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Abstract: The element stoichiometry of bacteria has received considerable attention because of their
significant role in marine ecosystems. However, relatively little is known about the composition of
major structural elements of the unicellular heterotrophic protists—thraustochytrids, despite their
widely recognized contribution to marine nutrient cycling. Here, we analyze the cell volume and
elemental C, N, H, and S cell content of seven cultured thraustochytrids, isolated from different
marine habitats, in the exponential and stationary growth phases. We further derive the relationships
between the cell volume and elemental C and N content of the cultured thraustochytrids. The cell
volumes varied significantly (p < 0.001) among the isolates, with median values of 96.9 and 212.5 µm3

in the exponential and stationary phases, respectively. Our results showed a significantly higher
percentage of C (64.0 to 67.5) and H (9.9 to 13.2) but a lower percentage of N (1.86 to 2.16) and S
(0.34 to 0.91) in the stationary phase, along with marked variations of C and N fractions among
isolates in the exponential phase. The cell C (5.7 to 203.7 pg) and N (0.65 to 6.1 pg) content exhibited
a significant (p < 0.001) linear relationship with the cell volume (27.7 to 510 µm3). On further analysis
of the relationship across the two growth phases, we found the equation (cell C (pg) = 0.356 ×
cell volume (µm3) + 20.922) for stationary phase cells more appropriate for C estimation of natural
thraustochytrids. This study provides the first experimental evidence of higher cell C density than
the current estimate and relatively larger C contribution of thraustochytrids than bacteria to the
marine organic pool.

Keywords: labyrinthulomycetes; marine; cultured thraustochytrids; elemental composition; carbon
density; nitrogen density; biomass

1. Introduction

Labyrinthulomycetes are widely distributed, saprotrophic, or only weakly para-
sitic fungus-like microorganisms, ubiquitous in estuarine and marine environments [1].
The morphologically described labyrinthulomycetes consist of a small group of almost
exclusively marine genera—the thraustochytrids—with typically saprotrophic or bacte-
riotrophic, and occasionally holozoic nutrition [1,2]. Most thraustochytrids produce a
fine ectoplasmic network of rhizoid-like threads that aid in anchoring to particulates and
absorption of nutrients [3]. The presence of extensive ectoplasmic nets with highly degrada-
tive enzymes facilitates thraustochytrids in breaking down the complex, often recalcitrant
organic matter [4]. Research over the last few decades has demonstrated that members of
thraustochytrids thrive on dead autochthonous, as well as allochthonous, plant materials
such as algal, mangrove, and seagrass detritus [2]. Thraustochytrids are also reported to
occur in patches of very high density in the water column [5–7] and in fish farm-impacted
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seagrass sediments [8]. Further, their association with chlorophyll a and particulate organic
C [6] and abundant presence in the oceanic waters [5] suggest their role in the degradation
of autochthonous oceanic material. Apparently, thraustochytrids play an important role in
the remineralization of complex organic materials in marine ecosystems.

The biomass of thraustochytrids has previously been assessed indirectly in some studies
using direct detection techniques [5,9–14] and flow cytometry [7,15]. Because of their high cell
volume and C content, the biomass of thraustochytrids can approach that of bacteria in several
ocean ecosystems [5–7,12,13]. In addition, they have been reported to occur at higher numbers
than fungi in the water column [2] and were approximately equally abundant as fungi on the
0.2 µm filters [16]. The cells (10–20 µm average diameter) of thraustochytrids, which contain a
large amount of polyunsaturated fatty acids (e.g., docosahexaenoic acid and eicosapentaenoic
acid) with a high cholesterol concentration [17–19], are well within the preferred range of
food particle size and can be grazed efficiently by zooplankton [8,20,21]. Inarguably, the
large biomass contribution of thraustochytrids to microbes associated with particles and their
serving as a food source for the zooplankton suggests their substantial role in marine C cycling
and the food web [16,22].

Despite a growing body of evidence suggesting the significance of thraustochytrids in
marine ecosystems, there is limited information regarding their elemental composition and
biomass quantification. Similar to bacteria, the elemental composition of thraustochytrids
determines the quality of the food material that is transferred to a higher trophic level via
grazing [23]. The elemental composition also controls whether the particular microorgan-
ism excretes or consumes mineral nutrients [24]. Moreover, as microorganisms constitute
the majority of living biomass in marine ecosystems, the knowledge about the contribution
of particular organisms to the organic C pool is essential in understanding the trophic
functioning of marine food webs [22,25].

In this study, we measured the major structural elements (C, N, H, and S) in cultured
thraustochytrids by an elemental analyzer and determined the relationship between the cell
biomass and volume. The objectives were to describe the variation of elemental composition
during the growth of thraustochytrids under laboratory conditions and understand how
the same growth medium affects the elemental content and elemental content-volume
ratios of different isolates. This study also provides the statistical model to estimate the
biomass C of natural thraustochytrids.

2. Results
2.1. Cell Mass and Volume

The cell mass values of seven different thraustochytrid isolates ranged from 11.4 ± 3
(PKU#SW8) to 82.1 ± 5.5 pg (PKU#Mn4) in the exponential phase, and from 79.1 ± 1.7
(PKU#SW8) to 306.4 ± 20 pg (PKU#Mn4) in the stationary phase (Figure 1a). The values
varied significantly (p < 0.001) among the isolates, with the median value of 35.2 ± 10.6 (median
± standard error) and 167.5 ± 29.3 pg in the exponential and stationary phases, respectively.
Compared to the exponential phase cells, the stationary phase cells of all the isolates showed a
marked increase in their dry weight mass.

The cell diameter of the exponential phase cells ranged from 3.75 ± 0.18 to 7.15 ± 0.22 µm
while that of the stationary phase cells ranged from 5.72 ± 0.13 to 9.91 ± 0.18 µm (Figure 1b).
All the isolates showed an increase in their cell diameter during growth. The cell volume of the
isolates ranged from 27.7 ± 4.0 (PKU#SW8) to 191.7 ± 17.5 µm3 (PKU#Mn4) in the exponential
phase, and from 97.9 ± 6.5 (PKU#Mn16) to 510 ± 27.9 µm3 (PKU#Mn4) in the stationary phase
(Figure 1c). Similar to cell mass, the cell volumes varied significantly (p < 0.001) among the
isolates, with the median values of 96.9 ± 22.8 and 212.5 ± 54 µm3 in the exponential and
stationary phases, respectively. The stationary phase cells of all the isolates exhibited a marked
increase in their volumes.
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Figure 1. (a) Cell mass, (b) cell diameter, and (c) cell volume of different thraustochytrid isolates in 
the exponential (24 hours) and stationary (96 hours) phases of growth. Each bar represents the 
mean ± SD of triplicate samples. 
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isolates in the exponential phase (coefficient of variation (CV) = 8.5%) was markedly 
higher than that in the stationary phase (CV = 2.1%). Between the exponential (median: 
59.6% ± 1.9%) and stationary (median: 66.5% ± 0.5%) phases, the cell C fraction showed a 
significant (p < 0.01) increase.   

Figure 1. (a) Cell mass, (b) cell diameter, and (c) cell volume of different thraustochytrid isolates in
the exponential (24 h) and stationary (96 h) phases of growth. Each bar represents the mean ± SD of
triplicate samples.

2.2. Elemental Composition

The cell C fraction (%) of the isolates ranged from 50.3 ± 1.02 (PKU#SW8) to 62.4 ± 1.42
(HNHK-100) in the exponential phase, and from 64.0 ± 0.20 (PKU#SW7) to 67.5 ± 0.90
(PKU#Sed1) in the stationary phase (Table 1). The variation of cell C fraction among the isolates
in the exponential phase (coefficient of variation (CV) = 8.5%) was markedly higher than
that in the stationary phase (CV = 2.1%). Between the exponential (median: 59.6% ± 1.9%)
and stationary (median: 66.5% ± 0.5%) phases, the cell C fraction showed a significant
(p < 0.01) increase.
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Table 1. Elemental composition of different thraustochytrid isolates in exponential and stationary phases of growth.

Growth Phase Isolate C (%) N (%) H (%) S (%) C:N:H:S

Exponential
(24 h)

G110 61.10 ± 0.81 4.29 ± 0.05 9.28 ± 0.09 1.00 ± 0.02 61:4:9:1

H100 62.43 ± 1.42 3.69 ± 0.50 9.47 ± 0.19 0.91 ± 0.03 62:4:9:1

Mn16 51.23 ± 0.17 6.73 ± 0.16 7.90 ± 0.03 1.21 ± 0.09 51:7:8:1

Mn4 59.56 ± 0.44 3.42 ± 0.06 8.57 ± 0.52 0.95 ± 0.19 60:3:9:1

Sed1 60.39 ± 0.05 3.38 ± 0.06 9.13 ± 0.01 1.10 ± 0.05 60:3:9:1

SW7 59.64 ± 1.47 3.82 ± 0.24 9.01 ± 0.20 1.09 ± 0.00 60:4:9:1

SW8 50.27 ± 1.02 5.71 ± 0.16 7.86 ± 0.12 1.82 ± 0.07 50:6:8:2

Stationary
(96 h)

G110 64.28 ± 0.43 2.16 ± 0.10 13.90 ±0.22 0.34 ± 0.01 640:20:140:3

H100 65.05 ± 0.27 1.89 ± 0.10 13.24 ±0.22 0.36 ± 0.01 325:10:65:2

Mn16 66.94 ± 1.07 2.14 ± 0.12 10.57 ±0.22 0.46 ± 0.01 134:4:22:1

Mn4 66.46 ± 0.92 1.98 ± 0.05 9.90 ±0.34 0.49 ± 0.01 132:4:20:1

Sed1 67.50 ± 0.90 1.91 ± 0.08 11.23 ±0.22 0.44 ± 0.01 340:10:55:2

SW7 64.01 ± 0.20 1.86 ± 0.05 11.90 ±0.22 0.41 ± 0.01 160:5:30:1

SW8 66.57 ± 0.65 1.90 ± 0.24 9.93 ±0.07 0.91 ± 0.07 670:20:100:9

Note: Each value represents the mean ± SD of triplicate samples.

The cell N fraction (%) of the isolates ranged from 3.38 ± 0.06 (PKU#Sed1) to 6.73 ± 0.16
(PKU#Mn16) in the exponential phase, and from 1.86 ± 0.05 (PKU#SW7) to 2.16 ± 0.12 (GXBH-
110) in the stationary phase (Table 1). The variation of cell N fraction among the isolates in
the exponential phase (CV = 29.1%) was significantly higher than that in the stationary phase
(CV = 6.3%), a pattern similar to that of the cell C fraction. However, in contrast to the cell C
fraction pattern, the cell N fraction decreased (p < 0.001) between the exponential (median:
3.8% ± 0.49%) and stationary (median: 1.9% ± 0.05%) phases.

The cell H fraction (%) of the isolates ranged from 7.86 ± 0.12 (PKU#SW8) to 9.47 ± 0.19
(HNHK-100) in the exponential phase, and from 9.90 ± 0.34 (PKU#Mn4) to 13.24 ± 0.22 (GXBH-
110) in the stationary phase (Table 1). The variation of cell H fraction among the isolates in the
exponential phase (CV = 7.5%) was lower than that in the stationary phase (CV = 13.7%), which was
in contrast to the cell C and N fractions pattern. Between the exponential (median: 9.0% ± 0.2%)
and stationary (median: 11.23% ± 0.6%) phases, the cell H fraction showed a significant (p < 0.01)
increase.

The cell S fraction (%) of the isolates ranged from 0.91 ± 0.03 (HNHK-100) to 1.82 ± 0.07
(PKU#SW8) in the exponential phase, and from 0.34 ± 0.01 (GXBH-110) to 0.91 ± 0.07
(PKU#SW8) in the stationary phase (Table 1). The variation of cell S fraction among the
isolates in the exponential phase (CV = 26.7%) was lower than that in the stationary phase
(CV = 40.0%), which was similar to the pattern of cell H fraction. Between the exponential
(median: 1.09% ± 0.12%) and stationary (median: 0.44% ± 0.07%) phases, the cell S fraction
showed a significant (p < 0.001) decrease.

The C/N ratio of the isolates in their exponential and stationary phases varied within
7.61–17.85 (median: 15.7 ± 1.6) and 29.76–35.45 (median: 34.4 ± 0.8), respectively (Figure 2).
The variation of the C/N ratio among different isolates in the exponential phase (CV = 29.9%) was
higher than that in the stationary phase (CV = 6.4%). The C/N ratios of the isolates PKU#Mn16
and PKU#SW8 increased markedly from 7.61 to 31.36 and 8.81 to 35.35, respectively, during
their growth.
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Figure 2. Changes in the C/N ratio of different thraustochytrid isolates during growth.

2.3. Cell Carbon-to-Volume Relationship

The C mass of isolates ranged from 5.7 ± 1.6 (PKU#SW8) to 48.9 ± 3.7 pg C/cell
(PKU#Mn4) in the exponential phase, and from 52.6 ± 1.2 (PKU#SW8) to 203.7 ± 15.8 pg C/cell
(PKU#Mn4) in the stationary phase (Figure 3a). The values of C mass varied significantly
(p < 0.001) among the isolates, with the median values of 21.5 ± 6.5 and 107.6 ± 19.6 pg C/cell
in the exponential and stationary phases, respectively. A significant increase in the C mass of
all the isolates was observed during growth.

The cell C density (mass-to-volume ratio) ranged from 204 ± 26 (PKU#SW8) to
289 ± 36 fg C/µm3 (PKU#Sed1) in the exponential phase (median: 256 ± 13 fg C/µm3)
and 385 ± 41 fg C/µm3 (PKU#Mn4) to 559 ± 22 fg C/µm3 (PKU#Mn16) in the stationary
phase (median: 411 ± 29 fg C/µm3) (Figure 3b). The stationary phase cells of all the
isolates showed significantly (p < 0.001) increased C densities compared with that of the
exponential phase cells. In addition, the cell C densities varied significantly (p < 0.01)
among the isolates in both the growth phases.
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To determine the relationship between the C mass and volume of cultured thraus-
tochytrid cells, a linear model was fitted to the experimental data. The result of model
fitting showed a significant (p < 0.001) linear relationship between the C mass and volume
(Figure 3c). Based on the linear model fit, the following regression equation was developed:

mC = 0.42 × V − 5.2
(

R2 = 0.908
)

(1)

where mC refers to cell C mass in pg and V stands for cell volume in µm3.

2.4. Cell Nitrogen-to-Volume Relationship

The N mass of isolates ranged from 0.65 ± 0.19 (PKU#SW8) to 2.8 ± 0.1 pg N/cell
(PKU#Mn4) in the exponential phase, and from 1.5 ± 0.2 (PKU#SW8) to 6.1 ± 0.5 pg N/cell
(PKU#Mn4) in the stationary phase (Figure 4a). The values varied significantly (p < 0.001)
among the isolates, with the median values of 1.5 ± 0.3 and 3.2 ± 0.6 pg N/cell in the
exponential and stationary phases, respectively. A significant increase in the N mass of
stationary phase cells of all the isolates was observed.

The cell N density ranged from 13.7± 2.7 (HNHK-100) to 36.7± 0.1 fg N/µm3 (PKU#Mn16)
in the exponential phase (median: 17.5 ± 3.1 fg N/µm3) and 10.5 ± 0.2 (PKU#Sed1) to
19.3 ± 2.8 fg N/µm3 (PKU#Mn16) in the stationary phase (median: 13.4 ± 1.1 fg N/µm3)
(Figure 4b). The variation of cell N densities among the isolates was markedly higher in the
exponential phase (CV = 41.3%) than that in the stationary phase (CV = 19.9%).
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To determine the relationship between the N mass and volume of cultured thraus-
tochytrid cells, a linear model was fitted to the experimental data. The result of model
fitting showed a significant (p < 0.001) linear relationship between the N mass and volume
(Figure 4c). Based on the linear model fit, the following regression equation was developed:

mN = 0.011 × V + 0.59
(

R2 = 0.922
)

(2)

where mN refers to N mass in pg/cell, and V stands for cell volume in µm3.

3. Discussion

In this study, the cultured cells of all the thraustochytrid isolates were unicellular,
globose to sub-globose (Figure S1), measuring 1.5 to 20 µm in diameter (Figures S2 and S3)
during their growth on M4 medium. Similar cell morphology has been reported earlier for
other isolated strains of thraustochytrids [12,26–28]. In natural seawater, the size of thraus-
tochytrid cells was generally found to range in diameter from 5 to 20 µm [12]. The particle-
bound cells of thraustochytrids were also reported to range from 3.5 to 19.7 µm [29]. Our
results provide evidence that the cell diameter range of cultured thraustochytrids is com-
parable to that of the natural thraustochytrids. The cell volume of all the isolates increased
more than two-fold between the exponential to the stationary phase. Generally, the ex-
ponential phase represents the period when most cells divide or produce microspores to
proliferate, and hence the cells in this phase have a smaller average cell diameter than
the stationary phase. Furthermore, the cell diameter and volume attributes exhibited
wide differences among the isolates. As cultured thraustochytrids are known to produce
intracellular lipids [30,31], the different cell sizes of the isolates perhaps suggest different
levels of lipid accumulation within the cell. The factor(s) inducing differential levels of
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lipid content among various strains of thraustochytrids can be an interesting subject of
future research.

C, N, S, P, and H are major elements that transfer metabolic energy and constitute the
building blocks of a cell. These elements are required for the maintenance, growth, and
reproduction of all living cells, and their determination is essential to quantify the flow of
energy and nutrients among organisms in an environment [32,33]. Furthermore, microbial
cells are known to be metabolically more active with rapid turnover of elemental contents
and energy generation in the exponential phase of their growth than that in the stationary
phase. In this study, the cellular contents of C, N, H, and S for different thraustochytrid
isolates in their exponential and stationary phases of growth were measured and compared.
The C:N:H:S ratios among the cultured thraustochytrids varied markedly during their
growth on M4 medium (Table 1), suggesting different metabolic characteristics of the
isolates. While the elements C and H tend to increase from the exponential to stationary
phase of growth, the cell N and S decreased, which indicated a relative decline in the
cellular protein content. Further, the high C/N ratios of isolates in the stationary phase
indicated that the mature cells can have a significant contribution to the marine C pool.
The C/N ratios of thraustochytrid cells (stationary phase) obtained in this study were
about five to six times that of marine bacteria (coastal: 5.9 ± 1.1; oceanic: 6.8 ± 11.2) [34]
and considerably higher than that (10.5 ± 1.1) of other previously reported cultured
thraustochytrids [12]. Interestingly, the higher C content of thraustochytrids relative to the
bacteria would relatively have a greater impact on the marine C cycle, highlighting the
significance of thraustochytrids in marine ecosystems. In addition, the knowledge about
the elemental content and their variations across growth phases acquired in this study
would indeed benefit future research on the, yet to be understood, dynamics of elemental
composition of natural thraustochytrids.

As mentioned above, the sizes of thraustochytrid cells vary widely in their natural
habitats, ranging from 5 to 20 µm [12] or 3.5 to 19.7 µm [29]. The model equations for cell C
and N estimations in this study are based on cell diameters that range from 3.7 µm to 9.9 µm;
therefore, these models can provide a reliable estimate of the cell C or N content of natural
thraustochytrid only within a cell diameter range of 3.5–10 µm. In the previous studies, the
biomass C of natural thraustochytrids was estimated based on the abundance determined
either by the use of a direct detection technique or MPN method. The measured abundance
of natural thraustochytrids is then multiplied by the C content of a single cell to obtain the
thraustochytrid biomass for the corresponding sample. The C content in most of the previous
reports of thraustochytrid biomass was 2.05 × 10−5 µg/cell for a 5 µm diameter cell and
1.65 × 10−4 µg/cell for a 10 µm diameter cell as proposed by Kimura et al. [12]. The majority
of the past studies, in particular, used the C content for a 10 µm diameter cell because natural
thraustochytrid cells usually exhibit a larger cell diameter than 5 µm (geometric mean of
10 µm) [12]. The median cell C density (256 ± 13 fg C/µm3) of thraustochytrid isolates in
the exponential phase of growth in this study was close to that (300 fg C/µm3) of cultured
thraustochytrids reported previously [12]. However, for the stationary phase cells, which
achieve the diameter comparable to that reported previously for natural thraustochytrids, the
median cell C density (411 ± 29 fg C/µm3) was nearly 1.4-fold higher than the current estimate
((300 fg C/µm3), which suggests that thraustochytrids have a much larger contribution to the
marine C pool than currently understood. Furthermore, it is interesting to note that the cell
C densities varied significantly among the thraustochytrid isolates, which perhaps implies
that different strains of thraustochytrids may not contribute equally to the marine C pool.
This study provides the first line of evidence for such seemingly differential influence of
thraustochytrid strains on marine C pool.

We observed that cells in the exponential phase of all isolates stained with acriflavine
revealed only green fluorescing nuclei, while cells in the stationary phase revealed distinct
orange-to-red fluorescing cell walls and yellow-to-green fluorescing nuclei (Figure S1).
The orange-to-red fluorescing cell walls have been attributed to the presence of sulfated
polysaccharides, and micrographs of natural thraustochytrids mostly show orange-to-red
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fluorescing cell walls [29]. Moreover, the majority of the microorganisms in the natural
habitats are predominantly present in the stationary phase [35]. As natural habitat often
contains limited nutrients, rapid growth is usually hampered. Furthermore, there are
other conditions, including physical and chemical stresses, which result in unbalanced
growth [36]. Taking the above into consideration, we derived two linear regression equa-
tions, each for the exponential (cell C (pg) = 0.2757 × cell volume (µm3) − 1.7126) and
stationary (cell C (pg) = 0.356 × cell volume (µm3) + 20.922) growth phases (Figure 5) to
obtain a more accurate model for estimation of cell C of natural thraustochytrids based
on cell volume measurements. Our study suggests that it would be appropriate to use the
equation derived for the stationary phase cells while estimating the biomass C of natural
thraustochytrids. However, the biomass C of natural thraustochytrid populations may vary
considerably with the trophic status of their environment. Our proposed conversion factor,
which is derived based on thraustochytrids cultured under nutrient-replete conditions,
would provide more accurate estimates of biomass C of natural thraustochytrids from
environments under eutrophic conditions. More importantly, the application of our experi-
mentally determined conversion factor will aid in quantifying the potential contribution of
thraustochytrids to the global microbial biomass. Nevertheless, until a method to directly
measure the biomass C of natural thraustochytrids is developed, we consider that our
model equation would greatly benefit researchers interested in studying the biology and
ecology of natural thraustochytrids.
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4. Materials and Methods
4.1. Isolates and Culture Conditions

Seven thraustochytrid isolates (Table 2), previously isolated from three different
marine habitats [30,31], were used in the present study. The isolates were maintained
at 28 ◦C on modified Vishniac’s (MV) medium (glucose 10 g/L, peptone 1.5 g/L, yeast
extract 0.1 g/L, 100% artificial seawater, and agar 20 g/L) and subcultured every 25 days,
as described in our previous studies [30,31]. The seed culture of each isolate was prepared
separately by inoculating a loopful of cells from the agar plate into a flask (100 mL)
containing 50 mL of the M4 medium (glucose, 20 g/L; peptone, 1.5 g/L; yeast extract,
1 g/L; KH2PO4, 0.25 g/L; and 100% artificial seawater, pH = 7) and then incubating the
culture flask at 28 ◦C for 24 h under reciprocal shaking (170 rpm). The resulting seed
culture (5% v/v) was then transferred to a 100 mL shake flask containing 40 mL fresh M4
medium and cultivated on an orbital shaker for 3 days under the same conditions.

Table 2. Thraustochytrid isolates used in this study.

Isolate Isolation
Source

GenBank
Accession

% Homology
with Type Strain #

GXBH-110 (G110) Mangrove leaves MG429124.1 99.56
HNHK-100 (H100) Mangrove leaves MG429118.1 99.18
PKU#Mn16 (Mn16) Mangrove leaves JX847368.1 97.83

PKU#Mn4 (Mn4) Mangrove leaves JX847360.1 98.80
PKU#Sed1 (Sed1) Sediment JX847370.1 98.86
PKU#SW7 (SW7) Seawater JX847377.1 98.75
PKU#SW8 (SW8) Seawater JX847378.1 98.70

# Aurantiochytrium limacinum ATCC MYA-1381 (GenBank: AB973564.1).

4.2. Analysis of Elemental Composition

The elemental composition (C, N, H, and S) of the biomass of thraustochytrid isolates
was analyzed for the exponential (24 h) and stationary (96 h) growth phases. The time
points 24 h and 96 h were chosen as exponential and stationary phases, respectively, based
on the growth curves of the isolates (Figure S4). The isolates were cultivated in 50 mL
of sterilized M4 medium inoculated with respective seed cultures (5% v/v) for 7 days
at 28 °C and 170 rpm. Seed cultures (5% v/v) were prepared as described in Section 4.1.
Samples were collected from the culture broth and a subsample of about 8 mL was used
for cell harvesting by centrifugation (20 min, 8000 rpm, 20 °C). The resulting cell pellet was
washed several times with 5 mL of sterile deionized water and pre-frozen at −80 °C and
then lyophilized in a freeze dryer (CHRIST ALPHA 1-2 LD Plus, Germany) for 48 h. The
freeze-dried cells were weighed to obtain their dry cell weight. The elemental composition
of the freeze-dried cells (2 mg) was determined on a vario MACRO cube elemental analyzer
(Elementar Analysensysteme GmbH, Germany) following the manufacturer’s instructions.

4.3. Determination of Cell Count, Diameter, and Volume

Thraustochytrid cells in the culture sample were enumerated by the direct detection
technique described in our previous study [13]. About 30–40 microscopic fields were
scanned with blue light (450–490 nm) excitation under a fluorescence microscope (Olympus
BX53, Olympus Corporation, Tokyo, Japan), and the number of observed cells was recorded.
The cell diameter was measured using the ImageJ software (https://imagej.net/, accessed
on 21 August 2021). Based on the cell radius (r) and globose to subglobose shape of cells,
the cell volume (V) was calculated by using the formula

V =
4
3
πr3 (3)

https://imagej.net/
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4.4. Statistical Analyses

The mean, median, and standard error for each measured parameter and the test
of significance (ANOVA) were computed in R software (version 4.0.0, https://www.r-
project.org, accessed on 21 August 2021). Prior to performing ANOVA, the homogeneity of
variance was tested using Levene’s test of the R car package. Linear regression analysis
was performed using the R stats package. Data were plotted using the R ggpplot2 package
and Microsoft Excel.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/md19090493/s1, Figure S1: Micrographs of acriflavine-stained thraustochytrid cells. (a) PKU#Mn4
cells at 24 h, (b) PKU#Mn4 cells at 96 h, (c) PKU#Mn16 cells at 24 h, and (d) PKU#Mn16 cells at 96 h.
Figure S2: Cell size distribution of thraustochytrid isolates in exponential phase of growth. Figure S3: Cell
size distribution of thraustochytrid isolates in stationary phase of growth. Figure S4: Growth curves of
thraustochytrid isolates used in this study.
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