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Abstract
Regional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional 
differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines 
currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there 
exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it dif-
ficult to compare and interpret the results. Here, we outline an rCBP procedure accompanied by an open source software 
package called CBPtools. CBPtools is a Python (version 3.5+) package that allows users to run an extensively evaluated rCBP 
analysis workflow on a given ROI. It currently supports two modalities: resting-state functional connectivity and structural 
connectivity based on diffusion-weighted imaging, along with support for custom connectivity matrices. Analysis parameters 
are customizable and the workflow can be scaled to a large number of subjects using a parallel processing environment. Par-
cellation results with corresponding validity metrics are provided as textual and graphical output. Thus, CBPtools provides 
a simple plug-and-play, yet customizable way to conduct rCBP analyses. By providing an open-source software we hope to 
promote reproducible and comparable rCBP analyses and, importantly, make the rCBP procedure readily available. Here, we 
demonstrate the utility of CBPtools using a voluminous data set on an average compute-cluster infrastructure by performing 
rCBP on three ROIs prominently featured in parcellation literature.

Keywords Connectivity-based parcellation · Clustering · Resting state · Diffusion-weighted imaging · Software

Introduction

Mapping the human brain in an effort to understand its 
organizational principles is a monumental task, dating 
back to the early 1900s with Korbinian Brodmann’s famous 
publication on ’Vergleichende Lokalisationslehre der 
Großhirnrinde’ (Localization in the cerebral cortex; Brod-
mann (1909)). The advent of modern non-invasive in vivo 
neuroimaging technologies, such as magnetic resonance 
imaging (MRI), has been driving growth in this research 
field. Accompanying progress in neuroimaging data analy-
sis techniques allow a range of connectivity measurements 
from various MRI modalities. Brain organization can then 
be probed by analyzing the patterns in these measurements. 
One such technique is connectivity-based parcellation 
(CBP), an umbrella term for a widely used and diverse set 
of procedures to delineate whole- and regional brain organi-
zation, originally conceived by Behrens et al. (2003) in their 
seminal work on the thalamus.
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A common approach to mapping the human brain through 
CBP is to cluster voxels/vertices into parcels. Here, we focus 
on regional CBP (rCBP). A clustering algorithm is used 
to group voxels/vertices within a given region of interest 
(ROI) based on similarity in their connection strengths to a 
set of target voxels/vertices, i.e., their connectivity profile. 
Voxels clustered together form homogeneous units, i.e., par-
cels, with regard to the measured connectivity marker that 
best describes the input data at hand. The parcels are often 
spatially consistent, as neighboring voxels usually exhibit 
more similar connectivity patterns than those further away. 
Thus, the rCBP procedure can map functional or structural 
subdivisions/clusters within a particular ROI. rCBP derived 
parcels are known to match with histological parcellation 
(Bzdok et al. 2013), but they may also provide subdivisions 
pertaining to different sources of information not revealed 
by cytoarchitectonic mapping alone (Clos et al. 2013). As 
each MRI modality yields a different aspect of brain con-
nectivity, rCBP on each modality can yield differing parcel-
lations with different interpretations. Commonly used imag-
ing modalities include, but are not limited to, resting-state 
blood oxygen level-dependent (BOLD) time series used to 
measure task-independent functional connectivity and diffu-
sion-weighted imaging (DWI)-based probabilistic diffusion 
tractography to estimate anatomical fiber connectivity, as 
well as meta-analytic connectivity modeling (MACM) as a 
measure of task-dependent functional connectivity and co-
activation patterns. Due to the different interpretations that 
may result from each modality, a multimodal approach [e.g., 
Genon et al. (2018) and Plachti et al. (2019)] may be used to 
compare unimodal parcellations.

Various methods can be employed at different steps 
within the rCBP procedure. For instance, unlike whole-
brain parcellations (Schaefer et al. 2018), rCBP focuses 
on a particular ROI, hence allowing an in-depth analysis 
by uncovering the internal differentiation of a region. Our 
approach relies on using static rather than dynamic (Hutch-
ison et al. 2013; Ji et al. 2016) patterns of connectivity. 
Moreover, we use a hard cluster assignment employing an 
unsupervised machine learning algorithm (k-means, spec-
tral, or agglomerative clustering) as opposed to probabilistic, 
graded (Bajada et al. 2017), or boundary mapping (Cohen 
et al. 2008) approaches. For a more detailed overview of 
the rCBP procedure, we recommend reading Eickhoff et al. 
(2015) and Eickhoff et al. (2018).

Despite its popularity, rCBP is challenging and time con-
suming to employ without the necessary tools. As neuro-
science makes a transition toward big data, with prominent 
examples such as the Human Connectome Project (HCP) 
(Van Essen et al. 2013) and the 1000BRAINS study (Caspers 
et al. 2014) having well over 1000 subjects, it becomes an 
increasing necessity to add support for high-throughput 
computation and parallel processing. Furthermore, the 

numerous options available at each step of the rCBP proce-
dure paired with the absence of uniform guidelines make it 
difficult to have comparable results. For example, the choice 
of clustering algorithm may influence the clustering results, 
with options such as k-means clustering, spectral clustering, 
or hierarchical clustering (Hastie et al. 2013; Von Luxburg 
2007).

To resolve these issues, we introduce CBPtools, an open-
source distributed workflow for rCBP enclosed in a Python 
package. By unifying the methodological choices behind the 
procedure into a customizable workflow, we offer a fast, sta-
ble, and reproducible means to parcellate the brain regions. 
Furthermore, computational demands highlighted by com-
plex algorithms and large data sets are mitigated by efficient 
parallel execution of the procedure. CBPtools offers a com-
mon working ground to effortlessly and efficiently conduct 
reproducible and data-driven parcellation analyses.

Materials and methods

CBPtools overview

CBPtools parcellates an ROI and provides the output as 
NIfTI images along with commonly used cluster-validity 
metrics. The tool’s approach and methods are derived from 
a substantial body of parcellation works (Wang et al. 2015; 
Bzdok et al. 2015; Chase et al. 2015; Barron et al. 2015; 
Hardwick et al. 2015; Eickhoff et al. 2016; Muhle-Karbe 
et al. 2016; Genon et al. 2017, 2018; Plachti et al. 2019) 
and consist of a customizable rCBP workflow allowing 
users to specify the input data and a range of parameters 
through a configuration file. CBPtools can calculate con-
nectivity matrices from resting-state or DWI data, but they 
may instead be provided directly as input. It then computes 
parcellations based on the connectivity matrices (projected 
onto NIfTI images of the ROI and as NumPy array files, as 
well as 3D voxel plots) and outputs validity metrics for their 
evaluation. Note that the procedure outlined here utilizes 
hard clustering. Therefore, when connectivity markers are 
assumed to change through soft transition (i.e., showing a 
gradient), parcels generated through this procedure should 
not be interpreted as neurobiological units, but as a simpli-
fied data representation (or compression model). Figure 1 
provides an overview of the workflow procedure, with each 
step detailed in the following sections.

To illustrate both the usage of CBPtools and the output it 
provides, the resting-state and DWI modalities of the HCP 
data (Van Essen et al. 2013) were used to parcellate three 
regions that have been frequently analyzed using the rCBP 
procedure: the right (R) Insula, R amygdala, and an ROI 
comprising R presupplementary motor area (preSMA) and 



1263Brain Structure and Function (2020) 225:1261–1275 

1 3

R supplementary motor area (SMA) (see "Example data" 
for details).

Architecture

CBPtools is written in Python (version 3.5+) to exploit 
Python’s prolific presence in the data science community 
and can be installed with pip (‘pip install cbptools’). We 
capitalized on pre-existing and widely used packages, such 
as NumPy, SciPy, NiBabel, and scikit-learn, which provide 
a range of methods needed for the rCBP procedure. This 
makes the software very accessible on account of Python 
and its libraries being free and open source, as well as com-
patible with many operating systems.

CBPtools makes use of snakemake (Köster and Rah-
mann 2012), an easy-to-use and well documented work-
flow management system with parallel processing capa-
bilities that allows the workflow execution to be scaled 
to various processing environments (i.e., server, cluster, 
grid, or cloud environments). Through snakemake, CBP-
tools is compatible with job schedulers that support shell 
script (such as SLURM and qsub). Furthermore, CBPtools 
can be resumed with partially processed data (e.g., due to 
hardware failure) making it stable and efficient for use on 
real world data. The combination of snakemake’s com-
mand line execution and an easily modifiable configuration 
file make it possible to set up and run the software without 
any programming knowledge.

Fig. 1  CBPtools workflow for 
applying the rCBP procedure 
to diffusion MRI (dMRI) or 
resting-state functional MRI 
(rsfMRI) data. After customiz-
ing the parameters of the proce-
dure, input data (A) is processed 
through each step (B through H) 
of the workflow. Note that the 
different types of inputs are not 
processed in parallel, but must 
instead be set up and executed 
as different CBPtools projects. 
Steps are executed in parallel 
whenever possible (e.g., the 
connectivity, clustering, valid-
ity, grouping, and reports steps). 
The mask preprocessing and 
connectivity steps use differ-
ent methods based on the input 
modality (i.e., dMRI or rsfMRI, 
highlighted in blue and green, 
respectively). Thus, methods 
with a green background are 
only performed on rsfMRI 
data, and methods with a blue 
background are only performed 
on dMRI data. Alternatively 
custom connectivity matrices 
can be given as input, which 
will skip steps B and C
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For a more detailed instruction on the use of the package, 
please visit the repository at https ://githu b.com/inm7/cbpto 
ols or our online documentation (Reuter 2019).

Setup and input specification

Processing parameters and options can be defined by means 
of a configuration file, for which the parameter choices and 
fields will be validated and logged. Errors during the setup 
must first be resolved before proceeding, but warnings are 
not critical to the execution of CBPtools. However, they may 
give rise to unexpected results and should not be ignored. 
Upon completion of the setup, a new project folder is created 
at a user-specified location, containing all files necessary to 
initiate the workflow. The CBPtools online documentation 
(Reuter 2019) has a more detailed overview of the setup 
process. We have also provided a quick-start guide in the 
Online Resource (Sect. 1.2 Usage example) as well as on 
the GitHub project page.

The input data are separated into modality-independent 
and modality-dependent categories. Modality-independent 
input data include (1) a binary three-dimensional NIfTI ROI 
file in the three-dimensional NIfTI image data format, (2) 
an optional three-dimensional target mask in the same data 
format, used to define the connections that are considered 
for each ROI voxel. If not provided by the user, the FSL 
(http://www.fmrib .ox.ac.uk/fsl/) distributed average Mon-
treal Neurological Institute (MNI) 152 T1 whole-brain gray 
matter group template (2 mm isotropic) will be used as the 
target, in which case the required input data should match 
the same MNI152 template as well, and (3) a participants 
file as a tab-separated text file with a column called ‘partici-
pant_id’ containing all unique identifiers of the subjects to 
be included in the study.

Modality-dependent data depend on the selected input 
modality, i.e., rsfMRI, dMRI, or connectivity. For rsfMRI 
data, a 4D time series NIfTI image per subject must be pro-
vided, optionally accompanied by a tab-separated text file 
containing confounds for each time point as columns. CBP-
tools assumes that the rsfMRI data have been treated with 
necessary fMRI preprocessing including realignment and 
normalization to a template space. If the default target mask 
is used, then the template space must be MNI152 with 2 
mm isotropic voxels. CBPtools also supports using native 
masks, but that prohibits the use of the default mask (for 
more information, see Online Resource Sect. 1.3.3 Single-
subject parcellation). Denoising based on independent com-
ponent analysis like Automatic Removal of Motion Artifacts 
(ICA-AROMA) (Pruim et al. 2015) or FMRIB’s ICA-based 
X-noiseifier (FIX) (Salimi-Khorshidi et al. 2014) is encour-
aged if suitable. In particular, FIX in combination with 
mean white matter and cerebrospinal fluid signal regres-
sion has been shown to work well in the context of rCBP 

(i.e., improved cluster stability and consistency of clusters 
between neuroimaging modalities) (Plachti et al. 2019). The 
dMRI modality requires input necessary to perform FSL’s 
probabilistic diffusion tractography (PROBTRACKX2), 
consisting of: (1) outputs from Bayesian estimation of diffu-
sion parameters obtained using sampling techniques (BED-
POSTX), (2) a brain extraction (BET) binary mask file, (3) a 
transform file taking seed space to DTI space (either a FLIR 
matrix or FNIR warpfield; optional), and (4) a file describing 
the transformation from DTI space to seed space (optional 
unless input file 3 is defined). Each of these files is subject 
specific and can be obtained from FSL’s BEDPOSTX out-
put. Connectivity matrices may be provided as source input 
in lieu of rsfMRI or dMRI data. They must be provided in a 
ROI-voxel by target-voxel shape, along with a binary three-
dimensional mask of the ROI in NIfTI image data format, 
and a NumPy array of voxel coordinates in the order that 
the ROI voxels are represented in the connectivity matrix.

To define input data for the rCBP procedure, the full file 
paths must be added to the configuration file. CBPtools 
offers example configuration files using the ‘cbptools exam-
ple–get data-type’ command, where data type is replaced 
by either ’connectivity’, ’rsfmri’, or ’dmri’, reflecting the 
different input data types. The absolute file path for subject-
wise files should be specified as a template, i.e., containing 
the string {participant_id} which will be replaced by the ids 
of the subjects included in the rCBP project (through the 
inclusion of the aforementioned participant’s file). All input 
data should be quality controlled prior to using CBPtools, as 
only marginal validation is performed on the input data by 
CBPtools. Faulty data may halt processing until the issues 
are resolved, but in the worst case such data may provide 
output without explicit warnings that this output should not 
be trusted. Further specified during the setup are parameters 
to transform the connectivity matrices (e.g., cubic or Fisher’s 
Z transform, or feature reduction through principal compo-
nent analysis), the clustering parameters (e.g., the range of 
k clusters requested) and validity measures, as well as the 
desired output file formats. Each of these parameters are 
likewise specified in the configuration file.

ROI mask preprocessing

There are various atlases and tools that can be used to 
respectively define an ROI and extract it as a binary mask. 
For instance, the JuBrain Anatomy Toolbox (Eickhoff et al. 
2005) can be utilized to extract an ROI using probabilistic 
cytoarchitectonic maps. Alternatively, the FSL distributed 
atlases (e.g., the Harvard-Oxford Atlas) can likewise be used 
to extract an ROI. The mask must be a three-dimensional 
binary NIfTI image.

The ROI mask is validated for binarity and conformity 
to either an optionally provided target mask, or by default 

https://github.com/inm7/cbptools
https://github.com/inm7/cbptools
http://www.fmrib.ox.ac.uk/fsl/
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the group MNI template space (2 mm isotropic voxels, 
91 × 109 × 91 shape, and origin at x = 90, y = − 126 , z 
= − 72 ). When connectivity matrices are given as input 
in lieu of rsfMRI or dMRI data, the ROI mask is only 
validated for binarity. For all other cases, it is important 
that input data are in the same space as the mask. It is 
possible to use a different space, but then a target mask 
must be provided in the desired space, which then both 
the ROI mask and input data must conform to. Without 
a user-provided target mask, all whole-brain gray mat-
ter voxels are used as target and subsampled (see below) 
by default (although this option can be turned off in the 
configuration file).

Available preprocessing steps are modality specific 
and all are optional. For the rsfMRI modality, the ROI 
mask can be median filtered and the target mask can be 
subsampled and have all ROI voxels removed from it. 
Median filtering replaces each voxel with the median of 
its neighboring voxels. For binarized images, this will 
remove voxels with too few neighbors and add voxels to 
the mask when they have many neighbors. It can be par-
ticularly useful for hand-drawn ROIs, as it removes sharp 
borders or stray voxels that would not naturally occur in 
most ROIs. Subsampling the target mask is recommended 
when smoothed BOLD time series are used. This means 
that only every second voxel in each dimension is kept 
under the spatial-smoothness assumption that neighbor-
ing voxels provide a relatively similar signal. This can 
significantly reduce computation time while preserving 
most of the information due to spatial smoothness. By 
choosing to remove all ROI voxels from the target mask, 
the ROI to ROI (i.e., within-ROI) connectivity is ignored. 
Within-ROI connectivity (i.e., connectivity between every 
pair of voxels within the ROI) tends to be high due to 
their relative proximity to one another and may there-
fore dominate the clustering. Whether doing so leads to 
better or more biologically relevant parcellation results, 
however, is unclear. Its application can also optionally 
remove a border around the ROI to reduce the influence 
of smoothing. For dMRI, in addition to median filtering, 
the ROI can also be upsampled. This upsampling option 
spreads the ROI voxels to cover a larger area (reflect-
ing a higher resolution for use with PROBTRACKX2), 
while maintaining the same number of voxels (which is 
necessary so that ROI voxels can be mapped back upon 
the original ROI mask). Thus, voxels within the upsam-
pled ROI will be spread out equidistantly over a larger 
area with no direct neighboring voxels as a result of not 
increasing their amount. The target mask can be down-
sampled from a higher to a lower resolution, resulting in 
fewer voxels covering the same space (i.e., larger voxels) 
which can reduce computation time for PROBTRACKX2.

Connectivity computation

To derive rsfMRI connectivity, the BOLD time series are 
optionally smoothed [using NiBabel’s (Brett et al. 2019) nib-
abel.processing.smooth_image], nuisance signal regressed 
(linear regression of confound time points on subject time 
series), and band-pass-filtered. An ROI-to-target connectiv-
ity matrix is calculated per subject using linear correlations 
between the ROI and target BOLD time series. A user can 
optionally choose for the connectivity matrices to be Fisher’s 
Z transformed and/or be subjected to linear dimensional-
ity reduction (through principal component analysis). For 
dMRI, the PROBTRACKX2 output, a sparse ROI- by target-
voxel connectivity matrix (omatrix2) per subject, is densified 
and cubic transformed, and can optionally be subjected to 
linear dimensionality reduction as well.

Individual‑ and group‑level clustering

Connectivity from the previous step is given as input to the 
k-means algorithm [using scikit-learn’s (Pedregosa et al. 
2011) sklearn.cluster.KMeans], separately for each subject 
and for each requested number of clusters k. Alternatively, 
agglomerative/hierarchical (Hastie et al. 2013) or spec-
tral clustering (Von Luxburg 2007) can be used instead of 
k-means. The k-means algorithm was chosen as the default 
algorithm due to its popularity in CBP literature. The clus-
tering algorithm assigns each ROI voxel/vertex to a cluster, 
effectively grouping similar voxels based on their connec-
tivity profiles (for k-means this is done by minimizing the 
squared Euclidean distance between voxel features, i.e., the 
connectivity profiles and that of cluster centers). Thus, for 
each individual subject and a given modality, the output is 
the parcellation of the ROI voxels/vertices.

As the individual-level cluster ids are arbitrary, to deter-
mine a group parcellation that best describes all included 
subjects first, the individual clusterings at each k are rela-
beled such that similar clusters get assigned the same cluster 
ids across subjects. For each k, all individual clusterings are 
given as input to SciPy’s (Jones et al. 2001) implementation 
of hierarchical clustering (scipy.cluster.hierarchy) using the 
Hamming distance metric and a user-defined linkage algo-
rithm (defaults to ’complete’). Hamming distance is used to 
take the arbitrary nature of the cluster ids into account. The 
hierarchical clustering result serves as a reference for rela-
beling individual clusterings (Nguyen and Caruana 2007). 
Relabel accuracy is calculated for each subject to identify 
the permutation of cluster ids that most accurately reflects 
the match of a given clustering with the reference cluster-
ing. Relabel accuracy is also presented as one of the various 
validity metrics (for more information see Online Resource 
Sect. 2.4 Relabeling strategy). Next, the mode of the rela-
beled subject-wise clustering is computed and used as the 
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group-level clustering. Optionally, the hierarchical cluster-
ing result can be used as a group-level clustering in lieu 
of the mode group-level clustering. Subject-wise follow-up 
analyses done in subsequent steps refer to the individual 
clusterings, and group analyses refer to the group-level clus-
tering. Note that the group-level parcellation is not calcu-
lated when parcellation is performed in the native space.

Clustering validity

Finding the appropriate number of clusters is a challenging 
and unresolved problem. It is common to probe a range of 
k values starting at two to a number determined through 
prior knowledge of the ROI and the source data (i.e., based 
on modality, granularity of the data, or the selected target 
regions) structure. Therefore, the clustering solutions at 
different k need to be evaluated. One possibility is using 
external validation, which contrasts the clustering solutions 
against a predetermined structure which is independent of 
the source data (i.e., using a predefined cytoarchitectonic 
parcellation as an external reference for clustering the results 
of the same region). In the absence of information for exter-
nal validation (as is frequently the case), internal cluster 
validation can help to select an optimal clustering in a data-
driven way. Several such metrics can be used to rank the 
clustering results. However, different metrics often produce 
divergent results. Baarsch and Celebi (2012) evaluated the 
Dunn index, the Davies–Bouldin index, the Calinski–Hara-
basz index, the Silhouette index, the point biserial measure, 
the Pakhira–Bandyopadhyay–Maulik (PBM) score, and 
sum-of-squares. They concluded sum-of-squares to be most 
effective, closely followed by the Silhouette index. Popular 
alternatives like the Davies–Bouldin index and the Calin-
ski–Harabasz index were only moderate contenders, while 
the Dunn index performed poorly. Even the best measure, 
however, was only correct in 60% of the test cases. Neverthe-
less, validity metrics are often tested on simulated or simple 
data sets which might not generalize to the complexity inher-
ent in the connectivity data. Furthermore, there exist many 
more validity metrics [such as the I index, which was tested 
to perform well in a review by Maulik and Bandyopadhyay 
(2002)]. In general, it is difficult to deem any single valid-
ity metric to be good for clustering, as data properties may 
vary significantly between data sets. Therefore, CBPtools 
provides several validity metrics and sufficient care must 
be given when deciding which measure to rely upon, also 
evident from our results.

Validity metrics and report

Clustering outputs the solution for each clustering granular-
ity k both separately for each subject and grouped together 
into a group-level clustering. For each individual clustering 

at each value of clustering granularity k, several cluster qual-
ity metrics can be obtained. These include: the Silhouette 
index (Rousseeuw 1987), the Calinski–Harabasz index (Cal-
inski and Harabasz 1974), and the Davies–Bouldin index 
(Davies and Bouldin 1979). For group labels, again for each 
k, relabel accuracy and cophenetic correlation, as a measure 
on how well the pairwise distances between the individual 
cluster labels are preserved in the group-level clustering, are 
given. Similarity between individual clusterings can also be 
examined based on the Adjusted Rand index (Rand 1971; 
Hubert and Arabie 1985), the V measure (Cramér 1946), or 
the adjusted mutual information (Vinh et al. 2010) scores 
(whichever is chosen by the user). The resulting similarity 
matrices, showing the similarity between pairs of individual 
subject clusterings for each k, are presented as dendrograms. 
Likewise, similarity between individual clusterings to the 
group clustering is computed using the same metric. Care 
needs to be taken when interpreting this score, however, 
since the group-level clustering is not independent of the 
individual subject clusterings which might inflate similarity 
scores. Lastly, the group clustering is mapped upon the ROI 
mask and stored as an NIfTI image which can be visualized 
using any of the various NIfTI format image viewers [e.g., 
Mango (http://ric.uthsc sa.edu/mango /), MRIcron (https ://
www.nitrc .org/proje cts/mricr on) or FSLeyes (https ://fsl.
fmrib .ox.ac.uk/fsl/fslwi ki/FSLey es)].

The statistics are stored as tab-separated files as well 
as figures in a user-defined file format. Interim data (e.g., 
connectivity, cluster labels) are stored as NumPy (Oliphant 
2006) binary files and tab-separated text files. This data can 
then be used to determine what cluster solution best fits the 
input data, and hence is best suited for further use in more 
in-depth analyses. Optionally, subject-specific reports (i.e., 
metrics and plots) can be obtained in addition to the group-
level clustering reports if specified in the configuration file 
(see Online Resource Sect. 1.3.3 Single-subject parcella-
tion). Lastly, one or more reference NIfTI images can be 
provided to allow direct comparison between the CBPtools 
group-level cluster solutions and a priori parcellations (see 
Online Resource Sect. 1.3.5 Using reference images).

Example data

The right (R) preSMA and SMA, R insula, and R amyg-
dala are prominently featured regions in CBP analyses, and 
were therefore selected as ROIs to evaluate our software (see 
Fig. 2). The R preSMA–SMA region (at 972 voxels) was 
extracted using the Juelich Cytoarchitectonic Atlas (Eickhoff 
et al. 2005; Ruan et al. 2018), and the R insula (546 voxels) 
and R amygdala (280 voxels) regions were both extracted 
using the FSL distributed Harvard-Oxford Atlas. The FIX-
denoised rsfMRI data of 300 healthy unrelated subjects 
(mean age 28.57, 150 females, no significant age ( t = 0.71 , 

http://ric.uthscsa.edu/mango/
https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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p = .48 ) and educational ( t = − 0.31 , p = .75 ) difference 
between genders) from the HCP (Van Essen et al. 2013), 
and BEDPOSTX results of the minimally processed (Glasser 
et al. 2013) dMRI data of the same 300 subjects were used as 
input data for the rsfMRI and dMRI modalities, respectively.

Workflow execution proceeded separately for each ROI 
and modality, as depicted in Fig. 1. For each execution the 
average MNI152 T1 brain (2 mm isotropic) from FSL (Jen-
kinson et al. 2012) was binarized and used as a whole-brain 
gray matter target mask. For rsfMRI only, the target mask 
was subsampled (see "ROI mask preprocessing") to improve 
computational efficiency.

Including the preprocessing of the ROI and target masks, 
all the following steps were done by CBPtools with the con-
figuration parameters outlined below (these are the CBPtools 
default configuration parameters). The rsfMRI BOLD time 
series were 5 mm FWHM smoothed, global WM, global 
CSF, and 24 motion parameter signal corrected (including 
a bias term), and 0.01–0.08 Hz band-pass-filtered (see the 
green boxes in Fig. 1c). Global WM and global CSF nui-
sance signal regression in addition to FIX-denoising was 
used as it appears to give the highest reliability for rsfMRI 
CBP (Plachti et al. 2019). The linear correlations between 
ROI and target voxel time series were then computed to 
obtain a ROI-to-target connectivity matrix for each subject 

and Fisher’s Z transformed. To derive dMRI connectivity, 
probabilistic tractography was performed with the following 
parameters: distance threshold = 5, loop check = true, cur-
vature threshold = 0.2, step length = 0.5, number of samples 
= 5000, steps per sample = 2000, correct path distribution 
for pathway length = true. This yielded a high-resolution 
ROI to low-resolution target (whole-brain) connectivity 
matrix per subject which was cubic transformed.

Each subject’s connectivity matrix was used as input 
for k-means clustering (with k from 2 to 5, the k-means++ 
initialization method, 256 initializations [as suggested by 
Nanetti et al. (2009), and a maximum of 10,000 iterations; 
Fig. 1d]. The range of k was chosen after consulting relevant 
literature regarding the three ROIs. To maintain the same 
settings for each ROI and make replication of the exam-
ple procedure computationally less intensive, we chose to 
keep the range of k consistent between ROIs. To obtain a 
group-level clustering, hierarchical clustering with complete 
linkage and Hamming distance was applied (Fig. 1f) on 
individual-level clusterings to obtain a combined reference 
clustering per k (Nguyen and Caruana 2007). This reference 
clustering was subsequently used to relabel the individual 
clusterings. The resulting labels were used to calculate the 
mode for each voxel, serving as the group-level clustering 
result for each value of k. Cluster validation was performed 

Fig. 2  Outline of the three ROIs used for the example procedure. a 
The three columns highlight the R preSMA–SMA (blue, left), R 
amygdala (green, middle), and R insula (red, right) in sagittal, coro-
nal, and axial (top to bottom) sections. The figures were generated 
using Nilearn’s plotting tools (Abraham et  al. 2014). b All ROIs 

shown from a right-sided view with posterior (P) to the left, and ante-
rior (A) to the right. c An anterior view of the three ROIs, with right 
(R) and left (L) flipped to radiological display convention. The 3D 
representations in b and c were generated using Mango (multi-image 
analysis GUI; http://ric.uthsc sa.edu/mango /)

http://ric.uthscsa.edu/mango/
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on the individual clusterings using the Silhouette index, the 
Calinski–Harabasz index, and the Davies–Bouldin index 
(Fig. 1e). The adjusted rand Index (ARI) was computed as 
a similarity measure between individual and group cluster-
ings (Fig. 1g).

The results section is structured such that each ROI 
reflects a different aspect of the CBPtools workflow. For 
the preSMA–SMA ROI we highlighted the reproducibility 
of histological parcellations, for the insula we focussed on 
the subdivisions of various k cluster solutions for the group 
parcellations and, lastly, for the amygdala we evaluated the 
cluster validity metrics provided as output by the workflow. 
All output not highlighted here is available in the Online 
Resource.

Results

preSMA–SMA parcellation

The group clusterings for the two-cluster solution approxi-
mated the R preSMA–SMA cytoarchitectonic differen-
tiation with an ARI of .71 for rsfMRI, and .76 for dMRI 
results (where 0 indicates no similarity at all, and 1 indi-
cates perfect similarity). That is, only 76 (7.82%) and 63 
(6.48%) out of all voxels were mismatched for rsfMRI and 
dMRI, respectively. Figure 3a provides a visual representa-
tion of the ROI with the two-cluster labels mapped onto 

it for the cytoarchitectonically defined region, and the two 
rCBP defined subdivisions using rsfMRI and dMRI data. 
The Silhouette index (Fig.  3c), Davies–Bouldin index, 
and Calinski–Harabasz index all indicated the two-cluster 
solution as the best fit to the rsfMRI input data (note that 
the Davies–Bouldin index indicates a better fit through a 
lower value). The Silhouette and Calinski–Harabasz indi-
ces obtained from the dMRI clusterings both suggested the 
two-cluster solution, with only the Davies–Bouldin index 
suggesting a slightly better fit for the three-cluster solution. 
Our results are consistent with previous studies regarding 
functional and structural parcellation of the preSMA–SMA 
regions (Johansen-Berg et al. 2004; Klein et al. 2007; Kim 
et al. 2010; Zhang et al. 2015).

Insula parcellation

All internal validity metrics agreed that a two-cluster sepa-
ration into an anterior and posterior subdivision fitted the 
rsfMRI source data best. The two- to five-cluster solu-
tions are shown as 3D volumetric/voxel plots in Fig. 4. The 
three-cluster rsfMRI solution added a medial parcel (green), 
extending more into the anterior parcel (blue) rather than 
the posterior parcel (orange) of the two-cluster solution. 
The four-cluster rsfMRI solution further subdivided the 
medial and part of the posterior parcel into dorsal-anterior 
and medial parcels (green and red, respectively), whereas 
the five-cluster solution added only a thin parcel (magenta) 

b

c

a

Fig. 3  R preSMA–SMA results from the rCBP procedure. a The two-
cluster solutions of the combined R preSMA and SMA ROI for the 
cytoarchitectonically defined (Ruan et al. 2018) subdivision from the 
Jülich histological atlas (Eickhoff et  al. 2005), and the rsfMRI and 
dMRI connectivity-based parcels from left to right. The 3D repre-
sentations were generated using matplotlib’s 3D voxel/volumetric 

plotting and are in the same view as Fig. 2b. b ARI scores between 
the individual subject clustering results and the group-level cluster-
ing result for both rsfMRI and dMRI for k = [2, 3, 4, 5] . c Silhouette 
index for all cluster solutions ( k = [2, 3, 4, 5] ) where a higher Silhou-
ette index indicates a better fit. Here, the two-cluster solution seems 
to best fit the input data for both rsfMRI and dMRI
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in between the aforementioned dorsal-anterior and medial 
parcels.

Likewise for dMRI data, the two-cluster solution sepa-
rated the R insula into anterior and posterior subdivisions. 
However, the Davies–Bouldin index slightly diverged from 
the other metrics, instead suggesting a three-cluster solution 
to best fit the source data. The shape of the dMRI clusters 
also showed a different picture than the rsfMRI results, par-
ticularly for the three- and five-cluster solutions. The three-
cluster solution added a medial parcel that did not extend as 
much into the dorsal direction as the rsfMRI three-cluster 
solution did. Slightly more agreement between modalities 
was found in the four-cluster solution, where the posterior 
parcel was subdivided into a dorsal (blue) and ventral (red) 
part, the latter of which was further split into the five-cluster 
solution.

Functional parcellation of the two-cluster rsfMRI solution 
for the insula was in line with prior parcellations (Kelly et al. 
2012). In addition, Nanetti et al. (2009) suggest a common 

parcellation of the insula along the anterior-posterior axis 
for dMRI data. The four-cluster dMRI parcellation further-
more visually resembles the insula’s functional differentia-
tion uncovered by Kurth et al. (2010b) using a meta-analytic 
approach, with only our ventral-anterior parcel (red) extend-
ing more anteriorly than theirs.

Amygdala parcellation

Similar to the other two ROIs, the model that best fits the 
data in the R amygdala was bipartite. Nevertheless, the two-
cluster solutions for rsfMRI and dMRI connectivity dif-
fered substantially (Fig. 5d, e). On the one hand, the rsfMRI 
two-cluster solution showed a dorsal (superior) and ventral 
(inferior) subdivision of the Amygdala. On the other hand, 
the dMRI two-cluster solution showed a medial and lateral 
subdivision. At higher clustering granularities clusters split 
further among the aforementioned axes, rather than finding 
common ground.

b

a

Fig. 4  R Insula results from the rCBP procedure. a Insula parcels 
for the two-, three-, four-, and five-cluster solutions obtained from 
rsfMRI (top row) and dMRI (bottom row) connectivity. All images 
are in the same view (right-sided) as Fig.  2b. b Internal validity 

scores for all tested solutions ( k = [2, 3, 4, 5] ). The Silhouette index 
(left) and the Calinski–Harabasz index (right) indicate a better fit 
through a higher score, whereas the Davies–Bouldin index (middle) 
is better when lower
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The Silhouette and Calinski–Harabasz indices (Fig. 5a) 
suggested a two-cluster solution to best fit the rsfMRI source 
data. However, the Davies–Bouldin index instead suggested 
a five-cluster solution to fit better. The two-cluster solution 
approximated prior functional parcellations of the amygdala 
(Mishra et al. 2014; Zhang et al. 2018) and also prior cyto-
architectonic mapping of the region (Amunts et al. 2005). 
The dorsal cluster (orange) overlapped with the cytoarchi-
tectonic outline of R amygdala centromedial and amygda-
lostriatal subregions, whereas the ventral cluster (blue) over-
lapped with the laterobasal and superficial subregions. At 
the three-cluster granularity, the ventral cluster was divided 
into a cluster resembling the cytoarchitectonic laterobasal 

subregion (blue) and one resembling the superficial subre-
gion (green), the latter of which is best seen from a left-sided 
view (Fig. S6b). The four-cluster solution subdivided mostly 
the dorsal cluster (orange), with the new cluster resembling 
the amygdalostriatal subregion. However, it appeared far 
larger than its cytoarchitectonic counterpart. The five-cluster 
solution further subdivided the ventral cluster (blue), but 
here no further cytoarchitectonic subdivisions exist.

For the dMRI clusterings, all validity indices (Fig. 5a) 
suggested a two-cluster solution to best fit the source data. 
As the clustering granularity increased, the R amygdala split 
further along its medial-lateral axis. Previous parcellation 
works using dMRI data (Solano-Castiella et al. 2010; Saygin 

ed

cb

a

Fig. 5  Various CBPtools output figures for the R amygdala parcella-
tion. a Internal validity scores for all tested solutions ( k = [2, 3, 4, 5] ). 
The Silhouette index (left) and the Calinski–Harabasz index (right) 
indicate a better fit through a higher score, whereas the Davies–Boul-
din index (middle) is better when lower. b Group similarity scores 

(i.e., the similarity of individual clusterings to the group clustering), 
with the cluster number k on the x-axis, comparing rsfMRI (blue) to 
dMRI (orange). c Relabel accuracy displayed in a similar format as b. 
d The two- and three-cluster solution of the R amygdala for rsfMRI. e 
the same for dMRI
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et al. 2011; Fan et al. 2016; Wen et al. 2016) also found 
similar clusters along the medial-lateral axis. ARI similar-
ity of individual clusterings to the group-level clustering 
(Fig. 5b) was higher for clusterings on dMRI data than on 
rsfMRI data, also reflected by the relabel accuracy (Fig. 5c).

Discussion

General pattern revealed by CBP

Separating the SMA and preSMA is a popular approach to 
validate rCBP methods (Johansen-Berg et al. 2004; Klein 
et al. 2007; Kim et al. 2010; Zhang et al. 2015), as it provides 
a gold standard and furthermore highlights the ability of 
the rCBP procedure to reproduce histological parcellations. 
These two neighboring regions exhibit an abrupt change in 
connectivity profile where their borders are expected to be, 
attributed to predominant connections to the motor regions 
for the SMA and prefrontal connections for the preSMA 
(Johansen-Berg et al. 2004). As voxels are assigned to clus-
ters based on similarity in their connectivity profiles, sepa-
rating the preSMA–SMA ROI through automated parcel-
lation approaches should therefore be straightforward. By 
using the cytoarchitectonically defined preSMA and SMA 
regions as external validation, we were able to assess his-
tological reproducibility of the preSMA–SMA ROI using 
CBPtools. This was achieved with a very high similarity 
(ARI > 0.7 ) for both the dMRI and the rsfMRI connectivity-
driven parcellation to the cytoarchitectonic definition of the 
ROI.

While results for the preSMA–SMA parcellation were 
rather straightforward, this was not the case for the R insula 
parcellation for which many different suggestions for opti-
mal cluster solutions exist in the literature (two-cluster 
(Cauda et al. 2011), three-cluster (Deen et al. 2011; Chang 
et al. 2013), and four-cluster (Kurth et al. 2010b), as well as 
various solutions exceeding our k-range (Kelly et al. 2012)). 
These differences may in part be caused by relatively small 
data sets with different properties, difficulties on account of 
intersubject alignment when delineating the ROI mask, as 
well as variability between research groups in their imple-
mentation and use of methods and imaging modalities. Our 
results suggested a two-cluster solution to best fit both the 
dMRI and rsfMRI-based connectivity data, although this 
does not imply it is neurobiologically optimal. Early work on 
the insula has provided evidence for an anterior (dysgranu-
lar) and posterior (granular) subdivision separated by the 
central insular sulcus (Brodmann 1909). Cytoarchitectoni-
cally the posterior insula can be further subdivided into two 
dorsal posterior areas and one ventral posterior area (Kurth 
et al. 2010a), but no evidence exists for the anterior insula. 
Whereas the two-cluster solution matched well between the 

dMRI and rsfMRI modalities, the results diverged at the 
three- and five-cluster granularities. The mid-posterior clus-
ter appearing in the dMRI four-cluster solution (Fig. 4a; red) 
and the mid-anterior cluster appearing in the rsfMRI four-
cluster solution (red) made the solutions at the four-cluster 
granularity more similar. However, the rsfMRI mid-posterior 
cluster (green) extends more dorsally than its dMRI coun-
terpart. Meta-analysis of the insula (Kurth et al. 2010b) 
resembles the four-cluster solution of the R insula, associ-
ating the posterior cluster (blue) with sensorimotor function, 
the ventral-anterior cluster (orange) with social-emotional 
functions, the dorsal-anterior cluster (green) with cognitive 
functions, and the medial cluster (red) with chemical sensory 
functions. The medial cluster extends further into the pos-
terior direction for the dMRI parcellations than is the case 
for the meta-analytic results, and in addition extends further 
dorsally for the rsfMRI parcellation.

For the R amygdala, the two-cluster solution best rep-
resented the data for both the dMRI and rsfMRI modali-
ties. The rsfMRI parcellation of the R amygdala that best 
fit the source data was a bipartite dorso-ventral subdivision. 
These results match earlier findings of Mishra et al. (2014), 
likewise a dorso-ventral (superior–inferior) subdivision in 
the two-cluster solution using functional connectivity, and a 
similar dorsal, ventral, and medial subdivision for the three-
cluster solution. The same three-cluster solution was found 
by Zhang et al. (2018). Our validity metrics indicated a best 
fitting two-cluster solution, but as this does not necessarily 
imply neurobiological accuracy, a three-cluster solution is 
likewise viable. Furthermore, the parcellations visually cor-
respond to the cytoarchitectonic mapping of the R amygdala 
(Amunts et al. 2005) up to the four-cluster solution.

Where a bipartite dorso-ventral subdivision of the amyg-
dala best fits the rsfMRI data, the dMRI data instead best 
fits within a bipartite medio-lateral subdivision. This pattern 
resembles the two-cluster solution found by Solano-Castiella 
et al. (2010) and Fan et al. (2016) in that the solution divided 
the amygdala into a medial and a lateral cluster. Tract trac-
ing of the rat amygdaloid complex shows that the medial 
amygdala is related to connections between both intrahemi-
spheric amygdalae (Pikkarainen and Pitkänen 2001). The 
lateral amygdala is instead found to be connected to soma-
tosensory cortical areas (Jolkkonen and Pitkänen 1998). 
Solano-Castiella et al. (2010) note the possible existence 
of a third cluster between the medial and lateral clusters, 
which resembles the pattern of clusters we found for the 
three-cluster solution.

The amygdala is a peculiar region on account of its spa-
tial location, which may explain the differences between the 
rsfMRI and dMRI results. Whereas the rsfMRI parcellations 
resemble cytoarchictural subdivisions, the dMRI results may 
instead be driven by spatial artefacts on account of false 
positives in probabilistic fiber bundle tracking (Zalesky et al. 
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2016; Maier-Hein et al. 2017) of subcortical areas. As the 
region gets split at higher granularities, it is possible that 
instead of creating subdivisions on the basis of neurobiologi-
cally relevant signals, instead the subdivisions are driven 
by noise in the signal on account of methodological idi-
osyncracies. Investigating why such subdivisions occur at 
higher granularities is beyond the scope of this work, but is 
nonetheless an important consideration when investigating 
clusters with dMRI data. We further investigated whether 
parcellations of the R amygdala were driven by within-
ROI and short-range connections. We parcellated dMRI 
data after excluding ROI-to-ROI connectivity (excluding 5 
mm, 20 mm, and 40 mm border around the ROI in Online 
Resource Fig. S7), including a mapping of the linear correla-
tions predominantly driving the parcellation results (Online 
Resource Fig. S9). The resulting parcellations remained 
mostly unchanged, exhibiting the same medio-lateral pat-
tern of subdivisions.

Overall, divergence between validity indices (i.e., the 
Davies–Bouldin index from the other validity metrics) high-
lights the importance of choosing a proper validity metric, 
each of which assesses cluster validity in a unique way. Note 
that comparisons of validity scores outside of the sample are 
meaningless, hence rsfMRI and dMRI validity scores can-
not be directly compared. For the R insula the divergence is 
not necessarily surprising, as it shows transitional changes 
in cytoarchitecture (Kurth et al. 2010a), rather than sharp 
cytoarchitectonic borders present between the preSMA and 
SMA, making it difficult to define stable hard borders. Simi-
larity of cluster labels between subject-wise clusterings may 
vary considerably. It is as of yet unclear what factors con-
tribute to the high dissimilarity between subjects on some 
cluster solutions and for some ROIs. For instance, similarity 
values for the individual clustering results to the group-level 
clustering results on the two-cluster preSMA–SMA solution 
are high (see Online Resource Fig. S4b), which may imply 
that the regions have strongly divergent connectivity patterns 
that are stable between subjects. However, regions such as 
the amygdala show lower similarity values. This may in part 
be due to poor signal to noise ratio with MRI in the subcorti-
cal regions (Noble et al. 2017). Nevertheless, the solutions 
showcased here can be found in previously published works. 
However, as far as we are aware, no data-driven cluster-
ing was performed using dMRI data for the R amygdala at 
higher granularities.

Conclusions and perspectives

Here, we have demonstrated the effectiveness of using 
CBPtools to procure resting-state functional and diffusion 
MRI connectivity-derived parcellations on three function-
ally and spatially different ROIs. Connectivity and cluster-
ing methods have been carefully chosen to both reflect the 

most popular and the most widely evaluated approaches in 
the brain mapping community. The procedure is customiz-
able through a configuration file, allowing for fine-tuned 
processing for each ROI. Furthermore, by providing or 
specifying input as well as parameters given to CBPtools, 
any parcellation work can be reproduced with relative ease 
and, importantly, can be compared to other works using 
this tool. To illustrate the efficiency of the procedure, we 
have provided benchmarks (see Online Resource Sect. 3.1 
Benchmarks) as a guideline for what to expect when exe-
cuting CBPtools on a similar data set, with similar set-
tings, on an average computational cluster. Through the 
use of the CBPtools output, a user will be able to quickly 
generate parcellations and validity metrics that can either 
be used directly or used to inform a more detailed post hoc 
analysis. For instance, the selection of clustering granular-
ity as well as multi-modal integration of cluster solutions 
may require further fine-grained and region-specific analy-
ses. We opted to provide all k cluster solutions with guid-
ance for the user to choose the optimal solution, as there 
likely is no ’one true parcellation’, but instead biologically 
relevant maps at different granularities.

Future development of the software will support the 
integration of MACM and structural covariance modali-
ties, found to be valuable for studying the brain and adding 
an additional layer of information to multi-modal CBP 
(Eickhoff et al. 2015; Plachti et al. 2019). In the framework 
of the Human Brain Project and in collaboration with the 
Juelich Supercomputing Center, a web-based version of 
the software that can execute the rCBP procedure on vari-
ous predefined and preprocessed large data sets is planned. 
This will offer a high-throughput solution for massive par-
allelization for rCBP on a user-defined ROI, in an online 
environment where all summary output will be available 
for download.

In summary, we provide an openly distributed package 
for performing rCBP for which to our knowledge there is 
currently no alternative. We have outlined its procedure 
and demonstrated its efficacy using three commonly par-
cellated ROIs on a substantial data set. By introducing 
CBPtools we provide researchers the means to conduct 
reproducible, data-driven rCBP analyses on multiple neu-
roimaging modalities and large amounts of subject data.
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