comments from two anon-
ymous reviewers. HC’s work is support by US Department of
Agriculture, Agriculture and Food Research Initiative National
Institute of Food and Agriculture Competitive Grant No. 2018-67015-
27957 DER was supported by the United States Department of

Agriculture (USDA) National Institute of Food and Agriculture
(NIFA), Hatch project 1010469.

LITERATURE CITED
Amer, P. R., and G. Banos, 2010 Implications of avoiding overlap between

training and testing data sets when evaluating genomic predictions of
genetic merit. J. Dairy Sci. 93: 3320–3330. https://doi.org/10.3168/
jds.2009-2845

Bernardo, R., 2002 Breeding for Quantitative Traits in Plants, Stemma
Press, Woodbury, MN.

Burgueño, J., G. de Los Campos, K. Weigel, and J. Crossa, 2012 Genomic
Prediction of Breeding Values when Modeling Genotype · Environment
Interaction using Pedigree and Dense Molecular Markers. Crop Sci.
52: 707. https://doi.org/10.2135/cropsci2011.06.0299

Calus, M. P., and R. F. Veerkamp, 2011 Accuracy of multi-trait genomic
selection using different methods. Genet. Sel. Evol. 43: 26. https://doi.org/
10.1186/1297-9686-43-26

Cheng, H., R. Fernando, and D. Garrick, 2018 Jwas: Julia implementation
of whole-genome analysis software. In Proceedings of the World Congress
on Genetics Applied to Livestock Production, volume 11.

Crossa, J., P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín
et al., 2017 Genomic Selection in Plant Breeding: Methods, Models, and
Perspectives. Trends Plant Sci. 22: 961–975. https://doi.org/10.1016/
j.tplants.2017.08.011

Daetwyler, H. D., M. P. L. Calus, R. Pong-Wong, G. de Los Campos, and
J. M. Hickey, 2013 Genomic Prediction in Animals and Plants:
Simulation of Data, Validation, Reporting, and Benchmarking. Genetics
193: 347–365. https://doi.org/10.1534/genetics.112.147983

Dahl, A., V. Iotchkova, A. Baud, Å. Johansson, U. Gyllensten et al., 2016 A
multiple-phenotype imputation method for genetic studies. Nat. Genet.
48: 466–472. https://doi.org/10.1038/ng.3513

de Los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and
M. P. L. Calus, 2013 Whole-Genome Regression and Prediction
Methods Applied to Plant and Animal Breeding. Genetics 193: 327–345.
https://doi.org/10.1534/genetics.112.143313

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantitative
Genetics, Ed. 4. Pearson, London, UK.

Fernandes, S. B., K. O. G. Dias, D. F. Ferreira, and P. J. Brown,
2017 Efficiency of multi-trait, indirect, and trait-assisted genomic
selection for improvement of biomass sorghum. TAG Theoretical and
applied genetics Theoretische und angewandte Genetik 131: 747–755.

Gianola, D. and C. C. Schon, 2016 Cross-Validation Without Doing
Cross-Validation in Genome-Enabled Prediction. G3: Genes | Genomes |
Genetics 6: 3107–3128.

Hastie, T., R. Tibshirani, and J. Friedman, 2009 The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Ed. 2. Springer,
New York, NY. https://doi.org/10.1007/978-0-387-84858-7

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard,
2009 Invited review: Genomic selection in dairy cattle: Progress and
challenges. J. Dairy Sci. 92: 433–443. https://doi.org/10.3168/
jds.2008-1646

Heslot, N., H.-P. Yang, M. E. Sorrells, and J.-L. Jannink, 2012 Genomic
Selection in Plant Breeding: A Comparison of Models. Crop Sci.
52: 146–160. https://doi.org/10.2135/cropsci2011.06.0297

Hothorn, T., F. Leisch, A. Zeileis, and K. Hornik, 2005 The design and
analysis of benchmark experiments. J. Comput. Graph. Stat. 14: 675–699.
https://doi.org/10.1198/106186005X59630

Jia, Y., and J.-L. Jannink, 2012 Multiple-Trait Genomic Selection Methods
Increase Genetic Value Prediction Accuracy. Genetics 192: 1513–1522.
https://doi.org/10.1534/genetics.112.144246

Kaufman, S., S. Rosset, C. Perlich, and O. Stitelman, 2012 Leakage in
data mining: Formulation, detection, and avoidance. ACM Trans. Knowl.
Discov. Data 6: 1–21. https://doi.org/10.1145/2382577.2382579

Lado, B., D. Vázquez, M. Quincke, P. Silva, I. Aguilar, et al., 2018 Resource
allocation optimization with multi-trait genomic prediction for bread
wheat (Triticum aestivum L.) baking quality. Theoretical and Applied
Genetics 131: 2719–2731. https://doi.org/10.1007/s00122-018-3186-3

Volume 9 November 2019 | Multi-trait Cross Validation | 3735

https://doi.org/10.3168/jds.2009-2845
https://doi.org/10.3168/jds.2009-2845
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1186/1297-9686-43-26
https://doi.org/10.1186/1297-9686-43-26
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1038/ng.3513
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.2135/cropsci2011.06.0297
https://doi.org/10.1198/106186005X59630
https://doi.org/10.1534/genetics.112.144246
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1007/s00122-018-3186-3


Legarra, A., and A. Reverter, 2018 Semi-parametric estimates of population
accuracy and bias of predictions of breeding values and future phenotypes
using the LR method. Genet. Sel. Evol. 50: 53. https://doi.org/10.1186/
s12711-018-0426-6

Lopez-Cruz, M., J. Crossa, D. Bonnett, S. Dreisigacker, J. Poland, et al.,
2015 Increased Prediction Accuracy in Wheat Breeding Trials Using
a Marker · Environment Interaction Genomic Selection Model.
G3: Genes | Genomes | Genetics 5: 569–582.

Lopez-Cruz, M., E. Olson, G. Rovere, J. Crossa, S. Dreisigacker et al.,
2019 Genetic image-processing using regularized selection indices.
bioRxiv. https://doi.org/doi: 10.1101/625251

Meuwissen, T. H., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total
genetic value using genome-wide dense marker maps. Genetics
157: 1819–1829.

Montesinos-López, O. A., A. Montesinos-López, J. Crossa, D. Gianola,
C. M. Hernández-Suárez, et al., 2018 Multi-trait, Multi-environment
Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits.
G3: Genes | Genomes | Genetics 8: 3829–3840. https://doi.org/10.1534/
g3.118.200728

Pszczola, M., R. F. Veerkamp, Y. de Haas, E. Wall, T. Strabel, et al.,
2013 Effect of predictor traits on accuracy of genomic breeding values
for feed intake based on a limited cow reference population. Animal
7: 1759–1768.

Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L. G. Pérez et al.,
2016 Canopy temperature and vegetation indices from high-throughput
phenotyping improve accuracy of pedigree and genomic selection for
grain yield in wheat. G3: Genes, Genomes. Genetics 6: 2799–2808.

Spiliopoulou, A., R. Nagy, M. L. Bermingham, J. E. Huffman, C. Hayward
et al., 2015 Genomic prediction of complex human traits: relatedness,
trait architecture and predictive meta-models. Hum. Mol. Genet.
24: 4167–4182. https://doi.org/10.1093/hmg/ddv145

Thompson, R., and K. Meyer, 1986 A review of theoretical aspects
in the estimation of breeding values for multi-trait selection.
Livest. Prod. Sci. 15: 299–313. https://doi.org/10.1016/
0301-6226(86)90071-0

Utz, H. F., A. E. Melchinger, and C. C. Schön, 2000 Bias and Sampling
Error of the Estimated Proportion of Genotypic Variance Explained by
Quantitative Trait Loci Determined From Experimental Data in Maize
Using Cross Validation and Validation With Independent Samples.
Genetics 154: 1839–1849.

Ziyatdinov, A., M. Vazquez-Santiago, H. Brunel, A. Martinez-Perez,
H. Aschard et al., 2018 lme4qtl: linear mixed models with flexible
covariance structure for genetic studies of related individuals. BMC
Bioinformatics 19: 68. https://doi.org/10.1186/s12859-018-2057-x

Communicating editor: G. de los Campos

3736 | D. Runcie and H. Cheng

https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/doi: 10.1101/625251
https://doi.org/10.1534/g3.118.200728
https://doi.org/10.1534/g3.118.200728
https://doi.org/10.1093/hmg/ddv145
https://doi.org/10.1016/0301-6226(86)90071-0
https://doi.org/10.1016/0301-6226(86)90071-0
https://doi.org/10.1186/s12859-018-2057-x


APPENDIX

Here, we derive the genomic predictions ûn1 given y for the three prediction models that we use in the main text, and then evaluate the expected
covariances between these predictions and the predictands un1 and yn1. We derive these relations for the more general situation with p$ 1
“secondary” traits and a single “focal” trait.

We start with a phenotypic data matrix Y with n individuals and pþ 1 traits, where the first trait (first column of Y) is the “focal” trait, and the
other p traits are “secondary” traits. We first divide Y into a training partition (“old” individuals) and a testing partition (“new” individuals), and

arrange them with the testing partition first, so we can partition Y ¼
�
Yn

Yo

�
¼
� ½ yn1 Yn2 �
½ yo1 Yo2 �

�
. We then work with stacked versions of these

phenotype matrices: y ¼ vecðYÞ; yn ¼ vecðYnÞ; yo ¼ vecðYoÞ. Our genetic model for y is:

y ¼ Xbþ uþ e

b ¼ ½b1;b2�⊺

u � Nð0;G5KÞ

e � Nð0;R5InÞ

where G and R are genetic and phenotypic covariance matrices for the pþ 1 traits, and K is the n · n genomic relationship matrix among the
lines. For convenience below, we partition the following matrices as follows: We partition the trait vectors for the training individuals and
covariance matrices between the “focal” (index 1) and “secondary traits” (index 2):

yo ¼
�
yo1
yo2

�
;   uo ¼

�
uo1
uo2

�
;   eo ¼

�
eo1
eo2

�
;  Xob ¼

�
Xo1b1
Xo2b2

�

G ¼
�
g11 g12
g21 G22

�
¼
�
g1�
G2�

�
¼ ½ g�1 G�2 �

R ¼
�
r11 r12
r21 R22

�
¼
�
r1�
R2�

�
¼ ½ r�1 R�2 �;

where scalars arenormal text, vectors are bold-face lower case letters, andmatrices are bold-face capital letters. Partitions for the testing individuals
are similar. We also partition the genomic relationship matrix and its inverse between the training and testing individuals:

K ¼
�
Knn Kno

Kon Koo

�
;   K21 ¼

" �
K21�

nn ðK21Þno�
K21�

on ðK21Þoo

#

DERIVATION OF GENOMIC PREDICTIONS

Single trait predictions
For the single-trait prediction, we begin by estimating ĝ11, r̂11 and b̂1 by REML using only yo1. The joint distribution of un1 and yo1 is:�

un1
yo1

�
� N

 �
0

Xo1b1

�
;

�
g11Knn g11Kno

g11Kon g11Koo þ r11I

�!
:

Let: Vo1 ¼ g11Koo þ r11I. Therefore E½un1
��yo1� ¼ g11KnoV21

o1 ðyo1 2Xo1b1Þ, so our prediction is:

ûð1Þn1 ¼ ĝ11KnoV̂
21
o1

�
yo1 2Xo1b̂1

�
: (9)

To simplify, note that the joint distribution of uo1 and yo1 in the training data are:�
uo1
yo1

�
� N

 �
0

Xo1b1

�
;

�
g11Koo g11Koo

g11Koo g11Koo þ r11I

�!

Therefore, ûo1
��yo1 ¼ ĝ11KoobV21

o1 ðyo1 2Xo1b̂1Þ. Rearranging and plugging this in above simplifies to: ûð1Þn1 ¼ KnoK21
oo ûo1.
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CV1-style multi-trait predictions
For CV1-style multi-trait prediction, we begin by estimating Ĝ, R̂ and b̂ by REML using yo. The joint distribution of un1 and yo is:�

un1
yo

�
� N

 �
0

Xob

�
;

�
g11Knn g1�5Kno

g�15Kon G5Koo þ R5I

�!

Let Vo ¼ G5Koo þ R5I. Therefore, E½un1
��yo� ¼ ðg1�5KnoÞV21

o ðyo2XobÞ, so our prediction is:

ûð2Þn1 ¼ �ĝ1�5Kno
�
V21
o

�
yo2Xob̂

�
: (10)

As above, to simplify this expression, we form the joint distribution of uo and yo in the training data as:�
uo
yo

�
� N

 �
0

Xob

�
;

�
G5Koo G5Koo

G5Koo G5Koo þ R5I

�!

Therefore, ûo1
��yo ¼ ðbG5KooÞbV21

o ðyo 2Xob̂Þ. Rearranging and plugging this in above simplifies to: ûð2Þn1 ¼ KnoK21
oo ûo1.

CV2-style multi-trait predictions
For ourCV2-stylemulti-trait prediction,we take a two-stepapproach.Wefirst estimate ûo from the training individuals and then supplement this

with yn2 from the testing individuals. The joint distribution of un1, yn2 and uo is:�
un1
yn2

�
uo

24 35 � N

�
0

X2b2

�
0

24 35; G5Knn þ
�
0 0
0 R22

�
5Inn G5Kno

G5Kon G5Koo

24 350@ 1A
Conditional on a known value of uo from the training individuals, the distribution of

�
un1
yn2

�
would be:�

un1
yn2

�
juo � N

�
KnoK

21
oo uo1

X2b2 þ KnoK
21
oo uo2

�
; ðG5KnnÞ þ

�
0 0
0 R22

�
5Inn 2


 ðG5KnoÞ
�
G215K21

oo

�ðG5KonÞ
�� 


;

which simplifies to: �
un1
yn2

�
juo � N

 �
KnoK

21
oo uo1

X2b2 þ KnoK
21
oo uo2

�
;

"
g11
�
K21�21

nn g125ðK21Þ21
nn

g215
�
K21�21

nn G225ðK21Þ21
nn þ R225Inn

#!
:

LetVc ¼ G225ðK21Þ21
nn þ R225Inn. Now, conditioning on observed values of both uo from the training data and yn2 from the testing data, the

expectation of un1 would be:

E


un1
��yn2; uo� ¼ KnoK

21
oo uo1 þ

�
g125

�
K21�21

nn

	
V21
c

�
yn2 2X2b2 2KnoK

21
oo uo2

�
:

Using this, we form our prediction as:

ûð3Þn1 ¼ KnoK
21
oo ûo1 þ

�
ĝ125

�
K21�21

nn

	bV21
c

�
yn2 2X2b̂2 2KnoK

21
oo ûo2

�
; (11)

where ûo1 and ûo2 are extracted from the calculation of ûo for the CV1-style prediction. Plugging in the solutions for these values expands to:

ûð3Þn1 ¼ �ĝ1�5Kno
�bV21

o

�
yo 2Xob̂

�þ �ĝ125�K21�21
nn

	bV21
c

�
yn2 2X2b̂2 2 ðĜ2�5KnoÞbV21

o

�
yo2Xob̂

��
:

Expectations of prediction accuracy
Now,we evaluate the expected correlation between a randomsampleof pairs of elements fromour three candidatepredictions and the predictand

yn1. We compare these expected correlations with the expected “true” correlations with un1. Below, let varðxÞ denote the variance of a random
sample from a randomvector x; covðx; yÞ and corðx; yÞ denote the covariance and correlation between a random sample of pairs of elements from x
and y; and Covðx; yÞ denote the covariance matrix between vectors x and y. We use the following results:

corðx; yÞ ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp ¼ 1

n2 1

ðx2mxÞ⊺
�
y2my

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp ¼ 1

n2 1
x⊺Syffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðxÞvarðyÞp
where S ¼ I2 11⊺

n .

E


x⊺Sy

� ¼ trðSCovðx; yÞÞ þ m⊺
xSmy ¼ trðSCovðx; yÞÞ

where trð�Þ is the matrix trace, and mx ¼ 0 and/or my ¼ 0. Therefore, the expected correlation between x and y is approximately:
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E½corðx; yÞ� � 1
n2 1

trðSCovðx; yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½varðxÞ�E½varðyÞ�p :

Our goal with cross-validation is to estimate corðûn1; un1Þ. Since we do not know un1, we approximate the correlation with corðûn1; yn1Þ=
ffiffiffiffiffi
h21

p
.

The factor of
ffiffiffiffiffi
h21

p
corrects the correlation for the larger variance of yn1 relative to un1. Otherwise, any difference between these two correlations

must be due to their numerators: trðSCovðûn1; un1ÞÞ and trðSCovðûn1; yn1ÞÞ. Thus, for each of the three prediction methods we compare these
two numerators to evaluate the accuracy and bias in the approximation.

Single trait predictions
The numerator of the expected correlation between uð1Þn1 and the true genetic values un1 is:

tr
�
SCov

�
ûð1Þn1 ; un1

		
¼ tr

�
SCov

�
ĝ11KnobV21

o1

�
yo1 2Xo1b̂1

�
; un1

��
                                                               ¼ tr

�
ĝ11SKnobV21

o1 Covðuo1 þ eo1; un1Þ
�

                                                                                 ¼ tr
�
ĝ11SKnobV21

o1

�
g11Kon

��
                                                                                   ¼ ĝ11g11tr

�
SKnobV21

o1 Kon
�
:

where we assume that b̂1 ¼ b1 and Covðeo1; un1Þ ¼ 0. The same result for the numerator of the expected correlation between uð1Þn1 and the
observed phenotypic values yn1 is:

tr
�
SCov

�
ûð1Þn1 ; yn1

		
¼ tr

�
SCov

�
ĝ11KnobV21

o1

�
yo1 2Xo1b̂1

�
; yn1

��
                                                                           ¼ tr

�
ĝ11SKnobV21

o1 Covðuo1 þ eo1; un1 þ en1Þ
�

                                                                             ¼ tr
�
ĝ11SKnobV21

o1

�
g11Kon

��
                                                                           ¼ ĝ11g11tr

�
SKnobV21

o1 Kon
�
;

where we additionally assume Covðuo1; en1Þ ¼ 0 and Covðeo1; en1Þ ¼ 0. Therefore, the numerators are the same, and corðûð1Þn1 ; yn1Þ=
ffiffiffî
h

p
2
1 is a

consistent estimator for corðûð1Þn1 ; un1Þ.

CV1-style multi-trait predictions
The numerator of the expected correlation between uð2Þn1 and the true genetic values un1 is:

tr
�
SCov

�
ûð2Þn ; un1

		
¼ tr

�
SCov

��
ĝ1�5Kno

�bV21
o

�
yo2Xob̂

�
; un1

��
                                                                       ¼ tr

�
S
�
ĝ1�5Kno

�bV21
o Covðuo þ eo; un1Þ

�
                                                                               ¼ tr

�
S
�
ĝ1�5Kno

�bV21
o

�
g�15Kon

��
;

again assuming b̂ ¼ b and now also Covðeo; un1Þ ¼ 0. The same result for the numerator of the expected correlation between uð2Þn1 and the
observed phenotypic values yn1 is:

tr
�
SCov

�
ûð2Þn1 ; yn1

		
¼ tr

�
SCov

��
ĝ1�5Koo

�bV21
o

�
yo 2Xob̂

�
; yn1

��
                                                                             ¼ tr

�
S
�
ĝ1�5Koo

�bV21
o Covðuo þ eo; un1 þ en1Þ

�
                                                                                     ¼ tr

�
S
�
ĝ1�5Koo

�bV21
o

�
g215Kon

��
;

where we additionally assume Covðuo; en1Þ ¼ 0 and Covðeo; en1Þ ¼ 0. Therefore, the numerators are the same, and corðûð2Þn1 ; yn1Þ=
ffiffiffî
h

p
2
1 is a

consistent estimator for corðûð2Þn1 ; un1Þ.
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CV2-style multi-trait predictions
The numerator of the expected correlation between uð3Þn1 and the true genetic values un1 is:

tr
�
SCov

�
ûð3Þn1 ; un1

		
¼ trðS½Covððĝ1�5KnoÞbV21

o ðyo 2Xob̂Þ2
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
yo 2Xob̂

�
þ
�
ĝ125ðK21Þ21

nn

	bV21
c

�
yn2 2X2b̂2Þ; un1

�i	
¼ trðS½Covððĝ1�5KnoÞbV21

o

�
yo 2Xob̂

�
; un1

�
2Cov

��
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
yo2Xob̂

�
; un1

	
þ Covððĝ125ðK21Þ21

nn

	bV21
c

�
yn2 2X2b̂2Þ; un1

�i	
¼ tr

�
S½ðĝ1�5Kno

�bV21
o Covðuo þ eo; un1Þ2

�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o Covðuo þ eo; un1Þ

þ
�
ĝ125

�
K21�21

nn

	bV21
c Covðun2 þ en2; un1Þ

i	
¼ tr

�
S½ðĝ1�5Kno

�bV21
o

�
g�15Kon

�
2
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g�15Kon

�
þ
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn

�i	
¼ tr

�
S
�
ĝ1�5Kno

�bV21
o

�
g�15Kon

��
2tr
�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g�15Kon

�	
þ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn

�	
;

again assuming b̂ ¼ b, Covðeo; un1Þ ¼ 0, and Covðen2; un1Þ ¼ 0. From this, we can see the potential benefit of the CV2-style method:

tr
�
SCovðûð3Þn1 ; un1Þ

	
2 tr

�
SCovðûð2Þn1 ; un1Þ

	
¼ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn

�	
2 tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g215Kon

�	
¼ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn 2 ðĜ2�5KnoÞbV21

o

�
g215Kon

��	
;

which is generally (but maybe not necessarily) positive. This means that corðûð3Þn1 ; un1Þ is generally greater than corðûð2Þn1 ; un1Þ.
The same result for the numerator of the expected correlation between uð3Þn1 and the observed phenotypic values yn1 is:

tr
�
SCov

�
ûð3Þn1 ; yn1

		
¼ trðS½Covððĝ1�5KnoÞbV21

o

�
yo 2Xob̂

�
; un1 þ en1Þ2Cov

��
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
yo2Xob̂

�
; un1

þ en1
	
þ Covð

�
ĝ125

�
K21�21

nn ÞbV21
c

�
yn2 2X2b̂2

�
; un1 þ en1

	i	
¼ tr

�
S½ðĝ1�5Kno

�bV21
o Covðuo þ eo; un1 þ en1Þ2

�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o Covðuo þ eo; un1 þ en1Þ

þ
�
ĝ125

�
K21�21

nn

	bV21
c Covðun2 þ en2; un1 þ en1Þ

i	
¼ tr

�
S½ðĝ1�5Kno

�bV21
o

�
g�15Kon

�
2
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g�15Kon

�
þ
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn

�i	þ �ĝ125�K21�21
nn

	bV21
c ðr215IÞ

i	
¼ tr

�
S
�
ĝ1�5Kno

�bV21
o

�
g�15Kon

��
2tr
�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g�15Kon

�	
þ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Knn

�	þ tr
�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðr215InnÞ

	
;

From this, we see that the numerator of the correlation corðûð3Þn1 ; yn1Þ is not equal to that of corðûð3Þn1 ; un1Þ:
tr
�
SCov

�
ûð3Þn1 ; yn1

		
2 tr

�
SCov

�
ûð3Þn1 ; un1

		
¼ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðr215InnÞ

	
:

If p ¼ 1, then ĝ12 and r12 are scalars and this excess covariance is approximately nĝ12r12.
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CV2� approach
In our new CV2� cross-validation approach, we replace yn1 with yx1–the phenotypes of a new set of individuals (x) that are relatives of the testing
partition and were not part of the training partition. Let Kxx be the genetic relationships among these nx individuals, and Kxo be their genetic
relationships with the training partition. The numerator of the expected correlation corðûð3Þn1 ; yx1Þ=

ffiffiffiffiffi
h21

p
is:

tr
�
SCov

�
ûð3Þn1 ; yx1

		
¼ trðS
Covððĝ1�5KnoÞbV21

o ðyo 2Xob̂Þ; ux1 þ ex1Þ2Cov
��

ĝ125
�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
yo 2Xob̂

�
; ux1

þ ex1
	
þ Cov

��
ĝ125

�
K21�21

nn

	bV21
c

�
yn2 2X2b̂2

�
; ux1 þ ex1

	i	
¼ trðS
�ĝ1�5Kno

�bV21
o Covðuo þ eo; ux1 þ ex1ÞÞ2

�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o Covðuo þ eo; ux1 þ ex1Þ

þ
�
ĝ125

�
K21�21

nn

	bV21
c Covðun2 þ en2; ux1 þ ex1Þ

i	
¼ trðS
�ĝ1�5Kno

�bV21
o

�
g215Kox

�
2
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g215Kox

�
þ
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Kxx

�i	
¼ tr

�
S
�
ĝ1�5Kno

�bV21
o

�
g215Kox

��
2tr
�
S
�
ĝ125

�
K21�21

nn

	bV21
c ðĜ2�5KnoÞbV21

o

�
g215Kox

�	
þ tr

�
S
�
ĝ125

�
K21�21

nn

	bV21
c

�
g215Kxx

�	
:

If these new individuals are clones of the original testing set, then Kxx ¼ Knn, Kox ¼ Kon and trðSCovðûð3Þn1 ; yx1ÞÞ ¼ trðSCovðûð3Þn1 ; un1ÞÞ.
However, if clones are not available, then this equality will not hold.

Given these analytical results for the numerator of the expected correlations, we can estimate the correlation itself by calculating the expected
variances of ûn1 and un1 or yn1. We do not go through these calculations as they follow directly from the calculations given above.
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