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A B S T R A C T   

The EGFR-C797S resistance mutation to third-generation drugs has been overcome by fourth-generation in-
hibitors, allosteric inhibitors, namely EAI045 and has reached phase 3 clinical trials, so the Allosteric Site is 
currently an attractive target for development. In this study, researchers are interested in knowing the activity of 
metabolite compounds from marine natural ingredients Clathria Sp. against the Allosteric Site of EGFR 
computationally. The methods used include molecular docking using Autodock4 software and Molecular Dy-
namics simulation performed using GROMACS software. The research began with the preparation of metabolite 
samples from Clathria Sp. through the KnapSack database site and the preparation of EGFR receptors that have 
been complexed with allosteric inhibitors, namely proteins with PDB code 5D41. Each compound was docked to 
the Allosteric Site of the natural ligand and then molecular dynamics simulations were performed on the com-
pound with the best docking energy compared to the natural ligand. From the docking results, the Clathrin_A 
compound showed the lowest binding energy compared to other metabolites, and the value was close to the 
natural ligand. Then from the molecular dynamics results, the clathrin_A compound shows good stability and 
resembles the natural ligand, which is analyzed through RMSD, RMSF, SASA, Rg, and PCA, and shows the 
binding free energy from MMPBSA analysis which is close to the natural ligand. It can be concluded, Clathrin_A 
compound has potential as an allosteric inhibitor.   

1. Introduction 

The use of EGFR tyrosine kinase inhibitors (EGFR-TK) in treatment is 
currently facing various challenges due to multiple mutations (Sabbah 
et al., 2020; Dong et al., 2021). A significant obstacle is the emergence of 
a secondary deactivation mutation known as the T790M mutation in 
exon 20 (Leonetti et al., 2019; Kashima et al., 2020). This mutation is a 
major contributor to the failure of first-generation EGFR tyrosine kinase 
inhibitors like Erlotinib and Gefitinib, particularly in patients with 
NSCLC who initially responded to this therapy (Leonetti et al., 2019; 
Kashima et al., 2020). Second-generation EGFR inhibitors, such as 
Afatinib, target both mutants and the wild-type EGFR (WT), which can 
lead to side effects and dose-limiting toxicity (Harvey et al., 2020). To 
address these challenges, third-generation EGFR inhibitors have been 

developed and are currently in clinical and pre-clinical trials (Nagasaka 
et al., 2021; Cooper et al., 2022). These third-generation drugs can 
effectively inhibit positive EGFR-TK mutants with the T790M mutation 
by forming covalent bonds with amino acid C797 (Roskoski, 2019). 
Recent research has shown that the use of drugs like osimertinib and 
others from the third generation can overcome resistance caused by 
C797S mutations, preventing the formation of covalent bonds (Lu et al., 
2018). 

In 2016, reported the fourth-generation EGFR tyrosine kinase in-
hibitor, EGFR Allosteric Inhibitor 001 (EAI001) and EGFR Allosteric 
Inhibitor 045 (EAI045). These were the first allosteric inhibitors 
designed to target T790M and C797S mutations in EGFR (Jia et al., 
2016; Wang et al., 2017). This represented a significant advancement as 
these drugs are the first of their kind in the EGFR tyrosine kinase 
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inhibitor category that occupy an allosteric site on the EGFR and do not 
compete for binding. 

The potential for natural products to serve as sources for drug 
candidate compounds is extensive, cost-effective, and readily accessible. 
In various studies we’ve encountered, numerous in silico investigations 
have been conducted on several natural compounds as potential in-
hibitors of the EGFR Allosteric Site (Saini et al., 2023). Hence, we are 
keen on investigating the capability of compounds found in natural 
substances to function as EGFR allosteric inhibitors. In this regard, we 
are particularly focusing on marine natural products derived from ma-
rine organisms, specifically Clathria Sp. Marine organisms have a long 
history of use in traditional medicine, yet research on their potential as 
pharmaceutical agents is still in its early stages (Negm et al., 2023), 
while the novelty of the marine natural products tends to be higher than 
terrestrial natural products (Negm et al., 2023). Clathria is a genus 
within the family Microconidia, comprising 544 species, and one of 
these species is known to be present in the Southeast Sulawesi Province 
of Indonesia (Sahidin et al., 2019). Based on that, this study aims to 
analyze the inhibitory potential of the compounds contained in the 
marine species, Clathria Sp., on the crystal structure of the EGFR that 
complexed with its allosteric inhibitor. 

2. Materials and methods 

2.1. Ligand preparation 

The ligands chosen for this study were marine natural products 
sourced from sponges, specifically Clathria species. The chemical 
structures of these compounds were retrieved from the KnapSack data-
base (http://www.knapsackfamily.com/KNApSAcK/(Afendi et al., 
2012) and KnapSack 3D database (http://knapsack3d.sakura.ne.jp/) 
(Nakamura et al., 2013). Initially, the ligands were stored in. mol format 
and were subsequently converted to. pdb format using the Discovery 
Studio 2017 software (Ramadhan et al., 2021). 

2.2. Protein preparation 

The 3D structure of the EGR with Allosteric Site was acquired from 
the Protein Data Bank (PDB) (www.rcsb.org) using the PDB code 5D41 
(with a resolution of 2.31 Å and obtained from X-RAY DIFFRACTION 
method). The native ligand was isolated using Discovery Studio 2017, 
and water molecules and unique ligands were removed. The protein was 
assigned partial charges using the Kollman charge force field and polar 
hydrogens were added. All protein preparation procedures were per-
formed using the AutoDock4 software (Jia et al., 2016; Ramadhan et al., 
2021; Hikmawati et al., 2022). 

2.3. Molecular docking simulation 

The allosteric inhibitor, which was native ligand, was subjected to 
validated the docking process. Native ligand preparation included 
adjusting the ligand torque to its default of each ligand using torsion tree 
tools and adding necessary charges in autodock software. The docking 
protocol was subsequently validated by re-docking the native ligands, 
and the best conformation of the docking result was compared to the 
initial conformation of the native ligand. The docking protocol was 
considered validated if the root mean square deviation (RMSD) value 
was less than 2.0 Å. The grid coordinates for the native ligand on the 
template protein during the docking process were set at X = − 23.037, Y 
= 31.467, Z = 12.091, and the dimensions of the grid box used were X =
40 Å, Y = 40 Å, Z = 40 Å. These same coordinates were also employed 
for docking the metabolite compound (Jia et al., 2016; Bell and Zhang, 
2019). The number of Genetic Algorithm runs in 100 conformation of 
each ligand. The 3D structure of the compounds contained in Clathria Sp. 
were docked to the active site, which the binding energy and amino acid 
interactions were analyzed. The docking results were analyzed using 

Discovery Studio 17 (Pitaloka et al., 2021). 

2.4. Molecular dynamics and binding free energy calculation 

The compound with the best binding energy was subjected to a 100 
ns?Molecular Dynamics (MD) simulation with a 2 fs timestep, using 
Gromacs 2016.3 software and the AMBER99SB-ILDN force field 
(Abraham et al., 2015). Ligand topology and parameters were generated 
using ACPYPE (Sousa da Silva and Vranken, 2012). The Particle Mesh 
Ewald (PME) method was employed to calculate electrostatic forces over 
a distance (Essmann et al., 1995). Solvation was performed using the 
TIP3P water cube model (Mark and Nilsson, 2001), and system 
neutralization was achieved by adding Na+ and Cl-ions through auto-
ionization. The simulation process involved several stages, starting with 
minimization, followed by heating to 310 K, temperature equilibration, 
pressure equilibration, and the actual MD simulation. Subsequently, the 
stability of the system was assessed through Root Mean Square Devia-
tion (RMSD), Root Mean Square Fluctuation (RMSF), Solvent Accessible 
Surface Area (SASA), Radius of Gyration (Rg), and Principal Component 
Analysis (PCA) (Lolok et al., 2021). Furthermore, the binding free en-
ergy was calculated using the Molecular Mechanics Poisson-Boltzmann 
Surface Area (MM-PBSA) method. The g_mmpbsa package, integrated 
with Gromacs, was used for these calculations. The binding free energy 
(ΔGbind) of the complex was determined as the difference between the 
free energies of the complex (ΔGcomplex) and the unbound receptor 
(ΔGrec) and ligand (ΔGligand), theoretically described by the equa-
tions: ΔGbind = Gcomplex - Grec - Gligand; ΔGbind = ΔEMM + ΔGsol - 
TΔS. The ΔEMM component includes ΔEbond, ΔEangle, ΔEtorsion, 
ΔEvdw, and ΔEELE (Ren et al., 2020). The polar desolvation energy was 
calculated using the Poisson-Boltzmann equation with a 0.5 Å grid size, 
and a solvent dielectric constant of 80 was used to represent water. The 
nonpolar contribution was determined based on the solvent-accessible 
surface area with a solvent radius of 1.4 Å. The binding free energy of 
the complexes was computed from the MD simulation outputs, consid-
ering 500 snapshots from 1 to 100 ns of the simulation trajectories 
(Pitaloka et al., 2021). 

Fig. 1. Overlapped ligand structures. Green is native ligand conformation 
before docking process and Red is native ligand conformation after dock-
ing process. 
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3. Results and discussion 

3.1. Molecular docking simulation 

The process of molecular docking commenced with the re-docking of 
the native ligand (EAI) into the binding pocket of the 5D41 protein to 
validate the docking methodology. The RMSD value measured from all 
heavy atoms and obtained 1.134 Å (as depicted in Fig. 1), indicating a 
satisfactory outcome (RMSD below 2.0 Å showed good validation 

results) and its confirm the docking method was valid. The binding 
energy of the re-docked EAI was determined to be − 11.09 kcal/mol. 

The ligands tested consisted of eight bioactive compounds contained 
in Clathria Sp., including Isoclathriaxanthin, Tedanin, Trikentriorhodin, 
Clathsterol, Clathriol, Mirabilin G, Clathrin A, Clathrin B (Fig. 2). The 
binding energy of each ligand can be seen in Table 1. From the results of 
binding energy analysis, each metabolite shows diverse binding energy. 
Clathsterol, Isoclathriaxanthin, Tedanin, and Trikentriorhodin ligands 
gave positive values, indicating they have no binding and inhibition 
ability towards the receptor. The very large positive values shown by 
these ligands are due to the very bulky structure with very long hy-
drocarbon chains of these ligands, causing a size mismatch on the active 
side of the receptor. 

Furthermore, the ligands Clathrin A, Clathrin B, Clathriol, and Mir-
abilin G showed negative values, indicating their ability to inhibit EGFR 
through their Allosteric Site. Overall, Clathrin A ligand gave the most 
satisfactory result with a docking score of - 9.43 kcal/mol, which is close 
to the docking score of EAI natural ligand which is - 11.09 kcal/mol. 

3.2. Ligand-receptor interaction 

Next, we observed the molecular interactions to evaluate the binding 
of each compound. Observed from the visualization of 3D ligand-ligand 

Fig. 2. 2D structure of ligands isoclathriaxanthin (A), tedanin (B), trikentriorhodin (C), clathsterol (D), clathriol (E), mirabilin g (F), clathrin a (G), clathrin B (H).  

Table 1 
Binding energy and inhibition Constant of ligands obtained from docking results.  

Ligands Binding energy (kcal/mol) Inhibition Constant (Ki) 

Native Ligand (57N) − 11.09 7.4 nM 
Trikentriorhodin 864,000 – 
Tedanin 1,400,000 – 
Mirabilin G − 8.38 714.12 nM 
Isoclathriaxanthin 1,390,000.0 – 
Clathsterol 96.39 – 
Clathriol − 8.46 634.14 nM 
Clathrin B − 8.3 821.06 nM 
Clathrin A − 9.43 122.05 nM  
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binding (Fig. 3), the active site where the natural ligand and other 
compounds bind, is dominant in the hydrophobic region of the receptor. 
Furthermore, observed from Table 2, each compound shows a similar 
number of hydrophobic interactions, in the range of 7–10 hydrophobic 
interacting residues. Then, in terms of total interactions, compounds 
with a total of a dozen residues have a negative binding energy similar to 
the native ligand. However, compounds with total interactions above 
20, show positive binding energy. This is due to the large structure of 
these compounds which causes steric collisions on the small Allosteric 
Site of EGFR. 

3.3. Molecular dynamics analysis 

Identification of the affinity of Clathrin A to the allosteric active site 
of EGFR was followed by molecular dynamics simulations. Molecular 
dynamics was successfully performed for 100 ns of both complexes, 
native-receptor and clathrin A-receptor. The stability of the system 
during simulation was measured through RMSD, RMSF, and SASA 
(Fig. 4). The stability of the clathrin A complex at the beginning of the 
simulation up to 80 ns is slightly higher than the native ligand at 0.25 A - 
0.4 Å, while the native ligand is in the range of 0.15–0.3 Å. However, 
both complexes show similarities in the fluctuations measured through 
the RMSD graph at the last 20 ns of simulation. Furthermore, the 

calculated average RMSD fluctuations for each system were 0.29 Å 
(clathrin A-receptor) and 0.23 Å (native-receptor). The amino acid 
fluctuations of the two complex systems calculated by RMSF showed the 
same pattern in all regions. 

SASA is performed to predict the extent of protein conformational 
changes during the simulation, which can be accessed by water mole-
cules. SASA was analyzed during 100 ns of MD trajectory simulation, 
which is shown in the SASA analysis shows the value of the clathrin A- 
receptor complex compared to the native-receptor complex shows 
similar fluctuations. From the calculation of the average value, the SASA 
value for the clathrin A-receptor complex is 160.81 nm2 and the native- 
receptor complex is 157.57 nm2. The SASA analysis also showed very 
similar results between the two complexes. Based on these analyses, it 
positively indicates that clathrin A exhibits an amino acid binding 
similar to EGFR allosteric inhibitors and clathrin A might work as a 
potential inhibitor similar to existing EGFR Allosteric Inhibitors. 

3.4. Binding free energy calculation 

The binding free energies were calculated from the molecular dy-
namics pathways of both complexes using the MM-PBSA method in the 
time range of 0–100 ns (see Table 3). The analysis results indicated that 
in both complex systems, the polar solvation energy is opposite to the 
binding energy due to its negative value, while the van der Waals, 
electrostatic, and SASA energies favor the formation of a bond. The total 
binding free energy of the clathrin A-receptor shows a figure almost 
equivalent to that of the native-clathrin complex (Total binding free 
energy of the clathrin A-receptor complex is − 116.565 kJ/mol; native- 
receptor is − 133.246 kJ/mol). This occurs because the Van de waals 
energy (KJ/mol) and Electrostatic energy (KJ/mol) in the native- 
receptor complex are more negative than the clathrin A-receptor. 
However, the values between the two complexes are not too far apart. 

4. Conclusions 

Based on molecular docking and dynamics analysis, clathrin_A 
compound of Clathria Sp. has the potential to be developed as an anti-
cancer compound targeting the allosteric site of EGFR. 
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Fig. 3. 3D interaction of amino acids on the Allosteric Site of EGFR with (a) 
Native Ligand (red), (b) Trichentriorhodin (light green) (c) Tedanin (purple), 
(d) Mirabilin G (blue), (e) Isoclathriaxanthin (dark green), (f) Clathsterol (salem 
pink), (g) Clathriol (yellow), (h) Clathrin B (mustard), (i) Clathrin A 
(aqua blue). 

Table 2 
Recap of ligand-receptor amino acid interactions.  

Ligands Hydrogen Bond Total Residue with 
Hydophobic 
Interaction 

Total Residue 
Interaction 

Native Ligand 
(57N) 

ASP A:855 10 14 

Trikentriorhodin – 9 27 
Tedanin – 9 27 
Mirabilin G – 5 16 
Isoclathriaxanthin – 7 25 
Clathsterol LYS A:745, ILE 

A:774, TYR 
A:727 

7 33 

Clathriol ASP A:855, ILE 
A:759 

8 21 

Clathrin B – 7 16 
Clathrin A – 8 17  
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