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Purpose: To examine the performance of two time–frequency feature extraction
techniques applied to electroretinograms (ERGs) for thepredictionof glaucoma severity.

Methods: ERGs targeting the photopic negative response were obtained in 103 eyes of
55 patients with glaucoma. Features from the ERG recordings were extracted using two
time–frequency extraction techniques based on the discrete wavelet transform (DWT)
and the matching pursuit (MP) decomposition. Amplitude markers of the time-domain
signal were also extracted. Linear and multivariate adaptive regression spline (MARS)
models were fitted using combinations of these features to predict estimated retinal
ganglion cell counts, a measure of glaucoma disease severity derived from standard
automated perimetry and optical coherence tomography imaging.

Results: Predictive models using features from the time–frequency analyses—using
both DWT and MP—combined with amplitude markers outperformed predictive
models using themarkers alonewith linear (P= 0.001) andMARS (P≤ 0.011)models. For
example, the proportions of variance (R2) explained by the MARSmodel using the DWT
and MP features with amplitude markers were 0.53 and 0.63, respectively, compared to
0.34 for the model using the markers alone (P = 0.011 and P = 0.001, respectively).

Conclusions:Novel time–frequency features extracted from the photopic ERG substan-
tially added to the prediction of glaucoma severity compared to using the time-domain
amplitude markers alone.

Translational Relevance: Substantial information about retinal ganglion cell dysfunc-
tion exists in the time–frequency domain of ERGs that could be useful in the manage-
ment of glaucoma.

Introduction

Glaucoma is an optic neuropathy characterized by
the progressive loss of retinal ganglion cells (RGCs),1
which exhibit structural and functional changes prior
to their death by apoptosis.2 Early RGC structural
changes include reduction in the length and number of
dendrites and the area of the dendritic arbor, as seen
frommousemodels of optic nerve injury.3,4 Functional
changes in the RGCs prior to apoptosis can include
an increased firing rate from increased excitability5,6

and a fall in the mean and peak spike rates.7 Detecting
these early functional changes might potentially aid the
prediction of future RGC loss in glaucoma and thus
enhance the clinical management of progression of this
condition, which was estimated to affect 64.3 million
people in the world between the ages of 30 and 80 years
in 2013.8

Electrophysiological recordings from the eye may
be able to detect the earliest changes in RGC function.
In a study on glaucoma suspects, Banitt et al.9 showed
that a 10% change in the pattern electroretinogram
(PERG) amplitude preceded the same change in
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peripapillary retinal nerve fiber layer (RNFL) thick-
ness by 8 years. Liu et al.10 worked in a rat model and
showed that, with chronic intraocular pressure (IOP)
elevation, the positive scotopic threshold response
was reduced by 25% in animals with elevated pressure
without any changes in the optical coherence tomogra-
phy (OCT) parameters and that these changes reversed
with normalization of the IOP. It is therefore plausible
that the electroretinogram (ERG) is a tool that could
be used to capture such early functional abnormali-
ties of the RGCs. The ERG is a time-domain signal
of the electrical activity of the retina in response
to light stimuli. When recorded under light-adapted
conditions with a brief presentation of a red-on-blue
stimulus, a slow negative going wave occurring after
an initial a-wave trough and b-wave peak—termed
the photopic negative response (PhNR)—is typically
observable.11 The PhNR is a response that arises from
the RGCs and has been demonstrated to be reduced in
glaucoma, both in experimental models and in clinical
studies.12–17 It can show improvement in patients with
glaucoma when the IOP is lowered18 and has been
used as a marker of inner retinal function in patients
with glaucoma when treated with nicotinamide.19
The signal between the b-wave peak and the PhNR
trough is frequently interrupted by the i-wave, which
is thought to arise from the cells distal to the RGCs.20
If the i-wave is present, the PhNR can be recorded
as either the negative wave between the b-wave and
i-wave (the PhNR1) or the negative wave following
the i-wave (the PhNR2). We have previously shown
that a combination of key amplitude markers of the
ERG—namely, the a-wave, b-wave, i-wave, and PhNR
(PhNR1 and PhNR2) amplitudes—better predicts
glaucoma severity than the PhNR amplitude alone.21
These findings underscore how a photopic ERG
contains more information about RGC function than
is captured by conventional PhNR measures alone.

The ERG measured from a single differential pair
electrode is a mixture of the underlying processes,
which occur at different times after the stimulus.22 The
underlying mechanisms are complex23 with feedback24
and feedforward pathways,25,26 and there are slow and
fast frequency components from the different sources
of the signal. Time–frequency analysis has the poten-
tial to extract these components from the photopic
ERG to provide further insights into RGC function,
above and beyond what is captured by the amplitude
markers of the ERG. With time–frequency analysis, a
vector of amplitude measurements is transformed into
amatrix of coefficients with axes of time and frequency
so that the magnitude and timing of frequency compo-
nents within the signal can be determined. The wavelet
transform, a form of time–frequency analysis, has been

described as an alternative to short-time Fourier trans-
form.27,28 A wavelet is a small function (little wave) that
acts as a filter and can localize energy within the signal
in time and frequency. This is achieved through multi-
plication of the signal and wavelet after translation and
dilation of the wavelet relative to the signal for time
and frequency resolution, respectively. Wavelets have
been applied to the PERG,29 multifocal ERG,30 and
photopic ERG31 in the assessment of glaucoma.

There are two types of wavelet transforms: contin-
uous wavelet transform (CWT)28 and discrete wavelet
transform (DWT).32

The CWT is obtained by convoluting the wavelet
with the signal for all values of scale (e.g., frequency)
and time lag, creating a continuous scalogram showing
the energy of the signal at each frequency and time
point. However, this creates a highly redundant output
matrix, as both its width and length are now equal to
the number of samples in the original time series vector.
Forte and colleagues33 showed that the Morlet wavelet
could be used to isolate oscillatory potentials in rat
ERGs. Behbahani and colleagues34 used aMexican hat
wavelet to determine the dominant frequencies associ-
ated with the PhNR in patients with central retinal
vein occlusion and found that the dominant frequency
decreased. However, the CWT has not thus far found
clinical utility for glaucoma.

On the other hand, the DWT32,35,36 uses set scales
and time lags at discrete values, where the output is
in the form of a binary tree and the total number
of coefficients is equal to the number of samples in
the input, which necessarily must be of length equal
to a power of two. Specifically, it uses a low-pass
filter (scaling function) and a high-pass filter (wavelet
function), followed by downsampling by two. There are
manymother wavelets available for the DWT. Selection
of the mother wavelet optimizes the resolution in time
and frequency for the temporal and spectral content
of the signal. Various techniques for mother wavelet
selection have been described,37 including minimiz-
ing informational cost. The DWT has been applied
to glaucoma, but previous studies have generally used
a single feature derived from the transform.30,38 A
recent paper explored the use of the DWT in the
photopic ERGand found differences between individu-
als diagnosed with autism spectrum disorder compared
with control subjects.39

A different approach to time–frequency analysis
is the matching pursuit (MP) algorithm.40 The MP
algorithm decomposes a time-domain signal into a
linear combination of subsignals of the same length
termed atoms. The full set of atoms is referred to
as the dictionary. The decomposition output is a set
consisting of a coefficient for each atom in the
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dictionary. The process of generating the dictionary
usually begins with a discrete wavelet family: small
vectors representing digital filters.32 In contrast to the
DWT, the atoms in the MP decomposition are padded
to the length of the signal rather than a much shorter
vector that slides along the signal. The dictionary thus
includes all of the time shifts of a given wavelet as
separate atoms. The algorithm process is known as
“greedy.” It starts by finding the best match to the
signal from the entire dictionary, removes that part
of the signal, and then finds the next best match and
so on. The number of iterations is usually equal to
the length of the dictionary, although a smaller fixed
number can be used, or the algorithm can reach a
stopping criterion. The result of the transformation
is the coefficient for each atom and the index into
the dictionary used. The dimensionality of the trans-
formation may be larger or smaller than the original
signal.

We therefore posed this optimization problem:
Given a continuous outcome measure (the estimated
RGC), can additional features extracted by the DWT
or the MP informing linear or MARS models
yield better performance than time-domain amplitude
features alone? Although the DWT is more straight-
forward for others to replicate with widely avail-
able software, the MP technique may offer better
time localization for low frequencies. Some studies
have compared the two techniques in hyperspec-
tral imaging41 and electroencephalogram analysis,42
although these studies addressed classification rather
than regression problems and the differences were
modest. Both techniques in theory allow the extrac-
tion of multiple features from the underlying processes
and could plausibly better characterize the extent
of retinal dysfunction than time-domain features
alone.

Given the ability of the DWT and MP algorithms
to extract novel time–frequency features from
the photopic ERG, we examined whether these
approaches, when used together with an extended
set of amplitude markers, could be used to better
predict glaucoma severity (or the extent of RGC
loss and dysfunction). We compared the incremental
benefit of each method and the combination of both.
Our aim was not to develop a new clinical tool for
the diagnosis of glaucoma or the classification of its
severity, as clinicians currently have OCT, standard
automated perimetry (SAP), and clinical examination
for that. Rather, the aim of this study was to elucidate
additional information within the ERG that can be
extracted by time–frequency techniques and which
might ultimately be useful in, for example, building a
predictive model of progression.

Methods

This study was an approved study by the Human
Research Ethics Committee of the Royal Victorian Eye
and Ear Hospital, and it was conducted in accordance
with the tenets of the Declaration of Helsinki. All
participants provided written informed consent prior
to any study procedures being undertaken.

Participants

Participants with primary open-angle glaucoma
were recruited from a private ophthalmology practice,
and the diagnosis of glaucoma was based on a
comprehensive clinical assessment by an ophthalmol-
ogist based on characteristic optic nerve head appear-
ance, the presence of glaucomatous visual field defects,
and/or neuroretinal tissue loss onOCT imaging. Partic-
ipants with ocular or systemic diseases that could
affect the optic nerve (such as choroidal neovascu-
lar membrane, extensive macular atrophy, diabetic
retinopathy, multiple sclerosis, or epiretinal membrane)
were excluded. Only individuals over the age of 18
were eligible. Both eyes were included where glaucoma
was bilateral, and only eyes with an acuity of 20/40
(or 0.30 logMAR) or better were included in this
study.

Automated Perimetry

All participants performed SAP testing using
the 24-2 Swedish interactive thresholding algorithm
(SITA) Fast protocol on the Humphrey Field Analyzer
3 (Carl Zeiss Meditec, Jena, Germany), following
correction of the spherical refractive error compo-
nent from subjective refraction. Only visual field results
where fixation losses or false-negative responses were
≤33% and false positive responses were ≤20% were
considered reliable and analyzed in this study.

Optical Coherence Tomography

All participants underwent optic disc-centeredOCT
volume scans performed with the CIRRUS HD-OCT
device (Carl Zeiss Meditec) with dilated pupils. Each
scan consisted of 200 × 200 A-scans and covered an
area of 6 × 6 mm. The global circumpapillary RNFL
thickness scan was calculated from a derived 3.46-mm-
diameter circle scan consisting of 256 A-scans. All
scans were checked for centration and segmentation
accuracy.
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Estimated RGC Counts

For each eye, the measure of estimated RGC
(eRGC) counts, as described by Medeiros and
colleagues,43 was derived to provide an index of
disease severity. This measure was based on empirical
formulas developed by Harwerth and colleagues44
in non-human primates, which related RGC counts
to visual field measurements. In brief, the eRGC is
based on an estimate of the number of RGC somas
in each retinal region sampled on SAP (SAPrgc) and
also an estimate of the number of RGC axons at the
circumpapillary circle on OCT imaging (with correc-
tions for the effects of disease-related remodeling of
the RNFL axonal and non-axonal composition, or
OCTrgc). Medeiros and colleagues43 proposed the use
of a weighted mean of the structural and functional
estimates to reflect the inverse relationship between the
accuracies of clinical SAP and OCT imaging estimates
with disease severity. Using the mean deviation (MD)
values from SAP as a measure of disease severity, the
eRGC count in an eye was thus calculated as

eRGC =
(
1 + MD

30

)
OCTrgc − MD

30
SAPrgc (2)

A recent paper found the range of the eRGC in healthy
eyes without glaucoma to be 1,102,108 ± 72,669.45

ERG Recordings

An Espion E3 system (Diagnosys, Lowell, MA)
was used with a Diagnosys ColorDome light-emitting
diode Ganzfeld stimulator to collect the ERG data.
The recordings were in compliance with the Interna-
tional Society for Clinical Electrophysiology of Vision
(ISCEV) 2018 extended protocol for the photopic
negative response of the electroretinogram.11 Partici-
pants were not dark adapted at any stage of the testing.
They were adapted to ambient light in the testing
suite for at least 10 minutes during pupil dilation.
Both eyes were dilated with 1% tropicamide drops
prior to recording, and active Dawson–Trick–Litzkow
electrodes were used with gold-cup skin electrodes
as the reference and ground electrodes. The ground
electrode was placed at Fz and the reference electrode
at the lateral canthus. Impedances of all electrodes,
including the ground, were checked to ensure that
they were less than 5 k�. The stimulus parameters
were compliant with the protocol and used a blue
background of 10 cd/m2 (peak wavelength = 465 nm)
with a preadaptation timewithin theGanzfeld dome of
2 minutes and presenting red flashes (peak wavelength
= 635 nm) with a 4-ms duration at 1 cd·s/m2. A sample
rate of 4000 Hz was used with 20 ms of pre-stimulus

and 250 ms of post-stimulus recording, yielding a
vector length of 1079 samples. Flashes were presented
at 2 Hz. Voltage-based automatic rejection of traces
with blink or movement artifacts was used17,46 with
signals with an absolute amplitude of 200 μV within
100% of the sweep range rejected. This value replicated
the level used in our laboratory for routine photopic
full-field electroretinogram recordings with this equip-
ment and electrode type. A total of 125 unrejected
sweeps per stimulus were collected. Bandpass filtering
from 0.3 to 100 Hz was performed. This upper bound,
which is lower than the high-frequency cutoff of the
ISCEVprotocol, was chosen as the pilot for this project
used a achromatic stimulus and the standard photopic
ERG protocol of the laboratory.

Preprocessing

After signal averaging of the unrejected traces, the
ensemble averages were trimmed so that the b-wave
peak occurred at the 200th sample and the epoch was
1024 samples long. The alignment process is illustrated
in Figure 1. The alignment was performed because the
region of interest within the time–frequency spectrum
is much later than for analysis of outer retinal function
via traditional electroretinogrammarkers. Aligning the
averages in this way ensures that the largest coefficient
of either the DWT or the MP corresponds in all cases
to the b-wave.

Amplitude Markers

For each ensemble average of ERG traces, ampli-
tude markers were determined as described previ-
ously.21 Briefly, the a-wave trough was determined as
the first negative trough after the stimulus onset, and
the b-wave peak was found as the first peak after the a-
wave. The i-wavewas found as the first peak or inflexion
point after the b-wave. The PhNR1 was the first trough
between the b-wave and the i-wave, or equal to the i-
wave in the case of that being an inflexion point. The
PhNR2 was found as the first trough after the i-wave.

Discrete Wavelet Transform

For each trace, the DWT was performed using
Wavelet Methods for Time-Series Analysis (WMTSA)
version 2.0-3 in R (R Foundation for Statistical
Computing, Vienna, Austria).47 Figure 2 shows
a typical ERG and the DWT performed in this
case with a Daubechies wavelet with 8 vanishing
moments (d8 wavelet), with the heatmap showing
the absolute magnitude of the wavelet coefficients
by decomposition level and position in time.
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Figure 1. Alignment of the traces. Three ERG ensemble averages are illustrated. (A) Original traces plotted against post-stimulus time.
(B) Alignment of the traces so that the b-wave peak occurs at sample 200 of 1024.

Figure 2. DWT of the ERG. (A) Magnitude of the detail coefficients of the DWT (scalogram). (B) ERG as a function of amplitude relative to
time.
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Figure 3. DWT decomposition of the ERG by level. The first panel represents the time-domain signal. Each subsequent panel shows the
detail coefficients plotted on a horizontal axis scaled to the same length as the original time-domain signal. The panel label shows the
center frequency of the wavelet. At the first decomposition level, the length of the signal is reduced by half and so on for each subsequent
decomposition level.

Figure 3 shows each decomposition of the
waveform presented in Figure 1 by the DWT, with
the magnitude retaining the sign information. The
horizontal axis of each subplot has been scaled to
retain the same overall width for comparison.

The list of wavelets examined in this study includes
the Coiflet, Symlet, Daubechies, and Best Localized
wavelets over all available vanishing moments. These
wavelets differ in terms of orthogonality (the extent
to which the coefficients are correlated), symmetry
(which provides linear phase), compact support, and

filter order (an increased filter order of the mother
wavelet increases smoothness).48 Optimal wavelet selec-
tion was performed by minimizing the ratio of energy
to Shannon entropy.49 The energy for each wavelet was
calculated by the sum of all the wavelet coefficients
squared. The Shannon entropy was calculated by the
plug-in estimator50 for all of the coefficients over 20
bins. The plug-in estimator is a technique for estimating
the entropy by using the empirically measured frequen-
cies of the bins to directly estimate the probabilities
used in the calculation. That is, Ĥ = − ∑

k p̂klnp̂k,
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Figure 4. Sample matching pursuit decomposition. (A) The dictionary of atoms used for the decomposition and the coefficients for each,
and (B) the atomsmultiplied by the coefficient. Note that some of the coefficients are negative; the upper right trace of (A) has been inverted
in (B). The decomposition consists of the coefficients for each atom in the dictionary.

where Ĥ is the estimated entropy for the k bins, and
p̂k, the estimated probability for the kth bin, is given
simply by the count for that bin divided by the total
count of all bins.

The ratio of energy to Shannon entropy for each
wavelet over the ensemble was summed to determine
the optimum wavelet family. Bootstrap resampling at
the individual level (to account for between-eye corre-
lations) was performed 1000 times initialized by a
fixed seed to determine the 95% confidence intervals.
The wavelet selection process used the input feature
matrix only and not the outcome measure (in a similar
fashion to principal components analysis), and thus
did not require cross-validation. The optimum wavelet
was used to extract features from the traces for subse-
quent predictive modeling. In this study, the 16 wavelet
coefficients of the sixth decomposition level (center
frequency of 32 Hz) were used for both the wavelet
selection and the subsequent predictive modeling.

Matching Pursuit

The matching pursuit calculations were performed
in MATLAB 2019b (MathWorks, Natick, MA) using
the wavelet toolbox. Figure 4 illustrates a sample MP
decomposition of the waveform presented in Figure
2 with the 12 atoms of highest importance shown.

Figure 4A shows the atoms themselves and Figure
4B shows each atom multiplied by the coefficient.
Summing all of the traces in Figure 4B would return
the original signal.

Dictionaries were created in MATLAB for the
matching pursuit algorithm. A length of 1024 was
specified via the wmpdictionary function, and, for
each wavelet packet family, dictionaries were created
across a range of orders and vanishing moments. Each
dictionary had a size of 1024 × 1024, representing
the length of the signal and the number of atoms
created. Dictionaries were created from the following
wavelet packets: Coiflet, Daubechies, Meyer, Fejer–
Korovkin, and Symlet. Like the DWT, these result-
ing dictionaries had varying properties. For example,
the Feyer–Korovkin wavelet packet generates more
concentrated wavelet packets with less leakage of high-
frequency noise.51 Optimization of the dictionary to
the ensemble was performed over the choice of gener-
ating wavelet, the order, and the number of vanish-
ing moments. For each dictionary, a smaller subdic-
tionary of 25 atoms was selected as the top 25 atoms
used within each full dictionary. The subdictionaries
were compared to one another by decomposing and
reconstructing each signal and finding the total root
mean square error (RMSE) of the residuals over the
whole ensemble. Reconstruction was performed with
the wmpalg function using the orthogonal matching
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pursuits option and setting the number of iterations to
25 (i.e., the size of the smaller dictionary). The function
returns the fit and the residual and the latter was used
to calculate the RMSE for each fit. The best dictio-
nary was considered that with the smallest RMSE.
Bootstrap resampling was performed again in the same
manner as for DWT to determine the 95% confidence
intervals for the RMSE. As for the DWT, the outcome
measure was not used for this step, so cross-validation
was not required. The inputs to theMPmodel therefore
consisted of 25 features corresponding to the coeffi-
cients for the atoms in the dictionary.

Predictive Modeling

To examine the value of time–frequency features
from the ERG for predicting glaucoma severity based
on the eRGC counts, predictive models utilizing the
amplitude markers (a-wave, b-wave, i-wave, PhNR1,
and PhNR2) were used as a base-case scenario for
comparisons, given that we previously demonstrated
that the use of this set of amplitude markers improved
the prediction of glaucoma severity compared with the
PhNR measure alone.21 The performance of the base-
case amplitude marker models was compared with that
of models using these features plus additional DWT
and/or MP features.

Two types of predictive models were fitted for each
of the sets of features extracted from the ERGs. The
models tested were a simple linear model and a multi-
variate adaptive regression spline (MARS) model,52
an interpretable type of machine learning model that,
as we have previously shown, improves the prediction
of glaucoma severity with the ERG.21 The outcome
measure of aMARSmodel is a linear sum of piecewise
linear functions. The Caret53 package (version 6.0-86)
in R was used for model fitting and tuning. For both
linear and MARS models, overfitting was avoided by
using 10-fold cross-validation. For the MARS models,
the degree was set to 1 (that is, with no interaction
terms), and the maximum number of terms was set
to 40. MARS models were fitted using the Earth 5.3.0
package in R.54

For each of the tuned “final models,” the perfor-
mance in predicting the eRGC counts was evalu-
ated by the proportion of variance of the eRGC
counts explained (R2) value. Eachmodel was compared
to the base case of the amplitude-based marker
models. Comparisons were also made between linear
and MARS models. The significance of difference
in the prediction performance was determined by
bootstrapped resampling (n = 1000 resamples with a
fixed seed for the session) at the participant level.

Results

A total of 103 eyes with glaucoma from 55 partici-
pants were included in this study, and their character-
istics are shown in Table 1. On the basis of the MD,
12 eyes (11.6%) had severe glaucoma (MD < −12 dB)
and 16 eyes (15.5%) had moderate glaucoma (−12 dB
< MD < −6 dB).

Discrete Wavelet Transform

Figure 5 shows the energy to entropy ratio for all
the discrete wavelets used in the study. A higher ratio
indicates a more optimum wavelet. With this metric for
this set of traces, the Coiflet 8 was the best wavelet for
the decomposition with an energy-to-entropy ratio of
9534 (SD = 2371) Using the Dunnett test for post hoc
pairwise comparisons,55 this wavelet was significantly
better than all others (P < 0.01).

Matching Pursuit

The results for the matching pursuit dictionary
selection are shown in Figure 6. Optimization was
undertaken across mother wavelet, order of wavelet,
and number of vanishing moments. The best overall
dictionary was created by the symlet of order 6
(wpsym6) with six vanishing moments (VMs) having
an RMSE of 33.5 nV (SD = 16.6 nV) Using the
Dunnett test for post hoc pairwise comparisons, this
dictionary was found to be significantly better (P <

0.01) than all other dictionaries except symlets of order
6 with VM 7 (P = 0.24) and order 8 with VMs 7 and 8
(P = 0.29 and P = 1.0, respectively), as well as Coiflet

Table 1. Characteristics of the Individuals and Eyes
With Glaucoma in the Study

Characteristic

Individuals (n = 55)
Age (y), median (IQR) 75 (66–80)
Gender (female), n (%) 21 (38)
Diabetes (present), n (%) 7 (13)
Hypertension (present), n (%) 35 (64)

Eyes (n = 103), median (IQR)
Refraction sphere (D) 0.00 (−1.00 to 0.50)
Visual acuity (logMAR) 0.0 (−0.1 to 0.1)
IOP (mmHg) 15.0 (12.0 to 16.0)
Mean deviation (dB) −2.5 (−5.9 to −0.5)
RNFL thickness (μm) 73 (63 to 83)
eRGC (1000s) 601 (470 to 753)
IQR, interquartile range.
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Figure 5. Energy-to-entropy ratio for all of the wavelets in descending order. Wavelets are identified by family and length. C, Coiflet; s,
symlet; d, Daubechies; l, best localized. Higher values indicate more optimum discrete wavelets for the decomposition. The error bars repre-
sent the 95% confidence intervals determined by bootstrap resampling.

dictionaries with order 4 VM 6 (P = 0.87) and order 3
VM 7 (P = 1.0).

Predictive Modeling

Table 2 shows the summary of model performance
for the base-case amplitude marker model compared
to those with additional time–frequency features for
both the linear and MARS models. Compared to a
model using the ERG amplitude markers alone (R2

= 0.21 and R2 = 0.34 for the linear and MARS
models, respectively), the models that additionally
included the time–frequency features to the amplitude
markers significantly improved the predictive perfor-
mance of the eRGC counts (R2 ≥ 0.41 and R2 ≥
0.53 for the linear and MARS models, respectively;
P ≤ 0.011) (Table 2). Pairwise differences among
models 2, 3, and 4 did not reach significance within

the model type (linear or MARS P > 0.05 for all
comparisons).

Discussion

The use of electrophysiological tests to assess
glaucoma is appealing in that it can be an objec-
tive measure of retinal function. The two established
techniques are the PERG and the PhNR. The PERG is
elicited with a patterned stimulus in which the pattern
changes but the overall luminance remains constant
over time.56 Studies have shown changes in the ampli-
tude markers of the transient57 and steady-state58
PERG. The PhNR elicited with a Ganzfeld dome has
the advantage over the PERG of not requiring clear
optics or refractive correction and may be technically
easier to collect.17
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Figure 6. Matching pursuit dictionary optimization. FK, Fejer–Korovkin wavelet. The bar graphs show the residual sum of squares from
reconstruction of the ensemble traces for different mother wavelet packets (by panel), vanishing moments (abscissa), and order of wavelet
packet (by color). Error bars: 95% confidence intervals.

This study, which collected electroretinograms with
a PhNR protocol, demonstrated that features from
time–frequency analyses of the photopic ERG—when
using either the DWT or MP—significantly improved
the prediction of glaucoma severity when added
to amplitude markers evaluated in the time-domain
signal. These findings underscore how there is more
information in the ERG about RGC dysfunction that
could be uncovered using time–frequency analyses,
which could potentially aid in the prediction of future
RGC loss in glaucoma.

The ERG is a mass signal response, the sum of
many different generating components from the inner
and outer retina. Feedback loops are well described
within the retina,24,59,60 and RGC discharge spike
trains have been shown to spontaneously oscillate
in a variety of species.61 These oscillations and the
characteristic waveforms could have a distinctive
time–frequency pattern; thus, it is possible that RGC
dysfunction occurring in glaucoma could be identifi-
able with time–frequency analyses of the ERG. Our
findings that the combination of the ERG time-domain
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Table 2. Performance of Linear and MARS Models in Predicting eRGC From Time and Time–Frequency Features
Derived From ERGs

Linear MARS

R2 Pa R2 Pa P, Linear vs. MARS

Model 1: Markers 0.21 (0.07) — 0.34 (0.06) — 0.004
Model 2: DWT + markers 0.41 (0.08)b 0.001 0.53 (0.07)b 0.011 0.055
Model 3: MP + markers 0.43 (0.08)b 0.001 0.63 (0.08)b <0.001 0.002
Model 4: DWT + MP + markers 0.50 (0.09)b 0.001 0.63 (0.07)b 0.001 <0.001

Model 1 was informed by the amplitudes of the a-wave, b-wave, i-wave, PhNR1, and PhNR2. Numbers in parentheses
indicate standard deviation from the bootstrap resampling.

aWhen compared to model 1.
bNot significantly different at P < 0.05 for pairwise comparisons among models 2, 3, and 4 for the linear and MARS models

separately.

amplitude markers and time–frequency features
improved the prediction of glaucoma severity is
consistent with observations seen in other fields.
One previous study showed that the combination of
time and time–frequency features from the electroen-
cephalogram improved the prediction of the error rate
for a behavioral task.62 Another study demonstrated
that the addition of time–frequency features to the
time-domain features also improved the prediction of
sudden cardiac death from heart rate variability data
from the electrocardiogram.63

The findings of this study build upon our previ-
ous work, further reinforcing how there is substantially
more information present in the photopic ERGbeyond
the PhNR amplitude or ratio of PhNR to b-wave
alone,21 which currently remain the primary recom-
mended measures for assessing RGC function on the
ERG.11 However, the improved prediction of glaucoma
severity at cross-section when incorporating features
from time–frequency analyses does not guarantee its
improved utility for the clinically important task of
predicting RGC loss in glaucoma, which remains a
significant challenge.64,65 The findings in this study
provide further evidence to support the conduct of
future longitudinal studies to explore whether the ERG
could provide added clinical utility for this purpose.
Furthermore, recovery of the PhNR in some eyes
with glaucoma following IOP lowering and nicoti-
namide has been previously described,18,19 and it may
be that time–frequency analysis may also show such
functional recovery better than amplitude measure-
ments of the PhNR alone. The ERG as a measure
of function rather than structure may not be able to
distinguish between reversible and irreversible loss of
RGC function. However reversible RGC dysfunction
could potentially be identified through evaluating the
discordance between the observed and expected RGC
function based on estimates of RGC loss (such as

through the eRGC counts parameter in this study),
which could also be examined in future longitudinal
studies. Further exploration of the nature of feedback
and feedforward pathways could be done with hierar-
chical decomposition analysis.66 This technique uses
multiple electrodes to decompose a set of signals into
their constituent sources. The technique assumes that
there is a dominant generator with subsequent gener-
ators dependent upon the dominant one—hence, the
hierarchy. This technique may become possible with
multi-electrode contact lens electrodes such as those
that have been used in the rat.67

Limitations of this study include the relatively small
sample size and the limited range of glaucoma severity,
but the cohort nonetheless enabled the demonstration
of the significant added value of features from time–
frequency analyses. We used the analysis of ensemble
averages with timing relative to the peak of the b-
wave rather than relative to the flash onset to account
for latency and phase variations among individuals.
This is an alternative technique to the local wavelet
maximum technique used by Gauvin and colleagues68
and does have the advantage that the decomposition is
invertible. This technique results in the loss of timing
information, although timing features are generally
not used for analysis of the PhNR. Both the MP and
the DWT optimization were performed on glaucoma
participants alone, and it may be that inclusion of
eyes without glaucoma could yield a different result.
Construction of a mixed cohort for test optimization
would require knowledge of the prior probability of
the existence and extent of glaucoma in an eye under-
going the test. Such an approach was beyond the scope
of this study. Although in our study better perfor-
mance was obtained with the MP technique, the DWT
is more intuitive, and our DWT methods are easier to
replicate by others compared to the MP decomposi-
tion, which requires access to our custom dictionary.
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In this work, we did not attempt to establish that the
electroretinogram can better estimate the glaucoma
severity than existing techniques such as the eRGC.
To do so would require a ground truth such as histo-
logical ganglion cell counts, and even this would not
necessarily reveal the functional state of the RGCs. We
have, however, shown that conventional time-domain
amplitude analysis techniques might not be extracting
all of the useful information available from the ERG in
glaucoma.

Conclusions

This study demonstrated that features extracted
from the ERG using time–frequency analyses yield
additional predictive information about the severity
of glaucoma. This is biologically plausible given that
the ERG is made up of a sequence of different
processes with different frequency responses that can
become impaired in glaucoma. These findings encour-
age future longitudinal studies to understand whether
this technique could be clinically useful for predicting
glaucoma progression.
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