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High-mobility capacitively-induced 
two-dimensional electrons in a 
lateral superlattice potential
T. M. Lu1, D. Laroche1, S.-H. Huang2,3, Y. Chuang2,3, J.-Y. Li2,3 & C. W. Liu2,3

In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit 
interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, 
or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation 
using conventional semiconductor heterostructures, aggressive device processing is often required, 
unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel 
fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced 
two-dimensional electron system, while preserving the host material quality. Using this process flow, 
the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 
4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability 
and high electron mobility allow us to observe sequential emergence of commensurability oscillations 
as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum 
oscillations associated with various closed orbits also emerge sequentially with increasing density. 
We show that, from the density dependence of the quantum oscillations, one can directly extract the 
steepness of the imposed superlattice potential. This result is then compared to a conventional lateral 
superlattice model potential.

In the past few decades, there has been much interest in the physics of two-dimensional electron gases (2DEGs) 
in a lateral superlattice potential. Such systems were the platform for understanding and demonstrating the 
Hofstadter’s butterfly1–5, quantum chaos in an antidot superlattice potential6–8, composite fermions at the Landau 
level filling factor ν = 1

2
 9, and have been proposed to engineer artificial graphene10–16, Bloch oscillators17–20, and 

semiconductor qubits21,22.
Aside from single-layer materials4,5, the conventional starting point for building these lateral superlattice sys-

tems is modulation-doped semiconductor heterostructures, in which electrons transfer from a doped 
electron-supply layer to a quantum well and form a 2DEG23. While electrons in GaAs/AlGaAs heterostructures 
have been the main platform2,3,6,9,24–32 due to the mature material growth technology, other material systems, 
including Si/SiGe33,34, Ge/SiGe35, InAs/GaSb36, and AlAs/AlGaAs37, have been explored. Using various 
nano-patterning tools such as e-beam lithography3,6,9,28,29,36, focused ion-beam24, local oxidation with atomic force 
microscope30,31, interference lithography25,26,33,35, in combination with wet/dry etching6,9,28,33,35,36, ion implanta-
tion26, and/or metal deposition3,25,29–31, a superlattice potential can be imposed onto the underlying 2DEG. To 
impose a sufficiently strong potential, etching through the doped electron-supply layer is usually required. This 
etching, however, significantly damages the host material, and, as such, degrades the electron mobility, or equiv-
alently the electron mean free path. A shortened mean free path masks effects arising from large electron orbits in 
a magnetic field, and also leads to a reduced phase coherence length, making band structure engineering chal-
lenging. One metric for this degradation in material quality is the ratio of zero-magnetic-field mobilities before 
and after patterning (µ µ/s 0), which is typically of the order of 10–100 for deep etched devices6,9,28,32,33,35. Another 
limitation encountered when using doped heterostructures to fabricate superlattices is the limited density range. 
Indeed, it has been shown that density tuning using a capacitively coupled gate is mostly ineffective in such doped 
devices3,29. A popular alternative is to change the electron density through persistent photoconductivity3,6,24,32,33. 
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However, this method is irreversible until a thermal cycling of the device is performed, and the density tuning is 
not precise.

Alternatively, undoped semiconductor heterostructures, in particular GaAs/AlGaAs38–40 and Si/SiGe41 sys-
tems, have been demonstrated to host high-mobility 2D electrons and holes with a wide tunable density range. 
Instead of doping the host material, a gate is used to capacitively induce carriers in the quantum well. Such an 
enhancement-mode heterostructure field-effect transistor architecture has in fact been used in studies of 2D 
electron physics42–44 and engineered to form semiconductor quantum dots for quantum computation45,46. In the 
following, we present a fabrication process flow for building a capacitively induced 2DEG in a lateral superla-
ttice potential. We demonstrate that the device hosts a 2DEG with a wide tunable density range with limited 
mobility degradation. We observe commensurability oscillations in the magneto-resistance, which arise from 
semi-classical cyclotron motions encircling one or several antidots. With increasing density and mean free path, 
contributions from increasingly large orbits appear sequentially. We also observe sequential emergence of quan-
tum oscillations periodic in magnetic field. From the density dependence of these oscillations, we directly extract 
the steepness of the imposed superlattice potential, and compare the results to a conventional antidot superlattice 
model potential. Such a direct measure of the superlattice potential was not achieved in previous studies, where 
the steepness of the potential was only inferred through numerical simulations reproducing the experimental 
data a posteriori6,47.

Results
Superlattice patterning. The starting material used in this study is a standard undoped Si/SiGe quantum 
well heterostructure grown in a ultra-high-vacuum chemical-vapor-deposition system (see Methods). Transport 
properties of induced 2D electrons in an un-patterned device from this material have been reported elsewhere48. 
A hole array with a period d =  200 nm in both directions is defined over a 90 μm ×  180 μm region by locally ion 
milling the top gate (see Methods). Fig. 1a shows a schematic drawing of the cross section of the device. The 
device operates in enhancement-mode, where a positive gate bias greater than the threshold voltage capacitively 
induces electrons in the Si quantum well. Since the gate contains a hole array, the area under each hole is of higher 
potential for electrons, effectively constituting a lateral superlattice potential. In Fig. 1b we display four scan-
ning-electron-micrographs of the top view of the device. The images show that the width of the active Hall bar is 
44 μm, the spacing between the two longitudinal voltage probes is 2.7 squares, the period of the square superlat-
tice is ~200 nm in both directions, and the holes are circular with a diameter of ~110 nm.

Magneto-transport characterization. We performed magneto-transport measurements at T =  0.3 K and 
obtained the longitudinal resistance (Rxx), longitudinal resistivity (ρxx), and the Hall resistance (Rxy) of the device 
(See Methods). The electron density can be extracted from low-field Rxy  (n′ ) and also from high-field 
Shubnikov-de Haas oscillations (n). We use n as the relevant electron density throughout this work, as it has been 
shown that significant deviation in Rxy from the ideal behavior could occur in a 2DEG with a superlattice poten-
tial6,47. Deviations of n′  from n are indeed observed in our system (See Supplementary Information).

In Fig. 2a, we display the measured electron mobility (µs) as a function of n. The mobility increases from 
7.0 ×  104 cm2/V·s at 4.4 ×  1010 cm−2 to 6.4 × 105 cm2/V·s at 1.8 ×  1011 cm−2. To characterize the degradation of 
mobility resulting from the nano-patterning steps, we plot in Fig. 2b the ratio of the mobilities of the superlattice 
sample and of an un-patterned sample (µ µ/s 0). It can be seen that µs  approaches µ0 as n increases, and at 
1.8 ×  1011 cm−2, the degradation is only a factor of 2. In Fig. 2c we convert the mobility for the superlattice sample 
to mean free path. Over the density range, the mean free path increases from 170 nm to over 3 μm.

Commensurability oscillations. Our main result, the longitudinal resistivity ρxx as a function of n and B, 
is plotted in Fig. 3a in logarithmic scale. As n spans a fairly wide range, so does µs, resulting in a dynamic range in 
ρxx as wide as three orders of magnitude. To highlight the important oscillations we are interested in and to facil-
itate visualization of the data, we remove a slow-varying background along the B direction by a 450-mT-wide 
moving average filter and normalize the trace by ρ =xx B 0 for each n. In Fig. 3b an example is shown for 
n =  1.1 ×  1011 cm−2. The upper panel shows the original ρxx and the smoothed background, and the lower panel 
shows ρ∆ xx

N , the normalized ρxx after removing the background. Figure 3c displays ρ∆ xx
N , in linear scale. By com-

paring Fig. 3a,c it is clear that such data processing brings out features otherwise overwhelmed in the original 
plot. Also shown in Fig. 3c are three sets of dashed lines. The black, red, and blue lines represent the locations for 
Landau level filling factors v =  4, 8, and 12, respectively. It is from these Shubnikov-de Haas oscillations that we 
deduce n.

We note that between − 0.5 T <  B <  0.5 T are a series of oscillations whose positions do not scale with n line-
arly, and thus are not consistent with Shubnikov-de Haas oscillations. In Fig. 3d we re-scale the x axis of Fig. 3c to 

n  and focus on data at <B  0.5 T. As can be seen in the plot, four sets of peaks symmetric with respect to B can 
be identified, with positions scaling linearly with n , as indicated by the black dashed lines. We assign these peaks 
to commensuratbility oscillations, arising from cyclotron motion of electrons around one or more antidots.

B-periodic quantum oscillations. Zooming in the low-field ρxx, we can identify more oscillations sym-
metric with respect to B with smaller amplitudes, especially near the high-density end. We show one example in 
Fig. 4a for n =  1.6 ×  1011 cm−2. To gain more insight, we Fourier transform along the B axis with <B  0.5 T to 
reveal B-periodic oscillations. We plot in Fig. 4b the magnitude of the Fourier transform spectra in logarithmic 
scale, with the y-axis λ denoting the oscillation frequency per unit magnetic field (cycles/T). A series of peaks 
with increasingly high frequencies, indicated by black dashed lines, again sequentially emerge as n increases.
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Discussion
The induced 2D electrons in our superlattice device are of very high quality. Even after all the processing steps, the 
electron mobility remains on par with the best reported values for 2D electrons in modulation-doped Si/SiGe 
heterostructres49, which usually receive only minimal processing, i.e., ohmic contact metalization and annealing 
at a temperature around 400 °C, before electrical characterization. The mobility degradation is less than 10 over 
the entire density range, and approaches 2 on the high-density end. This is in sharp contrast to what is commonly 
observed for deep-etched modulation-doped samples6,9,28,32,33,35, and shows that keeping the integrity of the host 
heterostructure by avoiding etching, a novelty of our process flow, helps preserve the electron mobility. This wide 
density range allows us to probe regimes where the path length of an electron orbit is shorter than, comparable to, 
and longer than the zero-magnetic-field mean free path, and to observe a smooth evolution as n increases.

In a magnetic field, electrons execute cyclotron motions with a radius =rc
k
eB
F , where kF is the Fermi wavevec-

tor and e the elementary charge. A peak in magneto-resistivity is expected when the commensurability condition 
=r d2 c , or more generally α=r d2 c , is met, where d is the period of the superlattice and α a constant determined 

by the specific shape of a periodic orbit6. Different peaks correspond to electron orbits with different radii encir-
cling a certain number of antidots, or potentially a closed orbit between 4 antidots27. The resistance peaks can be 
understood in a simple semi-classical picture, where electrons executing periodic cyclotron motions do not con-
tribute to conductivity and are removed from the phase space6. More sophisticated theoretical models show that 

Figure 1. (a) A schematic drawing of the cross section of the device. (b) SEM images of the top view of the 
device. Upper panels: the active Hall bar defined in a larger Hall bar by 6-µm-wide trenches. Lower panels: 
Zoom-in views of the superlattice area. The period of the hole array is 200 nm, and the diameter of the holes is 
110 nm. The red circles represent cyclotron orbits encircling 1, 4, 9, and 16 antidots deduced from magneto-
resistance peaks.
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it is the electrons performing chaotic motions near a periodic orbit in the phase space that are responsible for the 
resistivity peaks50. At any rate, the commensurability condition implies that the magnetic field at which a resistiv-
ity peak occurs is =

α
Bp

k
e d

2 F , i.e., ∼B np , which is exactly what we observe in our sample, as shown in Fig. 3d. 
Deducing rc from Bp and n at each peak, we obtain radii of 116 ±  1, 231 ±  2, 340 ±  3, and 428 ±  1 nm for peaks in 
decreasing order of their magnetic field strength. These radii may represent orbits encircling 1, 4, 9 and 16 anti-
dots, as shown by the red circles in Fig. 1(b). These numbers are consistent with previous observation6, with orbits 
encircling 2 and 10 antidots missing in our data. We note that the orbits that contribute to the magneto-resistivity 
are very sensitive to the exact superlattice potential6, and it is not surprising that we observe a different set of 
orbits. A striking feature of the data is the smooth evolution and sequential emergence of these peaks. To observe 
a resistivity peak due to one specific orbit, it requires that electrons do not experience scattering during one cycle 
of motion, or otherwise the effect would be destroyed. One metric we have for the scattering rate is the mean free 
path. The criteria for observing a resistivity peak is that the zero-magnet-field mean free path is longer than the 
orbit path length. We mark the circumference πr2 c and the density at which a peak is first identifiable on the 
( )l nmfp  plot in Fig. 2c. The onset density of the last three peaks approximately follows ( )l nmfp , giving weight to this 

criteria. The discrepancy between this criteria and the onset of the first peak, representing electrons encircling a 
single antidot, is most likely caused by the presence of a resistance peak at low densities before the Landau level 
filling factor v =  8. The sequential emergence of commensurability oscillations demonstrates the strength of this 
device architecture, which allows for a wide, continuous, repeatable density range and its associated wide ranges 
of mobility and mean free path.

The sequential emergence of B-periodic oscillations with increasingly high frequencies, shown in Fig. 4b, is 
also enabled by the wide density range and high electron mobility in this unique device architecture. Starting 
from the peak with the lowest frequency, we denote the position of the ith peak as λi. The λ1 peak is weakly  
n-dependent and corresponds to approximately 10 cycles/T, or equivalently a period of 0.1 T. This period is inter-
estingly very close to /h ed2. In fact, such B-periodic oscillations with a period commensurate with the superlattice 
lattice constant have also been previously observed with 2D electrons in an antidot superlattice potential27,28,30,31,51, 
and are attributed to quantum oscillations of an electron orbit encircling one antidot27,52,53. We thus assign λ1 to 
the same physical origin. The other B-periodic peaks λ2 to λ6 are associated with increasingly bigger closed orbits, 
and emerge sequentially as lmfp increases with n. These higher-order oscillations have not been clearly observed in 
previous studies, presumably due to strong scattering in these more disordered samples27. These orbits, however, 
are sensitive to the superlattice potential due to their chaotic nature. It will require an accurate model of the 
potential and complicated numerical simulations to extract the exact paths of the orbits.

For an infinitely sharp, muffin-tin-like antidot superlattice potential, the shape of the constant energy contour 
at the Fermi energy is independent n, and so are the areas of closed electron orbits around one or multiple anti-

Figure 2. (a) Electron mobility µs as a function of electron density n for the superlattice sample at T =  0.3 K.  
(b) The ratio of mobilities of the superlattice sample and an un-patterned sample (µ0) versus density n. (c) The 
mean free path lmfp for the superlattice sample calculated from the mobility curve. The empty circles mark the 
onset of commensurate oscillations.
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dots. For a soft potential on the other hand, the area of the constant energy contour at the Fermi energy changes 
significantly as the Fermi energy varies, and so do the electron orbits. The density dependence of λi is thus a 
measure of the sharpness of the imposed superlattice potential, since the oscillation frequency in magnetic field 
is directly proportional to the orbit area. The six peaks observed here can be empirically fit by /C ni , where Ci 
is a fitting parameter for λi. We obtain Ci =  2.81 ±  0.02, 4.62 ±  0.02, 6.86 ±  0.04, 9.49 ±  0.07, 12.64 ±  0.08, and 
16.1 ±  0.2 ×  106/T·cm for i =  1–6, respectively. The empirical fitting curves are shown in Fig. 4b as black dashed 
lines. We note that the square-root dependence may be coincidental but provides a convenient single-parameter 
empirical description of our data.

Many previous theoretical studies on lateral square superlattices assumed a potential in the form of 
π π β

U cos cosx
d

y
d0 , where U0 represents the strength the potential and β measures the sharpness47,50,52–55. To 

evaluate whether the superlattice potential in our device is considered sharp or soft, we assume a model superla-
ttice potential in the same form, calculate the area Amodel of a constant energy contour surrounding a single anti-
dot at the Fermi energy as a function of n for given U0 and β. We optimize the fitting by minimizing the error 
between the calculated ( )A nmodel  and ( )A n1 , which is the area of the λ1 peak, obtained from λ/ = /A h e1 1 . In 
Fig. 4c we plot ( )A n1  together with the optimal ( )A nmodel . From the fitting we obtain U0 ~ 1.6 meV and β ~ 0.26. 
The resulting model potential is shown in Fig. 4d. As can be seen in Fig. 4c, the widely adopted model potential 
does not describe the actual potential very well, and thus any theoretical analysis based on a potential of this form 
should be done with caution. Nevertheless, the obtained β still qualitatively characterizes the softness of the 
superlattice potential. In the literature, β =  64 refers to a hard, muffin-tin-like potential, whereas β =  4 character-
izes a soft superlattice potential. Our result is therefore far on the soft end. In our device the superlattice gate is 
separated from the 2DEG by a 30 nm-thick oxide layer and a 100 nm-thick SiGe barrier. Since the total thickness 
of the two intermediate layers is comparable to the diameter of the holes and the period of the superlattice, the 
potential modulation is expected to be soft in such Si quantum wells, as the numerical analysis suggests.

Figure 3. (a) Longitudinal resistivity ρxx as a function of n and B in logarithmic scale. (b) Upper panel: a line 
cut of ρxx at n =  1.1 ×  1011 cm−2 in linear scale is shown as the black line. Also plotted, as a red dashed line, is the 
smoothed background obtained by a 450-mT moving average filter. Lower panel: subtracting the smoothed 
background from ρxx and normalizing to the zero magnetic field resistivity ρxx

0  help visualize the oscillations 
over such a wide dynamic range in resistivity. (c) The same data as in (a) but with the background removed, 
normalized to ρxx

0 , and plotted in linear scale. The black, red, and blue dashed lines represent, from left to right, 
the locations for Landau level filling factors v =  4, 8, and 12, respectively. (d) The same data as in (c), but with 
the x axis changed to n  and a smaller range for the y axis. The linear black dashed lines are guides to the eye.
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In summary, we present a novel process flow for making enhancement-mode heterostructure field-effect tran-
sistors with a lateral superlattice potential imposed on the capacitively induced 2DEG. The process flow preserves 
the quality of the underlying heterostructure, characterized by a small mobility reduction after patterning. The 
device architecture allows for a wide tunable density range, which enables our observation of sequential emer-
gence of commensurability oscillations and quantum oscillations. From the density dependence of the quantum 
oscillations we are able to extract the sharpness of the superlattice potential directly.

Currently, two outstanding challenges in the area of conventional, laterally modulated 2D electrons are to 
observe definitive evidence of the Hofstadter’s butterfly3 and to make artificial graphene using semiconductor 
heterostructures14,15. Both tasks require a reasonably strong potential modulation and, perhaps more importantly, 
a relatively disorder-free starting 2D electron system. One approach toward artificial graphene, as was adopted 
by Gibertini et al.11 and Singha et al.12, is to etch modulation-doped starting material into tunnel-coupled quan-
tum dots with a honeycomb superlattice. While interesting effects were indeed observed, the device showed low 
density and high resistivity after fabrication, and the linear energy-momentum dispersion remains elusive in 
transport experiments. An alternative approach is to make an antidot superlattice with triangular symmetry10,13. 
The process flow presented here is naturally compatible with this approach. Additionally, it was argued that such 
antidot superllatice may be more robust against disorder16. We thus believe that the architecture presented here 
may serve well as the platform for these experiments, and may enable new studies of band engineered materials 
with preserved host material quality and a wide tunable density range.

Methods
Material growth. The starting material used in this study was grown in a ultra-high-vacuum chemical-va-
por-deposition system. The material stack consisted of a 10 Ω ·cm p-type Si (100) substrate, a 1.4-µm SiGe graded 
buffer layer, a 3-µm relaxed SiGe buffer layer with Ge composition of 14%, a 20-nm strained Si layer, a 100-nm 

Figure 4. (a) ρ∆ xx
N  for n =  1.6 ×  1011 cm−2 at low magnetic fields. (b) Amplitude of the Fourier spectra in 

logarithmic scale, obtained by Fourier transforming the data between B =  − 0.5 T and  =  0.5 T for every n. The 
black dashed lines are empirical fits of the form λ = /C ni i . (c) Assuming the model potential is in the form of 

π π β
U cos cosx

d
y
d0 , we optimize U0 and β to obtain the best fitting between the deduced area A1 of the 

electron orbit encircling one antidot versus n, and the area Amodel of a constant energy contour surrounding a 
single antidot at the Fermi energy. The obtained optimal U0 and β are 1.6 meV and 0.26. (d) The resulting model 
potential.
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relaxed SiGe buffer layer with Ge composition of 14%, and a 2-nm Si cap. The strained Si layer serves as a quan-
tum well for electrons in this heterostructure.

Sample fabrication. Fabrication of the superlattice device started with ion implantation for ohmic contact 
formation. Phosphorus was implanted at 20 keV and 75 keV at a dose of 5 ×  1014 cm−2 for both implant energies. 
The implanted dopants were activated by a rapid-thermal-anneal at 625 °C for 10 sec. The reduced thermal budget 
preserved the integrity of the strained Si quantum well56. Insulation between the gate and the ohmic contacts was 
achieved by depositing 30 nm of Al2O3 in an atomic-layer-deposition system. A blanket metal gate, consisting of 
2-nm Ti and 40-nm Au, was then deposited. Ion milling was done to pattern the metal gate into a Hall bar. The 
implanted regions were contacted by locally etching away the insulator and depositing metal bond pads consist-
ing of 2-nm Ti and 50-nm Au. The sample was then coated with PMMA with molecular weight of 950 K diluted 
in chlorobenzene to 4% for e-beam lithography. A hole array with a period of 200 nm in both directions was pat-
terned in a rectangular area of 90 μm ×  180 μm at the center of the device. Additional edge lines were also written 
to shrink the original Hall bar to a smaller one. After patterning, the sample was etched by ion milling to form the 
target superlattice with the e-beam resist acting as the etch mask. Etch stop was provided by the Al2O3 layer, as the 
selectivity of Au versus Al2O3 by ion milling is close to 2057.

Measurement setup. Magneto-transport measurements were performed in a 3He cryostat with a base tem-
perature of 0.3 K. All data were taken without illumination at the base temperature. Quasi d.c. measurements were 
done at 23 Hz. A constant bias of 1 mVrms was supplied at one current lead, while the current through the device, 
the longitudinal voltage drop, and the transverse voltage drop were measured with standard lock-in techniques. 
The longitudinal resistance (Rxx), longitudinal resistivity (ρxx), and the Hall resistance (Rxy) were then calculated. 
The gate voltage (V) was swept unidirectionally at a fixed magnetic field (B), and B was incremented by 3 mT after 
each voltage scan.
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