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Abstract

Functional trait databases are powerful tools in ecology, though most of them

contain large amounts of missing values. The goal of this study was to test the

effect of imputation methods on the evaluation of trait values at species level

and on the subsequent calculation of functional diversity indices at community

level using functional trait databases. Two simple imputation methods (average

and median), two methods based on ecological hypotheses, and one multiple

imputation method were tested using a large plant trait database, together with

the influence of the percentage of missing data and differences between func-

tional traits. At community level, the complete-case approach and three func-

tional diversity indices calculated from grassland plant communities were

included. At the species level, one of the methods based on ecological hypothe-

sis was for all traits more accurate than imputation with average or median val-

ues, but the multiple imputation method was superior for most of the traits.

The method based on functional proximity between species was the best

method for traits with an unbalanced distribution, while the method based on

the existence of relationships between traits was the best for traits with a bal-

anced distribution. The ranking of the grassland communities for their func-

tional diversity indices was not robust with the complete-case approach, even

for low percentages of missing data. With the imputation methods based on

ecological hypotheses, functional diversity indices could be computed with a

maximum of 30% of missing data, without affecting the ranking between grass-

land communities. The multiple imputation method performed well, but not

better than single imputation based on ecological hypothesis and adapted to the

distribution of the trait values for the functional identity and range of the com-

munities. Ecological studies using functional trait databases have to deal with

missing data using imputation methods corresponding to their specific needs

and making the most out of the information available in the databases. Within

this framework, this study indicates the possibilities and limits of single imputa-

tion methods based on ecological hypothesis and concludes that they could be

useful when studying the ranking of communities for their functional diversity

indices.

Introduction

Advances in ecological research, combined with the

increasing power of statistical analyses and computers,

allow researchers to study more and more species under

an increasingly wide range of environmental conditions

(Spiegelberger et al. 2012). Ecological studies on plant

community assemblages usually rely on large amounts of

data compiled in databases, linking community assem-

blages, and environmental conditions data with data
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about the functional traits of the species. Such databases

are crucial for improving our understanding of the effects

of global changes, like the loss of biodiversity or climate

change, on the biosphere (Kattge et al. 2011). This

because on one hand, important plant functional traits

are driven by environmental conditions (de Bello et al.

2005; Louault et al. 2005; Ackerly and Cornwell 2007;

Ordo~nez et al. 2009), and on the other hand, plant func-

tional traits influence ecosystem functions, such as pri-

mary productivity and nutrient cycling (Mokany et al.

2008; Klumpp and Soussana 2009; de Bello et al. 2010).

Standardized protocols are available for the measure-

ments of plant traits in the field (Cornelissen et al. 2003;

P�erez-Harguindeguy et al. 2013), and these measurements

are now collected in large, well-structured databases

(Kleyer et al. 2008; Kattge et al. 2011) accessible to the

scientific community. However, plant trait databases con-

tain a lot of missing data and probably will continue to

for a long time because of the labor-intensive nature of

collecting well-informed, standardized data, and because

studies with different aims are usually interested in differ-

ent traits. It is therefore unrealistic to expect complete

knowledge of a large number of species from various eco-

systems. For instance, in the large database of the TRY

initiative (Kattge et al. 2011), 39.1% of trait values con-

cerned only four traits (specific leaf area, vegetative

height, leaf dry matter content, and seed mass as 13.2%,

10.0%, 8.7%, and 7.2%, respectively). These four traits

are frequently the best documented, and even for them,

the percentage of missing data is high. For instance, in

the LEDA database (Kleyer et al. 2008); status in 2011)

among the 8195 registered species, only 2019 species have

information on specific leaf area (75% missing), 1730 on

leaf dry matter content (78% missing), 2492 on seed mass

(69% missing), and 2893 for vegetative height (64% miss-

ing). Species with missing data are not generally the most

dominant species observed in floristic relev�es. Neverthe-

less, these missing data limit the optimal use of plant trait

databases, as functional diversity indices, for instance,

need to be calculated without missing values (Mason

et al. 2005; Villeger et al. 2008).

An option still used to deal with these missing data is

to delete species with missing data for the calculation of

diversity indices (Lin et al. 2011). The obvious drawback

is that it may introduce bias in the range of species

retained for calculation and considerably reduce the data-

set, consequently limiting the statistical power of any

forthcoming analysis. Garnier et al. (2004) suggested that

this deletion is acceptable for estimation of the commu-

nity-weighted mean trait value (CWM) as long as it only

concerns the minor species. They indicated that the dele-

tion of minor species should not exceed 20% of the total

biomass of the community. Indeed, if the value of a plant

trait does not vary widely between species of a commu-

nity, the weighted mean trait value of the community can

be calculated with species that make up 80% of the total

biomass of the communities. The additional effort

required to sample species traits would not be worthwhile

in terms of exactness (Pakeman and Quested 2007). How-

ever, exploring the effects of environmental constraints on

plant community structure or the role of functional

diversity in ecosystem processes without taking minor

species into consideration could be misleading (Walker

et al. 1999), as minor species can have a significant effect

on ecosystem function (Boeken and Moshe 2006).

Another option used in some studies is to replace the

missing data using an imputation method. In statistics,

imputation is the process of replacing missing data with

substituted values (Nakagawa and Freckleton 2008).

Imputation can be simple: Missing data can be replaced

by the mean or the median of the available trait values, as

implemented in the studies of Gunton et al. (2011) and

Fried et al. (2012). However, such simple imputation

methods do not take the functional differences between

species into account.

A third option, that is only relevant for functional

diversity indices calculated from several traits, is to use

the Gower distance and project the distance with a Princi-

pal Coordinate Analysis (Villeger et al. 2008; Mouillot

et al. 2011). The Gower distance can be computed with

some missing data (Gower 1971), and the PCoA allows

projection of a distance matrix on several axes, the axes

being then used as functional traits. This method assesses

the functional spaces, but the trait information gets lost

and only multivariate approaches can be used.

The problem of missing values in large matrices exists

in a wide range of fields, and advanced mathematical

methods of imputation to deal with it have been devel-

oped, like multiple imputation (Schafer and Graham

2002; Van Buuren et al. 2006; Van Buuren 2007; Azur

et al. 2011). Multiple imputation is a Monte Carlo tech-

nique in which the missing values are replaced by m > 1

imputed values. Each of the imputed complete datasets is

analyzed by standard methods, and the results are com-

bined to produce estimates and confidence intervals that

incorporate missing data uncertainty (Nakagawa and

Freckleton 2008). We did not find any utilization of mul-

tiple imputation on functional trait databases. For the uti-

lization of more advanced missing data imputation on

functional trait databases, we only found the study of

Shan et al. (2012) that recently tested another type of

method: The hierarchical probabilistic matrix factoriza-

tion coupled with phylogenetic information to replace

missing values in plant trait databases. Functional prox-

imity between species (Westoby et al. 2002; Diaz et al.

2004) and relationships between traits (Wright et al.
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2004, 2006) could also be used for imputation, making a

comprehensive use of the information available in the

trait database. An alternative method to deal with missing

functional trait data without deleting species and taking

functional relationships between species and/or traits into

account would therefore improve the use of functional

trait databases.

The aim of this study was to test imputation methods

that integrate knowledge of relationships between species,

but uses simple mathematics to impute missing data to

calculate functional diversity indices based on functional

trait databases. First, we tested the effects of several impu-

tation methods on the evaluation of the trait values at the

species level, using different levels of missing data and a

range of functional traits with varying distribution. In a

second step, the effects of these methods on the calcula-

tion of functional diversity indices at the community level

were assessed for grassland communities.

Materials and Methodology of
Imputation of Missing Data

Selection of two subdatabases without
missing data and insertion of missing data

Initially, only the average trait values of the species in the

LEDA database (Kleyer et al. 2008) were used. A total of

1054 herbaceous and ligneous plant species with no miss-

ing data for nine continuous traits were found in the

database and retained to establish the “whole subdat-

abase” (Fig. 1 – step 1). These traits were vegetative

height (H), reproductive height (RH), seed mass (SM),

seed shape (SS), seed number per plant (SNP), specific

leaf area (SLA), leaf dry matter content (LDMC), leaf

mass (LM) and leaf surface (LS).

Within this subdatabase, the distribution of the trait

values was similar for the vegetative height (H), the RH,

LM, LS, SS, SM, and SNP. For these seven traits, most

values were low with few extreme high values. The pres-

ence of a few tree species in the database is one reason

for the unbalanced distribution of some traits. The distri-

bution of the LDMC and the SLA values was close to a

Gaussian distribution.

We also used a subdatabase with only herbaceous spe-

cies to assess how strongly the error induced by the

imputation methods depended on the distribution of the

trait values in the database (Fig. 1 – step 1). This second

subdatabase was set by eliminating the species with a veg-

etative height greater than 2 m and of the Raunkiaer

types “phanerophyte” or “chamaephyte” to eliminate trees

and shrubs from the whole subdatabase. In this second

subdatabase, called “herbaceous subdatabase,” 947 species

were documented with the same nine plant traits as for

the whole subdatabase. The vegetative height (H) and the

reproductive height (RH) had a normal distribution in

the herbaceous subdatabase.

In these two subdatabases, missing data were deliber-

ately inserted by randomly deleting existing values (Fig. 1

– step 2). Each existing value in the subdatabase had a

given probability of being deleted. Ten different probabili-

ties of deletion were applied (from 0.01 to 0.46 with an

interval of 0.05; same probability for all values of the sub-

database at each step), yielding large differences in the

level of missing data insertion. For each level of missing

data, the random deletion was made 100 times. The

deleted values could be different for each simulation. One

thousand different versions of the two subdatabases were

created (10 levels of deletion probability 9 100 random

deletions).

Imputation methods

Five imputation methods were tested (Fig. 1 – step 3).

These included two simple mathematical methods (“aver-

age” and “median”), as well as three methods that to our

knowledge have not yet been implemented for imputation

in functional trait databases: two methods based on eco-

logical hypotheses and thereafter called the “dissimilarity”

and the “relationships” methods, as well the multivariate

imputation by chained equations (a multiple imputation

method; Azur et al. 2011; Van Buuren and Groothuis-

Oudshoorn 2011).

The two single mathematical imputation methods con-

sisted of either replacing the missing data with the aver-

age trait value (average method) or by the median value

of all species with documented values (median method).

These methods have already been used in literature

(Gunton et al. 2011; Fried et al. 2012). In these two

methods, the missing values of trait Ti for the species Si
to Sj are all replaced with the same value, without using

the information that could be available from other traits.

The dissimilarity imputation method is based on the

functional proximity between species. This method relies

on the hypothesis that species with the same functional

strategy have a similar set of functional traits (Westoby

et al. 2002; Diaz et al. 2004). To replace the missing data

of the trait Tj of the species Si, the Gower dissimilarity

(Gower 1971) between Si and the other species is calcu-

lated based on the other traits. The species showing high

similarity with Si are then selected, and the median of

their trait values for Tj is computed and used to evaluate

the missing value Tji. We chose a Gower dissimilarity

coefficient of 0.05 as threshold for species with high simi-

larity. The Gower dissimilarity can be computed with

missing data, so the presence of other missing data would

not disrupt replacement of the missing data.
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The relationship imputation method depends on the

existence of relationships between plant traits (Wright

et al. 2004, 2006). For each trait (Tj), the dataset is split

in two matrices, according to the presence or absence of

missing data for Tj: the first matrix containing all species

with no missing data for Tj and the second matrix with

all species with missing data for Tj. On the first matrix,

a statistical model explaining Tj using the other traits is

created by a stepwise regression. Then, this model is

used to estimate the missing data in the second matrix.

When, in a few cases, the value of another trait T2 enter-

ing in the model for the estimation of the missing value

T1i was also missing for Si, we replaced the missing value

of T2i with the median trait value of T2. The occurrence

of such a replacement of the missing value of another

trait increased with increasing percentage of missing

data.

R scripts (R Development Core Team 2013) used to

implement the two methods based on ecological hypothe-

sis are available by request to the authors.

Figure 1. General procedure of estimation of errors for the imputation of missing data Step 1) creation of two trait subdatabases, one with no

species filters and one only with herbaceous species; Step 2) missing data were inserted with 10 different percentages from 1% to 46%; the

insertion was made 100 times per percentage of missing data (2000 different subdatabases were created this way); Step 3) these missing data

were replaced using five different methods (10,000 corrected datasets were created this way); Step 4) errors induced by the imputation were

estimated by comparison between the original database and the corrected one; Step 5) the error estimations were then compared between the

different percentages of missing data for each method and between methods.
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The four methods presented above perform simple

imputation (each missing entry is replaced by a single

imputed value). The resulting imputed dataset therefore

contains genuine as well as simulated data. With such

methods, the uncertainty associated with imputed data is

lost and cannot be propagated to the analyses to be

applied on the imputed dataset. In contrast, the objective

of the multiple imputation approach is to handle missing

data in a way resulting in valid statistical inference, rather

than to predict missing values as close as possible to the

true ones (Rubin 1996). Concretely, m different imputed

values are generated for each missing entry, leading to m

different imputed datasets. Analyses (here functional

diversity indices computation) are then carried out on

each imputed dataset and pooled to produce estimates

and confidence intervals that incorporate missing data

uncertainty. We here also used a method of multiple

imputation: the Multivariate Imputation by Chained

Equations (MICE, Azur et al. 2011). The MICE method

was computed using the “mice” package of R (Van Buu-

ren and Groothuis-Oudshoorn 2011). This method of

imputation uses predictive mean matching with five

imputations. For the species level, the average of the 5

values imputed was used to replace the missing value.

Comparison of the errors between methods
and percentage of missing data

For each simulation, we compared the original plant trait

value (To)ij and the value after replacement (Tr)ij (Fig. 1

– step 4).

The quality of the replacement was evaluated by an

indicator independent of the number of missing data: a

modified median relative absolute error (MRdAE) of the

imputed values (MRdAE = median(abs [(To�Tr)ij]/med-

ian[To]ij).The modification as compared to the MRdAE

used in Hyndman and Koehler (2006) is that the denomi-

nator is equal to the median of the original value instead

of abs (To[ij]�median [To(j)]) Indeed, we wanted to

assess the deviation from the original value of the func-

tional trait rather than to compare two variables.

In our study, this indicator is more suitable than other

common error measures such as the root-mean-square

error for two major reasons. First, the MRdAE does not

depend on the number of estimated values (i.e., the rate

of missing values). Secondly, it is less sensitive to outliers

(Hyndman and Koehler 2006).

A Kruskal–Wallis nonparametric analysis of variance

(ANOVA) test was realized on the MRdAE between the

10 different probabilities of missing data for each trait,

for each method, and on the two subdatabases. This

analysis was made 90 times (nine traits 9 five meth-

ods 9 two subdatabases). When the Kruskal–Wallis P

value is not significant, it means that for a given subdata-

bases, the replacement method creates the same error

during the replacement irrespective of the percentage of

data that were missing and replaced. On the contrary,

when the Kruskal–Wallis P value is significant, the accu-

racy of the method depends on the percentage of missing

data (Fig. 1 – step 5).

We also compared the MRdAE between the four differ-

ent methods using a Kruskal–Wallis nonparametric ANO-

VA. The comparison was made for each trait on each

dataset but without separating the levels of missing data

(analysis run 18 times: nine traits 9 two datasets; Fig. 1

– step 5). A multiple comparison test after Kruskal–Wallis

(ad hoc test) was conducted (Siegel and Castellan 1988).

Results of Imputation Methods at the
Species Level

Differences between the imputation
methods on the whole subdatabase

The average method was the least accurate (higher

MRdAE) for all the traits studied. The MRdAE of the

average method was highly variable between traits, from

0.25 for the SLA to 44.62 for the SNP (Table 1). The

median method was less accurate than the dissimilarity

method for all traits except for the SNP, but it was more

accurate than the relationships method except for the

SLA and the LDMC. The relationships method was there-

fore in most case less accurate than the dissimilarity

method. For the SLA and LDMC, the MRdAE of the five

methods was low with similar values (around 0.24;

Table 1). For the other traits (H, RH, LM, LS, SS and

SNP), the MRdAE of the single imputation methods was

higher than for the SLA and the LDMC and ranged from

0.49 (RH with dissimilarity method) to 45.00 (SNP with

average method). The differences between the methods

were also more distinct with these traits than with the

SLA and the LDMC (Table 1). The MICE method was

more accurate than all other methods for all traits except

for the specific leaf area.

Differences between methods on the
herbaceous subdatabase: effect of the trait
distribution

The use of the herbaceous subdatabase affected the results

only for the vegetative height (H) and the reproductive

height (RH; Table 1). The distribution of these two traits

was unbalanced for the whole subdatabase and balanced

for the herbaceous subdatabase (results not shown). The

MRdAE of the five imputation methods was lower for the

herbaceous subdatabase in comparison with the whole
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subdatabase for these two traits. The minimal MRdAE of

the single imputation methods was less when working

with herbaceous plants only (and therefore with a bal-

anced distribution of the traits) rather than with the

whole subdatabase (0.22 and 0.48, respectively; Table 1).

Moreover, the relationships method was more accurate

than the dissimilarity method for H and RH when using

the herbaceous subdatabase rather than the whole subdat-

abase. No difference in accuracy ranking of the relation-

ships and the dissimilarity methods was found between

the whole subdatabase and the herbaceous subdatabase

for the other traits because their distributions remain

unchanged. In comparison with the whole subdatabase,

the accuracy of the MICE methods for the H and the RH

was higher with the herbaceous subdatabase (MRdAE

0.21 for H and MRdAE of 0.20 for RH).

Effect of the level of missing data

The average method was not affected by the percentage of

missing data on the two subdatabases except for the SNP

with the herbaceous subdatabase (Table 2). The median

method was only affected by the percentage of missing

data for the SNP on the two subdatabases and the SM in

the herbaceous subdatabase. The dissimilarity method was

affected for seven traits in the herbaceous subdatabase

and only for four traits in the whole subdatabase. The

relationships method was the most sensitive to the level

of missing data. This method was affected by the percent-

age of missing data for five traits for the herbaceous sub-

databases and eight traits for the whole subdatabase

(Table 2). The MICE method was affected by the percent-

age of missing data for six traits on the whole subdat-

abase and seven for the herbaceous subdatabase.

Discussion of the Accuracy of the
Imputation Methods

The results show that at the species level, the most accu-

rate imputation method is not the same for all traits and

in all cases, but one of the methods based on ecological

hypothesis (dissimilarity and relationships methods) was

always the most accurate among the single imputation

methods. The relatively low MRdAE values found with at

least one of the ecological methods for all the traits

included in this study, particularly with the herbaceous

subdatabase, indicate the potential of these methods for

the replacement of missing values prior to the calculation

of functional diversity indices.

Among the single imputation methods, the dissimilarity

method is the most accurate when the trait distribution is

unbalanced, as in leaf mass or leaf surface (Table 1). In

this situation, the median method is almost as accurate asT
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the dissimilarity method, whereas the relationships

method does not perform well on very unbalanced traits

(like SNP) because the multilinear model is strongly gov-

erned by extreme values. However, when the trait distri-

bution is more balanced, the accuracy of the relationships

method is similar (LDMC and SLA for the two subdata-

bases) or slightly better than that of the dissimilarity

method (H and RH for the herbaceous subdatabase).

The multivariate imputation in chained equations was

the most accurate method for the unbalanced trait (H,

RH, SM, SNP, SS, LM, and LS). For the SLA, the MICE

method induces slightly more error that the ecological

based methods. For the other balanced traits (LDMC and

H or RH for herbaceous subdatabase), the difference

between MICE and the relationships method was low. In

the MICE method, the correction model can be adapted

to the distribution of the variable (Azur et al. 2011; Van

Buuren and Groothuis-Oudshoorn 2011), so that the

traits with an exponential distribution are well corrected.

This explains the higher accuracy of the MICE method

on the unbalanced functional traits.

Comparing the results obtained with the two subdata-

bases, the error was lower when the traits had a balanced

distribution (with the relationships method) than when the

traits had an unbalanced distribution. It seems better to

choose a subdatabase with balanced traits distribution by,

for example, only using herbaceous species for grassland

studies rather than all type of plants species. Traits’ distri-

butions explain the differences in accuracy observed

between the single imputation methods, the traits, and the

subdatabases. The key parameter to choose the adequate

imputation method is thus the distribution of the value of

the trait in the dataset. This also indicates that applying a

transformation method to improve the distribution of the

trait values prior to using a imputation method could be

useful in improving the quality of the replacement.

The objectives and methods of the study should also be

considered when choosing the imputation method. For

instance, replacing the missing data using distances

between species (dissimilarity method) would not be an

appropriate choice for a study on functional distance

between species, as functional distance would then be

underestimated. Functional distance between species is

often used to classify species into groups or to calculate

some functional diversity indices (Rao 1982; Mouchet

et al. 2008).

The relationships method is very sensitive to the per-

centage of missing data (Table 2). This could be due to

the replacement of missing values of other traits by the

median value of these traits that was needed for the crea-

tion and the utilization of the multilinear models. The

negative effect of these replacements on the accuracy of

the estimated values increased with an increasing percent-

age of deleted data (Fig. 2). The dissimilarity method is

less affected by the percentage of deleted data. Indeed the

metric use to calculate the dissimilarity, the Gower dis-

similarity coefficient is able to deal with missing data up

to a certain threshold. Nevertheless, the Gower dissimilar-

ity cannot be calculated between two species if no trait is

documented for both species, and so the correction would

not be possible if missing data are too numerous. In the

hierarchical probabilistic matrix factorization method

tested by Shan et al. (2012), phylogenetic information

from an independent source is used to create groups of

Table 2. Effect of percentage of missing data on the MRdAE (median relative absolute error) for the four methods applied to the two

subdatabases. For each method, a one-way Kruskal–Wallis test was conducted to test the effect of the percentage of missing data on the MRdAE.

The P values are presented in the table for each method and each trait.

Methods

Traits

H LDMC LM LS RH SM SNP SS SLA

Whole subdatabase

Average 0.55 0.44 0.24 0.11 0.34 0.38 0.06 0.48 0.38

Median 0.72 0.22 0.42 0.97 0.33 0.55 0.01 0.66 0.37

MICE 0.22 0.00 0.00 0.00 0.11 0.00 0.53 0.01 0.00

Dissimilarity 0.46 0.87 0.00 0.11 0.25 0.00 0.01 0.01 0.00

Relationships 0.00 0.00 0.00 0.00 0.02 0.00 0.40 0.00 0.00

Herbaceous subdatabase

Average 0.69 0.55 0.07 0.07 0.47 0.32 0.01 0.80 0.95

Median 0.89 0.03 0.00 0.19 0.20 0.01 0.00 0.46 0.89

MICE 0.00 0.00 0.00 0.00 0.00 0.36 1.00 0.01 0.00

Dissimilarity 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.07

Relationships 0.00 0.31 0.00 0.00 0.00 0.00 0.36 0.39 0.16

H, vegetative height; LDMC, leaf dry matter content; LM, leaf mass; LS, leaf surface; MICE, Multivariate Imputation by Chained Equations; RH,

reproductive height; SM, seed mass; SNP, seeds number per plant; SS, seed shape; SLA, specific leaf area.

Significant P values (P < 0.05) are in bold.
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plants with trait values of reduced variability and the

mean of the existing trait values is used to predict missing

values within such groups. Shan et al. (2012) showed that

this method is satisfactory to predict trait values when

information at the genus level is available. Instead of

phylogenetic information from another database, the

method considered here uses relationships between traits,

and hence, all the information available within the trait

database and the mathematics involved are simpler. It is

thus comparatively straightforward to apply. On the other

hand, while the method propose by Shan et al. (2012)

needs only at least one trait value per plant, the method

considered here requires several traits per plant/species to

be documented.

Figure 2. Evolution of the MRdAE of five imputation methods in the herbaceous subdatabase with different percentages of missing data for

eight traits (SM, seed mass; LM, leaf mass; LS, leaf surface; SS, seed shape; SLA, specific leaf area; LDMC, leaf dry matter content; H, vegetative

height; RH, reproductive height). The mean of 100 simulations � the standard deviation is shown for each percentage of missing data.
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In the different studies on missing data and imputation,

the distribution of the missing data is a key parameter

(Schafer and Graham 2002; Nakagawa and Freckleton

2008). Three different types of distribution of the missing

data are described in the literature: missing completely at

random (MCAR), missing at random (MAR), and missing

not at random (MNAR). In functional trait databases,

missing data will seldom be MCAR, because the missing-

ness is related to the frequency of the species and their

abundances. Indeed, the probability that a species was

measured and implemented in the functional trait data-

base is higher if this species is frequent and/or abundant

than if it is seldom. Nevertheless, we found no relation-

ships between the functional trait values of the nine traits

and the frequency and average abundance of the species in

our relev�es dataset used for the calculation of functional

diversity indices (below). Therefore, the missingness of the

data in the original trait database was probably not related

to the value of the traits. Regarding the trait values, the

missingness produced by our random deletion was there-

fore similar to the missingness in the original database.

Our results present the error induced by different

methods of imputation at the species level. Functional

trait databases are often used to compute functional

diversity indices of communities, and it is therefore nec-

essary to evaluate the effects of imputation of missing

data at community level.

Effects of the Imputation Methods
for the Calculation of Functional
Diversity Indices

Material and methods

We tested the effect of missing data and the difference

between the methods of imputation on the computation

of three functional diversity indices at the community

level using grassland communities’ data. These indices

were the community-weighted mean value of the trait

(functional identity), its functional range, as well as its

functional divergence. The functional range of the traits

(difference between the minimum and the maximum) is

important to understand the rules of plant community

assemblage (Petchey and Gaston 2002, 2006; Mouchet

et al. 2010). The functional divergence corresponds to the

repartition of the abundance regarding functional identity

within a plant community (Mason et al. 2005; Mouchet

et al. 2010). We chose the functional divergence index

proposed by Schleuter et al. (2010) among the several

indices available for the calculation of functional

divergence.

The functional traits were extracted from the LEDA

trait database (Kleyer et al. 2008), Fig. 3A). We limited

the trait selection to four traits (SLA, SM, H, and LDMC)

often used in grassland studies. The SLA, H, and SM are,

for instance, the traits proposed on the leaf-height-seed

(LHS) model of Westoby et al. (2002), which is useful to

assess the live strategy of the species. Moreover, LDMC

and SLA are important traits in the leaf economic spec-

trum and are often linked with ecosystem function.

The grassland botanical relev�es originated from three

datasets: one from the Swiss Alps (Peter et al. 2008a,b),

one from the Vosges mountains in northeastern France

(Plantureux and Thorion 2005), and another from a

broader range of regions in France from Atlantic to conti-

nental conditions (Michaud et al. 2012). The grassland

relev�es used to represent a large gradient of ecologic filters

(climatic and agricultural management).

Our first attempt involved only relev�es where all the

species have a value for the four traits in the database.

However, only four relev�es fell within this constraint.

Therefore, to start our test with enough data for the spe-

cies present in the relev�es, the missing trait values in the

LEDA database had to be imputed. Imputation was used

on 20 species for H (3% of the data), on 136 species for

LDMC (22%), 69 species for SM (11%), and 96 species

for SLA (15%). The dissimilarity method was used, as it

proved satisfactory for the H, LDMC and the SLA in the

first part of the study. SM, for which the dissimilarity

method was less accurate, had only 11% of missing val-

ues. Species unidentified in the surveys and species with

missing data for the four traits were omitted. Only the

relev�es where the abundance of these unidentified species

was inferior to 5% of the total abundance were kept.

After these modifications, 722 relev�es were available with

606 species.

The use of the dissimilarity imputation before the

insertion of missing data induced some circularity in the

evaluation of the imputation method. However, we think

that the circularity is low. This circularity would be very

problematic if a trait value was imputed twice the same

way. In our work, this probability of double imputation

is very low. Indeed, the imputation of one value depends

on all the different trait values of the other species and

also the missing data on the entire functional trait data-

base. Indeed, the calculation of the dissimilarity would

differ between two calculations if the missing data are not

exactly on the same trait values. The selection of the close

species in the dissimilarity method is related to the calcu-

lation of the Gower dissimilarity and so to the distribu-

tion of missing data in the functional trait database.

Secondly, the calculation of the median of the trait value

of the close species depends also on the presence of miss-

ing data for the functional trait value of these species.

Different other option could have to use: only use the

dominant species in the survey (80% of the abundance)
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or virtually assemble species. The use of only dominant

species would leave out the minor species. If we only

interest of the dominant species, the percentage of miss-

ing data would be quite low and so the necessity of impu-

tation would be less important.

The creation of artificial species assemblages with only

species having a value for the four traits in the database

would have yield unrealistic differences in functional

diversity indices of the communities, because the majority

of these species would have been common and thus ubi-

quist species. Thus, we consider that replacing some miss-

ing trait values in true communities to create a complete

database as comparison point for our study was the most

appropriate option.

Among these 722 relev�es, for each simulation, we ran-

domly selected 50 different relev�es. This random selection

was made 100 times to have 100 sets of 50 plant commu-

nities (Fig. 3B). Each set of relev�es was crossed with the

functional trait database.

We deliberately inserted missing data in the trait data-

base, by randomly deleting some trait values (Fig. 3D),

and so created datasets with different percentages of

missing data (1%, 5%, 10%, 20%, 30%, 40%, and 50%).

For each percentage, the insertion of missing data was

made 100 times (one insertion per set of 50 communi-

ties). These missing data were then replaced using the dis-

similarity, the relationships, or the MICE method

(Fig. 3E) to create functional trait databases with imputed

data. We did not examine imputation by the median or

the average on the calculation of functional diversity indi-

ces, because at the species level, one of the two ecological

methods was always better or as good as the two mathe-

matical methods (Table 2). The 50 communities were

crossed with these trait databases with different percent-

ages of replaced missing data, and functional diversity

indices were computed (Fig. 3F). For the MICE method,

the functional diversity indices were computed for each

of the five imputations and the average value of these five

estimations of the diversity indices was used for the com-

parison. The indices calculated from the values of the

datasets with imputed values were compared to those cal-

culated from the original database (without missing data)

using a Pearson’s correlation test. From this comparison,

we assessed the effect of replacing missing data on the

ranking between the functional diversity indices of 50

grasslands. The P value was calculated for each correlation

between the two rankings for 100 sets of 50 grasslands. In

most studies on functional diversity, the ranking between

communities is more important than the absolute value

of the functional diversity. We thus focused on the effect

of replacing missing data on this ranking. For the discus-

sion, we use the following threshold: If the correlation P

value was not significant for five or more of the 100 sets

of communities, the results obtained by the imputation

(A)

(B)

(C)

(D)

(E)

(F)

Figure 3. General procedure the assessment

of the effects of the imputation methods for

the calculation of functional diversity indices.

(A) a database without missing data was

created from the LEDA database (four traits for

526 species; some replacement of missing

values by the dissimilarity methods where

necessary); (B) 50 relev�es were randomly

selected from a large set of relev�es (this

process was repeated 100 times); (C) 50

relev�es and the trait database were crossed

and functional diversity indices were

computed; (D) missing data were inserted in

the trait database with several percentages; (E)

missing data were replaced with the

dissimilarity and the relationships methods; (E)

these corrected databases were crossed with

the 50 relev�es, and functional diversity indices

were computed; (F) the indices computed from

database without missing values were

compared to the indices computed from the

databases with replaced missing values using a

Pearson’s correlation test.
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methods were considered unsuitable (by similitude with

significant threshold at 5%). The percentage of missing

data for which this threshold was exceeded was estimated

by linear estimation between the simulations with the dif-

ferent levels of missing data.

We also conducted the simulation on the ranking of

the communities for their functional diversity indices

after deleting the species with a missing value (deletion

option, also known as “complete-case analysis”).

Results on the effect of imputation methods
on functional diversity indices

Community-weighted mean (functional identity)

When the missing data were replaced using the dissimi-

larity method, the ranking between grasslands based on

the community-weighted mean (CWM) values was not

affected by the percentage of missing data until more

than 40% of the data were missing for SLA, LDMC, and

H. For the CWM of SM, the ranking was impacted by

the imputation from 31% of missing data upwards

(Table 3). The R Pearson’s coefficients were slightly

higher for H and SM than for SLA and LDMC

(Fig. 4A1). When the missing data were replaced using

the relationships method, the ranking of grasslands based

on the CWM was never affected by the percentage of

missing data for H, SLA, and LDMC. For SM, however,

this ranking was affected as soon as 15% of the data had

to be imputed with the relationships method (Fig. 4A2).

When the missing data were replaced using the MICE

method, only the ranking for SM was affected by the

imputation (from 14% of missing data upwards;

Table 3).

Functional range

With the imputation of missing data using the dissimilar-

ity method, the ranking between grasslands on the func-

tional ranges of SLA and LDMC was never affected by

the percentage of missing data. For SM and H, this rank-

ing was affected by a percentage of 32%, respectively,

40%, or more of missing data (Fig. 4B1). With the impu-

tation of missing data using the relationships method, the

ranking between grasslands for the functional range of

SLA and LDMC was never affected by the percentage of

missing data. For H, the ranking was only significantly

affected by missing data when 45% of data were missing,

while for SM, it was affected as soon as 12% of the data

were missing (Fig. 4B2). Imputation with the MICE

method led to different ranking between the grasslands

compared to the ranking obtained with the original data-

base starting 39% of missing data for H and 17% for SM,

while the ranking was not influenced by the percentage of

missing data for SLA and LDMC (Table 3).

Functional divergence

The R Pearson’s coefficient between functional diver-

gence indices calculated without missing data and with

data imputed with single imputation decreased faster

with increasing percentage of missing data as for the

functional identity of functional range indices (Fig. 4).

With imputation using the dissimilarity method, the

ranking between grasslands for the functional divergence

of SLA, LDMC, and SM was affected by the percentage

of missing data from 31% to 40% of missing data

upwards. The functional divergence of H was affected by

the percentage of missing data starting 25% of data

missing (Fig. 4C1). With imputation using the relation-

ships method, the ranking between grasslands for the

functional divergence of H, SLA, and LDMC was affected

by the percentage of missing data when 33–37% or more

of the data were missing. The functional divergence of

SM was affected by the imputation already starting 5%

of missing data (Fig. 4C2). With the MICE method, the

ranking of the grasslands based on the divergence indices

was not affected by the percentage of missing data

(Table 3).

Table 3. Percentage of missing data at which the P value of the cor-

relation between the ranking of the communities calculated without

missing data and with imputed data became not significant for five of

the 100 sets of communities, using the MICE, the dissimilarity or the

Relationships imputation methods, or the deletion of species with one

missing trait value.

Methods of imputation, resp. deletion

MICE Dissimilarity Relationships Deletion

Functional identity

H \ 45 \ 11

LDMC \ 43 \ 6

SM 14 31 15 10

SLA \ 42 \ 7

Functional range

H 39 40 45 14

LDMC \ \ \ 33

SM 17 32 12 7

SLA \ \ \ 23

Functional divergence

H \ 25 33 10

LDMC \ 31 37 8

SM \ 40 5 7

SLA \ 32 37 10

H, vegetative height; LDMC, leaf dry matter content; MICE, Multivari-

ate Imputation by Chained Equations; SM, seed mass; SLA, specific

leaf area.
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Deletion of species with missing trait values

The ranking between communities was quickly affected

by the deletion of species with missing trait values for the

four functional traits studied: 8% of missing data for

CWM, 19% for functional range, and 9% for the func-

tional divergence in average over the four traits (Table 3).

Discussion of the effects of the imputation
methods on functional diversity indices

The results clearly show the superiority of the tested

imputation methods over the deletion of species with

missing trait values for the estimation of functional diver-

sity indices of grassland communities. They also show

that single imputation methods that can be interpreted in

ecological terms or Multivariate Imputation by Chained

Equations can be used to replace missing data in a func-

tional trait database to calculate functional diversity indi-

ces, with only few effects on the ranking between

communities. None of these methods was able to perform

best for all the traits and indices tested in this study. With

the Multivariate Imputation by Chained Equations, the

ranking of the grasslands was robust for all indices for

the Height, the SLA, and the LDMC. But the accuracy of

the MICE method was not better than the one of the sin-

gle imputation methods based on ecological hypothesis

for the functional identity and functional richness indices.

For the Height, LDMC, and SLA, the relationship method

performed as well that the MICE. For the SM, the dissim-

ilarity method was the most accurate for the functional

identity and range.

Consistently with the results at the species level, the

distribution of the trait values seems to be a key parame-

ter in explaining the robustness of the indices to imputa-

tion. Indeed, the indices calculated with the SM were

more robust when imputation was conducted with the

dissimilarity method. The SM exhibited an unbalanced

distribution in the database with 606 species in contrast

to the other traits. The results for the SM indicate that

the MICE method also has to be used with caution for

traits with an unbalanced distribution, although this was

not obvious at the species level.

Using the dissimilarity method for the SM (unbalanced

distribution) and the relationships method for the other

traits (balanced distribution), the ranking between grass-

lands remained robust with up to 30% of the data missing

for the functional identity (community-weighted mean),

(A1)

(B1)

(C1)

(A2)

(B2)

(C2)

Figure 4. Effect of percentage of missing data

on the R Pearson’s coefficient between

functional diversity indices calculated without

missing data and with imputed data (A) on the

community-weighted mean (A1 with the

dissimilarity method, A2 with the relationships

method); (B) on the functional range (B1 with

the dissimilarity method, B2 with the

relationships method); (C) on the functional

divergence index (C1 with the dissimilarity

method, C2 with the relationships method).

The formats of the dots represent the

functional trait used for the computation of

the indices: Triangle for the seed mass (SM),

diamond for the specific leaf area (SLA), circle

for the leaf dry matter content (LDMC), and

square for the vegetative height (H). Full dots

represent levels of percentage of missing data

where at least 95% of the correlations were

significant (P value < 0.05). Empty dots

represent the simulation where less than 95%

of the correlations were significant

(P value < 0.05).
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the functional range, as well as the functional divergence.

We propose this percentage of missing data as a limit for

the utilization of these single imputation methods. In our

simulations, we randomly inserted the missing data by

deletion. Each species had thus the same probability to

have a missing value. The situation usually encountered in

ecological studies is that the most common and dominant

species have less missing data than the rare and subordi-

nate species. Indices that are more influenced by dominant

species than by minor ones (community mean value and

function divergence) might therefore be, for the same per-

centage of missing data, less affected than in our study.

For this type of indices, the 30% threshold is therefore

conservative. In grassland plant communities, extreme trait

values could be carried by dominant as well as by minor

species, so that the effect of the repartition of the missing

data is probably unsteady for the functional range index.

The errors induced by the imputation of missing values

has yet to be compared with other errors, such as those

induced by the intraspecific variability of functional traits

(Albert et al. 2010a,b).

The 8–19% of missing data threshold for the deletion

method cannot be compared with the 20% of abundance

threshold propose by Garnier et al. (2004). Indeed, they

proposed to measure the functional traits of dominant

species only (no traits measured for the minor species).

In our study, missing data occurred for both dominant

and minor species and could affect one or several traits

per species.

As discussed in the first part of this study, using the

dissimilarity method might underestimate the functional

distance between the species. We could therefore suppose

that this method could be problematic previous to calcu-

lation of the functional range of the communities. How-

ever, the imputation was computed on the functional

trait database with the 606 species. Species with extreme

trait values in a community might not be functionally

isolated in the database, so that the imputed values are

not necessarily forced toward the median of the commu-

nity. The ranking of the communities for their functional

range was similarly affected by the percentage of replaced

data with the dissimilarity as with the relationships or the

MICE methods.

Multivariate functional diversity indices like those pro-

pose by Villeger et al. (2008) were not tested. Thus, the

replacement method proposed here cannot be compared

with the method of the Gower dissimilarity follow by a

PCoA. However, Gower dissimilarity can only be com-

puted between two species with at least one common trait

documented and the PCoA can only be implemented if

all the pairwise distances between species are known. This

method will therefore only be useful for a low percentage

of missing data or/and a large number of traits.

Conclusions

At the species level, single imputation methods based on

ecological hypothesis and multiple imputation by chained

equations induced a lower error on the estimation of

missing trait values than imputation by simple average or

median computation. At the community level, the error

induced by the replacement of missing values with single

imputation methods based on ecological hypothesis or

with multiple imputation by chained equations when cal-

culating the functional identity, functional range, and

functional divergence of plant communities is lower than

that induced by omitting species with a missing value for

a trait. The deletion of species with missing trait values or

the utilization of simple imputation methods that do not

take the functional differences between species into

account (imputation by average or median values) should

therefore be avoided prior to the computation of func-

tional diversity indices using trait databases. Single impu-

tation methods based on ecological hypothesis and

adapted to the distribution of the trait values can be used

instead of multiple imputations by chained equation

when studying the ranking of communities for their func-

tional diversity indices. The ranking of plant communities

for these functional diversity indices was not significantly

altered by imputing missing values with this method until

30% of the data were missing, as compared with calcula-

tion of the indices based on a database without missing

data. For future research, improvement in the imputation

of missing data in functional trait databases might be

achieved by using ecological knowledge in multiple impu-

tation methods.

Acknowledgments

The research leading to these results has received funding

from the European Community’s Seventh Framework

Program (FP7/2007-2013) under the grant agreement no.

FP7-244983 (MULTISWARD).

Conflict of Interest

None declared.

References

Ackerly, D. D., and W. K. Cornwell. 2007. A trait-based

approach to community assembly: partitioning of species

trait values into within- and among-community

components. Ecol. Lett. 10:135–145.

Albert, C. H., W. Thuiller, N. G. Yoccoz, R. Douzet, S. Aubert,

and S. Lavorel. 2010a. A multi-trait approach reveals the

structure and the relative importance of intra- vs. interspecific

variability in plant traits. Funct. Ecol. 24:1192–1201.

956 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Filling the Gap in Functional Trait Databases S. Taugourdeau et al.



Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F.

Boucher, P. Saccone, et al. 2010b. Intraspecific functional

variability: extent, structure and sources of variation. J. Ecol.

98:604.

Azur, M. J., E. A. Stuart, C. Frangakis, and P. J. Leaf. 2011.

Multiple Imputation by Chained Equations: what is it and

how does it work? Int. J. Methods Psychiatr. Res. 20:

40–49.

de Bello, F., J. A. N. Leps, and M.-T. Sebastian. 2005.

Predictive value of plant traits to grazing along a climatic

gradient in the Mediterranean. J. Appl. Ecol. 42:824–833.

de Bello, F., S. Lavorel, S. Diaz, R. Harrington, J. H. C.

Cornelissen, R. D. Bardgett, et al. 2010. Towards an

assessment of multiple ecosystem processes and services via

functional traits. Biodivers. Conserv. 19:2873–2893.

Boeken, B., and S. Moshe. 2006. Linking community and

ecosystem processes: the role of minor species. Ecosystems

9:119–127.

Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N.

Buchmann, D. E. Gurvich, et al. 2003. A handbook of

protocols for standardised and easy measurement of plant

functional traits worldwide. Aust. J. Bot. 51:335–380.

Diaz, S., J. G. Hodgson, K. Thompson, M. Cabido, J. H. C.

Cornelissen, A. Jalili, et al. 2004. The plant traits that drive

ecosystems: evidence from three continents. J. Veg. Sci.

15:295–304.

Fried, G., E. Kazakou, and S. Gaba. 2012. Trajectories of weed

communities explained by traits associated with species’

response to management practices. Agric. Ecosyst. Environ.

158:147–155.

Garnier, E., J. Cortez, G. Billas, M. L. Navas, C. Roumet, M.

Debussche, et al. 2004. Plant functional markers capture

ecosystem properties during secondary succession. Ecology

85:2630–2637.

Gower, J. C. 1971. A general coefficient of similarity and some

of its properties. Biometrics 27:857–871.

Gunton, M. G., S. Petit, and S. Gaba. 2011. Functional traits

relating arable weed communities to crop characteristics. J.

Veg. Sci. 22:541–550.

Hyndman, R. J., and A. B. Koehler. 2006. Another look at

measures of forecast accuracy. Int. J. Forecast. 22:678–688.

Kattge, J., S. Diaz, S. Lavorel, C. Prentice, P. Leadley, G.

Bonisch, et al. 2011. TRY – a global database of plant traits.

Glob. Change Biol. 17:2905–2935.

Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K.

Thompson, M. Sonnenschein, et al. 2008. The LEDA

Traitbase: a database of life-history traits of the Northwest

European flora. J. Ecol. 96:1266–1274.

Klumpp, K., and J. F. Soussana. 2009. Using functional traits

to predict grassland ecosystem change: a mathematical test

of the response-and-effect trait approach. Glob. Change

Biol. 15:2921–2934.

Lin, B. B., D. F. B. Flynn, D. E. Bunker, M. Uriarte, and S.

Naeem. 2011. The effect of agricultural diversity and crop

choice on functional capacity change in grassland

conversions. J. Appl. Ecol. 48:609–618.

Louault, F., V. D. Pillar, J. Aufrere, E. Garnier, and J. F.

Soussana. 2005. Plant traits and functional types in response

to reduced disturbance in a semi-natural grassland. J. Veg.

Sci. 16:151–160.

Mason, N. W. H., D. Mouillot, W. G. Lee, and J. B. Wilson.

2005. Functional richness, functional evenness and

functional divergence: the primary components of

functional diversity. Oikos 111:112–118.

Michaud, A., S. Plantureux, B. Amiaud, P. Carr�ere, P. Cruz,

M. Duru, et al. 2012. Identification of the environmental

factors which drive the botanical and functional

composition of permanent grasslands. J. Agric. Sci. 150:219–

236.

Mokany, K., J. Ash, and S. Roxburgh. 2008. Functional

identity is more important than diversity in influencing

ecosystem processes in a temperate native grassland. J. Ecol.

96:884–893.

Mouchet, M., F. Guilhaumon, S. Vill�eger, N. W. H. Mason,

J.-A. Tomasini, and D. Mouillot. 2008. Towards a consensus

for calculating dendrogram-based functional diversity

indices. Oikos 117:794–800.

Mouchet, M. A., S. Villeger, N. W. H. Mason, and D.

Mouillot. 2010. Functional diversity measures: an overview

of their redundancy and their ability to discriminate

community assembly rules. Funct. Ecol. 24:867–876.

Mouillot, D., S. Vill�eger, M. Scherer-Lorenzen, and N. W. H.

Mason. 2011. Functional Structure of Biological

Communities Predicts Ecosystem Multifunctionality. PLoS

ONE 6:e17476.

Nakagawa, S., and R. P. Freckleton. 2008. Missing inaction:

the danger of ignoring missing data. Trends Ecol. Evol.

11:592–596.

Ordo~nez, J. C., P. M. van Bodegom, J.-P. M. Witte, I. J.

Wright, P. B. Reich, and R. Aerts. 2009. A global study of

relationships between leaf traits, climate and soil measures

of nutrient fertility. Glob. Ecol. Biogeogr. 18:137–149.

Pakeman, R., and H. Quested. 2007. Sampling plant functional

traits: what proportion of the species need to be measured?

Appl. Veg. Sci. 10:91–96.

P�erez-Harguindeguy, N., S. D�ıaz, E. Garnier, S. Lavorel, H.

Poorter, P. Jaureguiberry, et al. 2013. New handbook for

standardised measurement of plant functional traits

worldwide. Aust. J. Bot. 61:167–234.

Petchey, O. L., and K. J. Gaston. 2002. Functional diversity

(FD), species richness and community composition. Ecol.

Lett. 5:402–411.

Petchey, O. L., and K. J. Gaston. 2006. Functional diversity:

back to basics and looking forward. Ecol. Lett. 9:741–758.

Peter, M., P. J. Edwards, P. Jeanneret, D. Kampmann, and A.

L€uscher. 2008a. Changes over three decades in the floristic

composition of fertile permanent grasslands in the Swiss

Alps. Agric. Ecosyst. Environ. 125:204–212.

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 957

S. Taugourdeau et al. Filling the Gap in Functional Trait Databases



Peter, M., A. Gigon, P. J. Edwards, and A. L€uscher. 2008b.

Changes over three decades in the floristic composition of

nutrient-poor grasslands in the Swiss Alps. Biodivers.

Conserv. 18:547–567.

Plantureux, S., and G. Thorion. 2005. Combined prediction

of forage production and biodiversity of permanent

pastures in Vosges Mountains (France). Pp. 221–229

Conference of the FAO-CIHEAM Sub-Network of

Mountain pasture “quality production and quality of the

environment in the mountain pastures of an enlarged

Europe”. Udine, Italy.

R Development Core Team. 2013. R : A language and

Environment for Statistical Computing. R foundation for

Statistical Computing, Vienna, Austria. Available at: http://

www.R-project.org.

Rao, C. R. 1982. Diversity and dissimilarity coefficients – a

unified approach. Theor. Popul. Biol. 21:24–43.

Rubin, D. B. 1996. Multiple imputation after 18+ years. J. Am.

Stat. Assoc. 91:473–489.

Schafer, J. L., and J. W. Graham. 2002. Missing Data: our view

of the state of the art. Psychol. Methods 7:147–177.

Schleuter, D., M. Daufresne, F. Massol, and C. Argillier. 2010.

A user’s guide to functional diversity indices. Ecol. Monogr.

80:469–484.

Shan, H., J. Kattge, P. B. Reich, A. Banerjee, F. Schordt, and

M. Reichstein. 2012. Gap Filling in the Plant Kingdom—

Trait Prediction Using Hierarchical Probabilistic Matrix

Factorization. 29 th International Conferenceon Machine

Learning. Edinburgh, U.K.

Siegel, S., and N. J. Castellan. 1988. Non parametric statistics

for the behavioural sciences. MCGraw-Hill, New York, NY.

Spiegelberger, T., F. Gillet, B. Amiaud, A. Th�ebault, P.

Mariotte, and A. Buttler. 2012. How do plant community

ecologists consider the complementarity of observational,

experimental and theoretical modelling approaches? Plant

Ecol. Evol. 145:4–12.

Van Buuren, S. 2007. Multiple imputation of discrete and

continuous data by fully conditional specification. Stat.

Methods Med. Res. 16:219–242.

Van Buuren, S., and Groothuis-Oudshoorn K. 2011. Mice:

multivariate imputation by chained equations in R. J. Stat.

Softw. 45:1–67.

Van Buuren, S., J. P. L. Brands, C. G. M.

Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully

conditional specification in multivariate imputation. J. Stat.

Comput. Simul. 76:1049–1064.

Villeger, S., N. W. H. Mason, and D. Mouillot. 2008. New

multidimensional functional diversity indices for a

multifaceted framework in functional ecology. Ecology

89:2290–2301.

Walker, B., A. Kinzig, and J. Langridge. 1999. Plant attribute

diversity, resilience, and ecosystem function: the nature and

significance of dominant and minor species. Ecosystems

2:95–113.

Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J.

Wright. 2002. PLANT ECOLOGICAL STRATEGIES: some

leading dimensions of variation between species. Annu. Rev.

Ecol. Syst. 33:125–159.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z.

Baruch, F. Bongers, et al. 2004. The worldwide

leaf economics spectrum. Nature 428:821–827.

Wright, J. P., S. Naeem, A. Hector, C. Lehman, P. B. Reich, B.

Schmid, et al. 2006. Conventional functional classification

schemes underestimate the relationship with ecosystem

functioning. Ecol. Lett. 9:111–120.

958 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Filling the Gap in Functional Trait Databases S. Taugourdeau et al.


