Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Ethynyl-2,2,6,6-tetramethyl-1,2,5,6tetrahydropyridine N-oxide

Jan W. Bats,* Olga Frolow and Joachim W. Engels

Institut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany Correspondence e-mail: bats@chemie.uni-frankfurt.de

Received 2 February 2009; accepted 9 February 2009

Key indicators: single-crystal X-ray study; T = 167 K; mean σ (C–C) = 0.001 Å; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 27.3.

The six-membered ring of the title compound, C₁₁H₁₆NO, has a distorted envelope conformation. The piperidine N atom deviates by 0.128 (1) Å from the plane through its three neighbouring atoms. In the crystal structure, molecules are connected by intermolecular $C_{ethynyl}{-}H{\cdots}O$ contacts to form chains extending in the $[10\overline{1}]$ direction.

Related literature

For the preparation of the title compound, see: Gannett et al. (2001); Frolow et al. (2007). For the crystal structures of related compounds see: Igonin et al. (1990); Wiley et al. (1991); Shklover et al. (1990).

Experimental

Crystal data $C_{11}H_{16}NO$ $M_r = 178.25$

Monoclinic, $P2_1/c$ a = 6.0996 (9) Å

b = 20.800 (3) Å c = 8.3662 (13) Å $\beta = 97.434 \ (10)^{\circ}$ V = 1052.5 (3) Å³ Z = 4

Data collection

Siemens SMART 1K CCD diffractometer Absorption correction: none 18416 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.112$ S = 1.093580 reflections 131 parameters

3580 independent reflections 3143 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.34$ e Å⁻³ $\Delta \rho_{\rm min} = -0.17~{\rm e}~{\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$	
$C7-H7A\cdots O1^{i}$	0.944 (14)	2.354 (15)	3.2318 (13)	154.6 (13)	
Symmetry code: (i)	r + 1 v z + 1				

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2096).

References

- Frolow, O., Bode, B. E. & Engels, J. W. (2007). Nucleosides Nucleotides Nucleic Acids. 26, 655-659.
- Gannett, P. M., Darian, E., Powell, J. H. & Johnson, E. M. (2001). Synth. Commun. 31, 2137-2141.
- Igonin, V. A., Shklover, V. E., Struchkov, Yu. T., Lazareva, O. L. & Vinogradov, G. A. (1990). Acta Cryst. C46, 776-778.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shklover, V. E., Zamaev, I. A., Struchkov, Y. T., Medvedeva, T. V., Korshak, Y. V., Ovchinnikov, A. A. & Spector, V. N. (1990). Z. Kristallogr. 191, 9-14. Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments
- Inc., Madison, Wisconsin, USA. Wiley, D. W., Calabrese, J. C., Harlow, R. L. & Miller, J. S. (1991). Angew. Chem. Int. Ed. 30, 450-452.

Mo $K\alpha$ radiation

 $0.60 \times 0.50 \times 0.50$ mm

 $\mu = 0.07 \text{ mm}^{-1}$

T = 167 K

supplementary materials

Acta Cryst. (2009). E65, o529 [doi:10.1107/S1600536809004681]

4-Ethynyl-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine N-oxide

J. W. Bats, O. Frolow and J. W. Engels

Comment

For EPR measurements of RNA, DNA or proteins, the occurrence of paramagnetic species is required. The title compound is a nitroxide spin label compound. Its synthesis and application for DNA labeling have been reported by Gannett *et al.* (2001). Frolow *et al.* (2007) reported an improved synthesis of the compound and its coupling to uridine. Here we report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The geometrical parameters in the title compound are very similar to those in the 2,2,6,6-tetramethyl-1-oxyl-3,4-dehydropiperidine fragment of closely related molecules (Igonin *et al.*, 1990; Wiley *et al.*, 1991; Shklover *et al.*, 1990). The six-membered ring has a distorted envelope conformation with atoms N1 and C5 deviating by 0.186 (1) and 0.725 (2) Å, respectively, in the same direction from the mean plane through atoms C1-C4 [planar to within 0.005 (1) Å]. Atom N1 shows a small degree of pyramidalization. The sum of the three valence angles about N1 is 357.6 (1)° and it deviates by 0.128 (1) Å from the plane through the three neighbouring atoms, O1, C1 and C5.

In the crystal structure molecules are connected by intermolecular $C_{ethynyl}$ —H···O contacts to form chains extending in the [1 0 -1] direction (Fig. 2 and Table 1).

Experimental

The synthesis of the title compound has been reported by Frolow *et al.* (2007). Crystals were obtained by sublimation at atmospheric pressure.

Refinement

The H atoms at C2 and C7 were located in difference Fourier maps and freely refined: C-H = 0.973 (13) and 0.944 (15) Å, respectively. The remainder of the H atoms were positioned geometrically and treated as riding: C-H = 0.98 - 0.99 Å with $U_{iso}H = k \times U_{eq}(C)$, where k = 1.2 for (CH and CH₂) and 1.5 for (CH₃).

Figures

Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radiius.

Fig. 2. The crystal packing of the title compound, viewed down the *a* axis. Intermolecular $C_{ethynyl}$ —H···O contacts are shown as dashed lines.

4-Ethynyl-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine N-oxide

Crystal data	
C ₁₁ H ₁₆ NO	$F_{000} = 388$
$M_r = 178.25$	$D_{\rm x} = 1.125 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 212 reflections
a = 6.0996 (9) Å	$\theta = 3-23^{\circ}$
b = 20.800 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 8.3662 (13) Å	T = 167 K
$\beta = 97.434 \ (10)^{\circ}$	Block, yellow
$V = 1052.5 (3) \text{ Å}^3$	$0.6 \times 0.5 \times 0.5$ mm
Z = 4	

Data collection

Siemens SMART 1K CCD diffractometer	3143 reflections with $I > 2\sigma(I)$
Radiation source: normal-focus sealed tube	$R_{\rm int} = 0.039$
Monochromator: graphite	$\theta_{\text{max}} = 32.2^{\circ}$
T = 167 K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -31 \rightarrow 27$
18416 measured reflections	$l = -12 \rightarrow 12$
3580 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.2P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.112$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
3580 reflections	$\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$

131 parameters

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.074 (6) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	-0.00063 (12)	0.39282 (4)	0.01634 (8)	0.03761 (18)
N1	0.15408 (11)	0.38503 (3)	0.13455 (8)	0.02345 (15)
C1	0.31309 (14)	0.33197 (4)	0.11809 (9)	0.02439 (16)
C2	0.48668 (14)	0.32849 (4)	0.26317 (9)	0.02460 (16)
C3	0.48149 (12)	0.36207 (4)	0.39876 (9)	0.02137 (15)
C4	0.29668 (13)	0.40897 (4)	0.41379 (9)	0.02327 (16)
H4A	0.3526	0.4438	0.4887	0.028*
H4B	0.1769	0.3865	0.4607	0.028*
C5	0.20201 (12)	0.43844 (4)	0.25172 (8)	0.02002 (15)
C6	0.64656 (13)	0.35531 (4)	0.53690 (10)	0.02476 (16)
C7	0.77337 (15)	0.35377 (5)	0.65871 (11)	0.03106 (19)
C8	0.42478 (17)	0.34218 (5)	-0.03471 (10)	0.0348 (2)
H8A	0.5173	0.3808	-0.0220	0.052*
H8B	0.3112	0.3474	-0.1280	0.052*
H8C	0.5169	0.3048	-0.0515	0.052*
С9	0.17967 (17)	0.26909 (4)	0.10502 (11)	0.0344 (2)
H9A	0.1071	0.2635	0.2020	0.052*
H9B	0.2793	0.2328	0.0947	0.052*
H9C	0.0675	0.2709	0.0100	0.052*
C10	-0.01285 (14)	0.47358 (5)	0.27003 (10)	0.02967 (18)
H10A	-0.1216	0.4428	0.3008	0.045*
H10B	-0.0704	0.4939	0.1674	0.045*
H10C	0.0155	0.5066	0.3536	0.045*
C11	0.36583 (13)	0.48486 (4)	0.18847 (10)	0.02556 (16)
H11A	0.3027	0.5012	0.0826	0.038*
H11B	0.5043	0.4622	0.1786	0.038*
H11C	0.3953	0.5209	0.2637	0.038*
H2A	0.607 (2)	0.2984 (7)	0.2539 (16)	0.042 (3)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H7A	0.870 (2)	0.3546 (8)	0.750	63 (18)	0.057 (4)*	
Atomic displa	cement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0374 (4)	0.0424 (4)	0.0274 (3)	0.0000 (3)	-0.0174(3)	-0.0025 (3)
N1	0.0240 (3)	0.0261 (3)	0.0183 (3)	-0.0032(2)	-0.0049(2)	-0.0005(2)
C1	0.0298 (4)	0.0241 (4)	0.0186 (3)	-0.0030(3)	0.0005 (3)	-0.0028(3)
C2	0.0266 (4)	0.0241 (4)	0.0223 (3)	0.0018 (3)	0.0000 (3)	-0.0008 (3)
C3	0.0221 (3)	0.0224 (3)	0.0187 (3)	0.0004 (2)	-0.0010(2)	0.0020 (2)
C4	0.0242 (3)	0.0289 (4)	0.0158 (3)	0.0044 (3)	-0.0007(3)	0.0006 (3)
C5	0.0189 (3)	0.0234 (3)	0.0167 (3)	-0.0001 (2)	-0.0017(2)	0.0005 (2)
C6	0.0259 (4)	0.0242 (4)	0.0231 (3)	0.0030 (3)	-0.0008(3)	0.0009 (3)
C7	0.0307 (4)	0.0341 (4)	0.0262 (4)	0.0056 (3)	-0.0049 (3)	0.0002 (3)
C8	0.0428 (5)	0.0408 (5)	0.0219 (4)	-0.0050 (4)	0.0080 (3)	-0.0045 (3)
С9	0.0450 (5)	0.0264 (4)	0.0303 (4)	-0.0095 (3)	-0.0009 (4)	-0.0039 (3)
C10	0.0227 (4)	0.0383 (5)	0.0273 (4)	0.0073 (3)	0.0006 (3)	0.0031 (3)
C11	0.0242 (3)	0.0241 (4)	0.0274 (4)	-0.0034 (3)	-0.0006 (3)	0.0026 (3)
Geometric pa	rameters (Å, °)					
01—N1		1 2858 (9)	С6—	-C7	1 1	975 (12)
N1-C5		1 4854 (10)	C7—	-H7A	0.0	944(15)
N1-C1		1 4874 (11)	C8—	-H8A	0.0	9800
C1-C2		1.5057 (11)	C8-	-H8B	0.9	2800
C1—C9		1.5368 (12)	C8-	-H8C	0.9	2800
C1—C8		1.5391 (12)	C9—	-H9A	0.9	9800
C2—C3		1.3360 (11)	С9—	-H9B	0.9	9800
C2—H2A		0.973 (13)	С9—	-H9C	0.9	9800
C3—C6		1.4381 (10)	C10-	—H10A	0.9	9800
C3—C4		1.5082 (11)	C10-	—H10B	0.9	9800
C4—C5		1.5314 (10)	C10-	—H10C	0.9	9800
C4—H4A		0.9900	C11-	—H11A	0.9	9800
C4—H4B		0.9900	C11-	—H11B	0.9	9800
C5—C10		1.5255 (11)	C11-	—H11C	0.9	9800
C5—C11		1.5322 (11)				
01—N1—C5		118.39 (7)	С7—	-C6—C3	17	4.02 (9)
01—N1—C1		116.41 (6)	С6—	-С7—Н7А	17	7.0 (10)
C5—N1—C1		122.76 (6)	C1—	-C8—H8A	10	9.5
N1—C1—C2		111.10 (6)	C1—	-C8—H8B	10	9.5
N1—C1—C9		107.01 (7)	H8A	—С8—Н8В	10	9.5
C2—C1—C9		109.09 (7)	C1—	-C8—H8C	10	9.5
N1—C1—C8		109.79 (7)	H8A	—С8—Н8С	10	9.5
C2—C1—C8		109.60 (7)	H8B	—С8—Н8С	10	9.5
C9—C1—C8		110.22 (7)	C1—	-С9—Н9А	10	9.5
C3—C2—C1		124.60 (7)	C1—	-С9—Н9В	10	9.5
С3—С2—Н2А		120.3 (8)	H9A	—С9—Н9В	10	9.5
C1—C2—H2A	L	115.1 (8)	C1-	-С9—Н9С	10	9.5

C2—C3—C6	122.69 (7)	Н9А—С9—Н9С	109.5
C2—C3—C4	120.60 (7)	Н9В—С9—Н9С	109.5
C6—C3—C4	116.70 (7)	C5-C10-H10A	109.5
C3—C4—C5	112.67 (6)	C5-C10-H10B	109.5
C3—C4—H4A	109.1	H10A—C10—H10B	109.5
C5—C4—H4A	109.1	C5-C10-H10C	109.5
C3—C4—H4B	109.1	H10A—C10—H10C	109.5
С5—С4—Н4В	109.1	H10B-C10-H10C	109.5
H4A—C4—H4B	107.8	C5-C11-H11A	109.5
N1—C5—C10	109.04 (6)	C5-C11-H11B	109.5
N1—C5—C4	107.72 (6)	H11A—C11—H11B	109.5
C10—C5—C4	109.47 (6)	C5—C11—H11C	109.5
N1—C5—C11	108.95 (6)	H11A—C11—H11C	109.5
C10—C5—C11	109.87 (7)	H11B-C11-H11C	109.5
C4—C5—C11	111.72 (6)		
O1—N1—C1—C2	179.37 (7)	C2—C3—C4—C5	-29.55 (11)
C5—N1—C1—C2	17.41 (10)	C6—C3—C4—C5	151.16 (7)
O1—N1—C1—C9	-61.65 (9)	O1—N1—C5—C10	33.57 (9)
C5—N1—C1—C9	136.40 (7)	C1-N1-C5-C10	-164.82 (7)
O1—N1—C1—C8	57.96 (9)	O1—N1—C5—C4	152.29 (7)
C5—N1—C1—C8	-103.99 (8)	C1—N1—C5—C4	-46.10 (9)
N1—C1—C2—C3	9.05 (11)	O1—N1—C5—C11	-86.35 (8)
C9—C1—C2—C3	-108.68 (9)	C1—N1—C5—C11	75.26 (8)
C8—C1—C2—C3	130.56 (9)	C3—C4—C5—N1	49.52 (8)
C1—C2—C3—C6	177.45 (7)	C3—C4—C5—C10	167.96 (7)
C1—C2—C3—C4	-1.79 (12)	C3—C4—C5—C11	-70.11 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C7—H7A···O1 ⁱ	0.944 (14)	2.354 (15)	3.2318 (13)	154.6 (13)
Symmetry codes: (i) $x+1$, y , $z+1$.				

