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Abstract

Research based on secondary analysis of data stored in electronic health records (EHR)

has gained popularity, but whether the data are consistent with those collected under a

study setting is unknown. The objective is to assess the agreement between data obtained

in a prospective study and routine-care data extracted retrospectively from the EHR. We

compared the data collected in a longitudinal lifestyle intervention study with those recorded

in the EHR system over 5 years. A total of 225 working adults were recruited at an academic

institution between 2008–2012, whose EHR data were also available during the same time

period. After aligning the participants’ study visit dates with their hospital encounter dates,

data on blood pressure, body mass index (BMI), and laboratory measurements (including

high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, and total choles-

terol) were compared via a paired t-test for equivalence with pre-specified margins. Sum-

mary statistics were used to compare smoking status and medication prescriptions. Overall,

data were consistent between the two sources (i.e., BMI, smoking status, medication pre-

scriptions), whereas some differences were found in cholesterol measurements (i.e., HDL

and total cholesterol), possibly due to different lab assays and subject’s fasting status. In

conclusion, some EHR data are fairly consistent with those collected in a clinical study,

whereas others may require further examination. Researchers should evaluate the consis-

tency and quality of EHR data and compare them with other sources of data when possible.

Introduction

The infrastructure supporting electronic health records (EHRs) in the U.S. healthcare systems

has expanded dramatically over the past decade. Secondary use of EHR data is appealing to the
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research community due to the reduced cost and time associated with data collection. Since

the National Institutes of Health made leveraging EHRs for biomedical research a priority,

researchers have been eagerly identifying and developing efficient methods for data accrual,

integration, and analysis. For example, a growing number of large-scale biobanks have begun

connecting dense, longitudinal EHR data with biorepositories among enrolled patients,

thereby generating a new repository for medical research [1, 2].

While EHR data have great potential, a challenge is the assessment of their quality. It is

commonly accepted that the quality and accuracy of the clinical data are not comparable to

research standards due to differences in priorities between clinical and research settings [3].

Studies examining the validity of EHR data at the patient level, however, are rather limited and

typically summarize inconsistencies between patient self-report and EHR documentation [4–

7]. There is a need for more comprehensive evaluation of the utility, accuracy, and reliability

of EHR data compared to more traditional sources of research data.

The present study seeks to assess the agreement between data obtained under a rigorous

prospective study setting and prospective routine-care data for the same individuals, extracted

from a university hospital data warehouse. The data elements included systolic blood pressure

(SBP), body mass index (BMI), high-density lipoprotein cholesterol (HDL), low-density lipo-

protein cholesterol (LDL), total cholesterol, and smoking status, and medication prescriptions.

Materials and methods

Study design

The investigation evaluated a longitudinal intervention study of generally healthy working

adults without uncontrolled disease that focused on maintaining health under the auspices of

the Emory/Georgia Tech Predictive Health Institute (Atlanta, GA, USA). The details of the

study protocol has been described previously [8]. Briefly, a total of 711 Emory University or

Healthcare employees were enrolled in 2008–2012. Each subject was assigned a health partner,

who worked with the individual to establish a personalized action plan promoting a healthy

lifestyle. Subjects were followed for five years, with visits at six and twelve months, followed by

annual visits. During each visit, blood pressure (average of three measures) and BMI were

measured and blood samples were taken to monitor health status. The study was approved by

the institutional review board of Emory University. Written informed consent was obtained

from all participants.

A total of 394 consented to the use of their EHR data for researches, and data of 225 were

electronically available. We aligned the time points of measurements from the two data sources

such that the baseline hospital visit fell within 90 days prior to the study baseline visit, to avoid

any potential intervention effect. For each follow-up visit, EHR data had been obtained within

+/- 45 days of the study visit. Fig 1 shows numbers of subjects with available data for SBP,

BMI, and lipid profiles after this data alignment procedure. All the subjects were fasting during

study visits and their blood samples were analyzed by Quest Diagnostics Lipid Panel, but fast-

ing was not required during Emory hospital visits and the lipid profiles were tested using Beck-

man Coulter AU5800 analyzers [9]. Medication use at baseline visit were obtained by

prescription data (EHR) and self-report questionnaires (clinical study). The medication data

were categorized into yes/no for hypertension, diabetes control, and lipid lowering by carefully

reviewing individual medication names by two cardiologists. For example, “Avapro” was cate-

gorized as hypertension and diabetes medication, “Simvastatin” was categorized as lipid lower-

ing medication.
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Statistical analysis

The distributions of variables of interest were compared using kernel density plots and counts

(percentages). To compare SBP, BMI, and lipid measurements, concordance correlation coef-

ficient (CCC) and Bland–Altman plots were used to estimate the overall concordance and

agreement between the two data sources. Paired t-tests for equivalence using two one-sided

tests procedure [10, 11] were conducted by setting the margins at 5 mmHg for SBP, 0.5 kg/m2

for BMI, 5 mg/dL for total cholesterol, triglycerides, and LDL, and 2 mg/dL for HDL account-

ing for natural day-to-day variations [12, 13]. Cohen’s kappa (κ) was calculated for medica-

tions and smoking data. R 3.6.0 was used for analysis, and the significance level was 0.05.

Results

Among the 225 consented participants available in the EHR, the mean (SD) age of participants

was 50 (9.6) years (age range 24–77 years); 59% were female, and 41% were black. The charac-

teristics of the two subgroups with SBP and BMI data were similar to the 225 participants,

while those with lab data (N = 75) were 3 years older on average, and only 29% were blacks.

Fig 2 shows the individual-level trajectories of SBP and BMI over time from four randomly

selected participants, and the distributions of data from the two sources. Although the trajecto-

ries of SBP did not entirely overlap, the mean difference in SBP across all repeated measure-

ments was 0.62 mmHg (95% CI = [-0.60, 1.83]; CCC: 0.54). BMI appeared to be a robust

measure with a mean difference of 0.20 kg/m2 (95% CI = [0.12, 0.29]; CCC: 0.98). Fig 3 shows

the density and scatter plots of HDL, LDL, triglycerides, and total cholesterol baseline mea-

surements. The total cholesterol and triglycerides distributions appear to be somewhat differ-

ent. After accounting for all the repeated measurements, the clinical data indicated

Fig 1. Numbers of participants (N) and numbers of observations (n) in various comparisons between standard clinical measurements an EHR data.

https://doi.org/10.1371/journal.pone.0236189.g001
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significantly higher HDL concentrations than the EHR data, with a mean difference of 6.76

mg/dL (95% CI = [5.35, 8.18]; CCC: 0.81). Similarly, the mean of total cholesterol was 9.26

mg/dL (95% CI = [5.27, 13.25]; CCC: 0.77) higher in the clinical data vs. EHR. Nevertheless,

both triglycerides and LDL measurements were similar with mean differences of 1.46 mg/dL

(95% CI = [-7.11, 10.03]; CCC: 0.78) and 1.42 mg/dL, 95% CI = [-1.71, 4.55], CCC: 0.83),

respectively.

Additionally, medications for hypertension, diabetes, and dyslipidemia as well as smoking

status at study baseline, were compared. Self-reported medications were compared with pre-

scriptions documented in the EHR. Among the 225 participants, 206 (92%), 222 (99%), and

216 (95%) had consistent medication use for hypertension (κ = 0.74), diabetes (κ = 0.84), and

dyslipidemia (κ = 0.87), respectively. Specifically, the percentages of under- and over-reporting

of hypertension and diabetes medications were equal in the clinical study. Nine people pre-

scribed with statins (according to their EHR) did not report them. Smoking status was consis-

tent in 95% of the comparisons, with 10 participants reporting smoking in the study but non-

smoking in the EHR, and 2 reporting non-smoking in the study but smoking in the EHR.

Discussion

We demonstrated that, in general, measurements of BMI, and medication prescription/use in

the study setting are by and large consistent with those documented in the EHR system. Given

that measurements of blood pressure can be affected by various factors, they may not be com-

parable between the two data sources if one wishes to focus on individual-level data. When

blood pressure measurements are handled in an aggregated form (e.g., mean difference),

which is common for studies using EHR data, our findings suggest that EHR data are consid-

erably consistent with the clinical data. This is encouraging for researchers who leverage

Fig 2. Examples of systolic blood pressure (a) and body mass index measurements (b) of 4 subjects, obtained from the Predictive Health clinical study (solid line) and

the EHR system (dashed line) over five years.

https://doi.org/10.1371/journal.pone.0236189.g002
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existing EHR data in their studies. On the other hand, there appears to be a certain degree of

discrepancy in lipid measurements, specifically with respect to lower levels of HDL and total

cholesterol observed in the EHR system.

Several reasons possibly account for these observed differences. The differences in blood

pressure could be due to different numbers of measures and resting status. Blood pressure was

typically obtained by one single measure during clinic visit, whereas during the study visit, it

was an average of 3 measures after relaxation. The inconsistencies in lipid component mea-

surements could be due to differences in measurement time (diurnal variation), fasting status,

and lab assays. A study investigated within-person variation in serum lipids reported a geo-

metric mean of the within-person standard deviation of 5 mg/dL for total cholesterol and 1.5

mg/dL for HDL cholesterol with a median of 4 days blood collection, and the variation

increased as collection interval increased [13]. Another study examined changes in lipids after

meal compared with fasting in the general population and found a mean change of 3.6 mg/dL

in total cholesterol and triglycerides [14]. Considering the magnitude of fluctuations reported

in previous studies and that in our current study the EHR data were extracted within +/- 45

days of the study visit date, our observed differences between the clinical study and the EHR

data may be reasonable. In addition, the fact that lipid cholesterol measured by two different

lab assays could be responsible for the differences. Lastly, the self-reported information on

medication use and EHR prescription data had satisfactory agreement, which was similar to a

study using pharmacy records [15]. When there are discrepancies between the two data

sources, the EHR mediation prescriptions should be accurate given potential recall bias in the

self-reported medication use data.

Although there have been a number of studies assessing the consistency between a patient’s

medical record and self-reported data [4–7, 16]. our study is the first that examines the agree-

ment between data obtained under a rigorous study setting versus those obtained from EHR

data extraction. The findings imply caution when comparing and aligning data across different

sources. One limitation of our study is the modest sample size after aligning data from two

sources, especially the laboratory data. Also, our data were obtained from a single center,

which may not be generalized to other institutions or places. Future work should investigate

the reasons of inconsistencies in lipid measurements and expand the study to explore other

data types.
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