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Abstract: We report an iridium(I)-catalyzed branched-selective C–H alkylation of N-arylisoindolinones
with simple alkenes as the alkylating agents. The amide carbonyl group of the isoindolinone motif acts
as the directing group to assist the ortho C–H activation of the N-aryl ring. With this atom-economic and
highly branched-selective protocol, an array of biologically relevant N-arylisoindolinones were obtained
in good yields. Asymmetric control was achieved with up to 87:13 er when a BiPhePhos-like chiral
ligand was employed.
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1. Introduction

The skeleton of isoindolinone is widely present in a number of natural products, biolog-
ically active molecules and pharmaceuticals [1–5]. Among them, N-arylisoindolinones be-
long to an important class of compounds showing very broad biological activities [6,7]. For
example, as shown in Figure 1, indoprofen (A) is known as a nonsteroidal anti-inflammatory
drug (NSAID) and cyclo-oxygenase (COX) inhibitor [8], and DWP205190 (B) displays in-
hibitory activity toward tumor necrosis factor TNF-α production [9,10]. Compound C
behaves as a potent and selective 5-HT2C antagonist [11]. Pagoclone (D) is a partial
benzodiazepine-GABA receptor agonist that is used for the treatment of panic and other
anxiety disorders [12]. As a result, the development of new methodologies toward the rapid
access of N-arylisoindolinones bearing different substituting patterns is highly appealing.
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1. Introduction 
The skeleton of isoindolinone is widely present in a number of natural products, bi-

ologically active molecules and pharmaceuticals [1–5]. Among them, N-arylisoindo-
linones belong to an important class of compounds showing very broad biological activi-
ties [6,7]. For example, as shown in Figure 1, indoprofen (A) is known as a nonsteroidal 
anti-inflammatory drug (NSAID) and cyclo-oxygenase (COX) inhibitor [8], and 
DWP205190 (B) displays inhibitory activity toward tumor necrosis factor TNF-α produc-
tion [9,10]. Compound C behaves as a potent and selective 5-HT2C antagonist [11]. Pago-
clone (D) is a partial benzodiazepine-GABA receptor agonist that is used for the treatment 
of panic and other anxiety disorders [12]. As a result, the development of new methodol-
ogies toward the rapid access of N-arylisoindolinones bearing different substituting pat-
terns is highly appealing. 
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Figure 1. Representative examples of biologically active N-arylisoindolinones. 

Over the past decades, transition metal-catalyzed directing group (DG)-assisted aro-
matic C–H activation has emerged as a very powerful synthetic protocol [13–20], thus 
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Figure 1. Representative examples of biologically active N-arylisoindolinones.

Over the past decades, transition metal-catalyzed directing group (DG)-assisted aro-
matic C–H activation has emerged as a very powerful synthetic protocol [13–20], thus
offering numerous direct C–H functionalization strategies for biologically related molecules.
In this context, the amide-carbonyl group in the N-arylisoindolinone skeleton may act as
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a good directing group to assist the transition metal catalyst in the ortho position C–H
activation. However, there are two distinct ortho C–H sites, either from the lactam-fused
benzene ring or the N-aryl ring. As a result, the site-selective control is the key for realizing
such type of C–H functionalizations. Recently, Gramage-Doria and coworkers successfully
realized the site-selective C–H functionalization of N-arylisoindolinones by employing
ruthenium catalysis. With aryl boronic acids, maleimides or activated alkenes such as
α,β-unsaturated alkenes or styrenes as the functionalizing agents (Scheme 1A), the ortho
C–H functionalization of the N-aryl ring was achieved with high efficiency [21–23]. Inspired
by these advances, we decided to develop new types of C–H functionalization strategies by
focusing on the biologically relevant N-arylisoindolinone motif.
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In recent years, iridium catalysts have been successfully applied to an array of
DG-assisted aromatic C–H alkylation reactions [24–38]. By employing alkenes or vinyl
ethers as the alkylating agents, significant advances have been made by Shibata, Hartwig,
Nishimura, Bower and others [26–48]. This iridium-catalyzed atom-economic C–H alky-
lation protocol generally favors the formation of branched-selective products [49,50]. By
utilizing different types of chiral ligands, a number of asymmetric versions of such transfor-
mations have been realized [28,29,31–34,37,38]. In view of these progress, we envisioned
that the amide carbonyl group of the isoindolinone motif may act as an efficient directing
group, to enable the development of an iridium-catalyzed branched-selective C–H alkyla-
tion reaction with simple alkenes (Scheme 1B), and asymmetric control may be achieved
with suitable chiral phosphine ligands. Herein, we report the details of this study.

2. Results and Discussion

We chose N-phenylisoindolinone (1a) as the model substrate and 1-octene (2a) as the
alkylating agent for our initial studies towards this iridium-catalyzed C–H functionalization
reaction. To allow the rapid access of structurally diversified products without considering
the stereochemistry for the initial biological evaluation purpose, racemic ligands were
employed. Upon thorough condition optimizations in terms of the iridium sources, lig-
ands, solvents and temperature, the desired branched-selective alkylation product 3a was
ultimately obtained in an 87% yield (isolated yield: 81%) with a >20:1 branched selectivity
(Table 1, entry 1). A BiPhenPhos-like bidentate ligand (L1), of which the chiral form has
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been successfully utilized to the branched-selective and enantioselective N-acetyl directed
C–H alkylation of anilides with alkenes as developed by Bower and coworkers [37], which
was crucial for achieving the good reactivity as well as the excellent branched-selectivity
control. The use of the cationic [Ir(COD)2]BArF pre-catalyst was also crucial for this trans-
formation. A set of control experiments was conducted to understand the role of each
reactant (Table 1). Among different bidentate phosphine ligands tested, rac-BINAP showed
very low efficiency while rac-BIPHEP produced the desired product 3a in a 12% yield with
10:1 branched selectivity (Table 1, entries 2 and 3). With dppf or dppb as the ligand, the
desired product 3a was afforded in high branched selectivities, albeit with 20–25% yields
(entries 4 and 5). On the other hand, small bite-angle ligands such as dppe showed a low
branched selectivity (entry 6). These results are in accordance with literature precedents
in which the branched-selective product formation is favored by larger bite-angle lig-
ands [35,36]. It is worth mentioning that for all these entries, no other side products
(i.e., the N-aryl dialkylation product, alkylation product on the ortho-position on the
aryl ring of the isoindolinone) were observed. Next, the effect of solvent was inves-
tigated. While different solvents such as cyclopentyl methyl ether (CPME), toluene,
1,2-dichloroethane (DCE), chlorobenzene or m-xylene could all produce the desired product
in excellent branched selectivity, a decreased reaction efficiency was observed, and the use of
1,4-dioxane as the solvent was superior (Table 1, entries 7–11).

Table 1. Condition optimizations a.
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Entry Ligand (5 mol%) Solvent Yield (%) b rr (b/l) c

1 rac-L1 1,4-dioxane 87 (81) >20:1
2 rac-BINAP 1,4-dioxane <5 –
3 rac-BIPHEP 1,4-dioxane 12 10:1
4 dppf 1,4-dioxane 25 11:1
5 dppb 1,4-dioxane 20 >20:1
6 dppe 1,4-dioxane 10 6:1
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a Reaction conditions: 1a (0.1 mmol), 2a (0.5 mmol,), [Ir(COD)2]BArF (5 mol%), ligand (5 mol%), solvent (0.2 mL),
120 ◦C, 48 h, b Yield was determined by GC analysis of the crude reaction mixture with dodecane as internal
standard; isolated yield shown in parentheses. c The branched/linear (b/l) ratio was determined by GC analysis
of the crude reaction mixture.
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With the optimization conditions in hand, we applied this branched-selective C–H
alkylation reaction toward the synthesis of different substituted N-arylisoindolinones
(Table 2). Alkyl-substituted alkenes such as 1-octene or 1-hexene produced the corre-
sponding products in high yields (3a and 3b). Different styrene-type alkenes were then
investigated and excellent branched selectivities were generally observed. Simple styrene
or styrenes bearing electron-donating groups such as methyl or methoxyl at different
positions were suitable substrates, yielding corresponding products with good efficiency
(3d–3g). On the other hand, para- or meta-fluoro-substituted styrenes were less efficient,
yielding the desired products in moderate yields (3h and 3i) (56% or 58%, respectively).
N-arylisoindolinones bearing different substituents on the N-aryl ring were then tested.
Both electron-donating groups such methyl or methoxyl and electron-withdrawing groups
such as chloro or fluoro at different positions could all be well-tolerated, giving the corre-
sponding products in moderate to high yields (3j–3p). Again, excellent branched selectivi-
ties were observed for these substrates, thus guaranteeing the rapid collection of a set of
N-arylisoindolinones with distinct electron properties.

Table 2. Substrate scope (3a–p) a.
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dioxane (0.2 mL), 120 °C, 48 h. Isolated yield for branched-selective product. The (b/l) ratio was >20:1 
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Based on our experimental results as well as literature precedents [37,49,50], a plau-
sible mechanism by following a modified Chalk–Harrod type pathway is proposed for 
this iridium(I)-catalyzed branched-selective C–H alkylation reaction (Scheme 2). First, 
with the chelation assistance from the amide carbonyl group of the isoindolinone ring, the 
iridium catalyst activates the C–H bond by forming an iridium hydride species I. The al-
kene substrate then coordinates with intermediate I to form intermediate II. Migratory 
insertion of the alkene moiety into the Ir–C bond leads to intermediate III, by which the 
branched-selective product formation is favored. Intermediate III then undergoes C–H 
reductive elimination to deliver both the iridium(I) catalyst as well as the desired product 
3a.  

 
Scheme 2. Plausible mechanism. 

With excellent branched-selective control being achieved, attempts for asymmetric 
control for this iridium-catalyzed alkylation were conducted with the screening of a hand-
ful of readily available chiral bidentate phosphine ligands. With 1-octene (2a) as the alkyl-
ating agents, a thorough condition optimization was conducted (see Supplementary Ma-
terials). Finally, with chiral BiPhePhos-like (R)-L1 as the ligand and CPME as the solvent, 
the corresponding optically active product 3a was obtained with excellent branched se-
lectivity and high enantioselectivity (87:13 er) (Scheme 3, Equation (1)). Styrene (2c) was 
also applicable toward this asymmetric protocol, yielding corresponding product 3c in 
86:14 er (Scheme 3, Equation (3)). Furthermore, when (S)-L1 was utilized as the ligand, the 
corresponding enantiomer of 3a was obtained with 14:86 er (Scheme 3, Equation (2)), thus 
allowing the rapid access of both enantiomers of 3a by switching the absolute configura-
tion of the ligand. These results further illustrate the novel structural nature of the 
BiPhePhos-type ligand for the efficient asymmetric control on such types of alkylation 
reactions. This strategy also offers a powerful strategy for potential biological evaluation 
of structure-diversified chiral isoindolinone skeletons. 
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Based on our experimental results as well as literature precedents [37,49,50], a plausible
mechanism by following a modified Chalk–Harrod type pathway is proposed for this
iridium(I)-catalyzed branched-selective C–H alkylation reaction (Scheme 2). First, with
the chelation assistance from the amide carbonyl group of the isoindolinone ring, the
iridium catalyst activates the C–H bond by forming an iridium hydride species I. The alkene
substrate then coordinates with intermediate I to form intermediate II. Migratory insertion
of the alkene moiety into the Ir–C bond leads to intermediate III, by which the branched-
selective product formation is favored. Intermediate III then undergoes C–H reductive
elimination to deliver both the iridium(I) catalyst as well as the desired product 3a.
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Scheme 2. Plausible mechanism.

With excellent branched-selective control being achieved, attempts for asymmetric
control for this iridium-catalyzed alkylation were conducted with the screening of a handful
of readily available chiral bidentate phosphine ligands. With 1-octene (2a) as the alkylating
agents, a thorough condition optimization was conducted (see Supplementary Materials).
Finally, with chiral BiPhePhos-like (R)-L1 as the ligand and CPME as the solvent, the
corresponding optically active product 3a was obtained with excellent branched selectivity
and high enantioselectivity (87:13 er) (Scheme 3, Equation (1)). Styrene (2c) was also
applicable toward this asymmetric protocol, yielding corresponding product 3c in 86:14
er (Scheme 3, Equation (3)). Furthermore, when (S)-L1 was utilized as the ligand, the
corresponding enantiomer of 3a was obtained with 14:86 er (Scheme 3, Equation (2)), thus
allowing the rapid access of both enantiomers of 3a by switching the absolute configuration
of the ligand. These results further illustrate the novel structural nature of the BiPhePhos-
type ligand for the efficient asymmetric control on such types of alkylation reactions. This
strategy also offers a powerful strategy for potential biological evaluation of structure-
diversified chiral isoindolinone skeletons.
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3. Experimental Section 

Unless otherwise stated, 1H-NMRand 13C-NMRspectra were recorded on a Bruker 
(400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and 
the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), 
carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Data 
are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd 
= doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of 
doublet of doublets, m = multiplet, bs = broad singlet, etc.), coupling constants (Hz) and 
integration. High-resolution mass spectra (HRMS) were obtained on IonSpec FT-ICR or 
Waters Micromass Q-TOF micro Synapt high-definition mass spectrometer. Optical rota-
tion was determined on RUDOLPH AUTOPOL-VI apparatus. Melting points were meas-
ured on INESA WRR-Y melting point apparatus. Flash chromatography was carried out 
with 300–400 mesh silica gel. All the key reactions were carried out under nitrogen atmos-
phere with a stir bar in a sealed vial. 1,4-dioxane (99.5%, extra dry, stabilized) used for the 
key reactions was purchased from Acros and degassed with nitrogen before use. 
[Ir(COD)2] BArF was prepared according to literature methods. All the ligands were pur-
chased from Strem Chemicals and were used as received. All starting materials 1a–p were 
prepared according to literature methods [22–24]. 

General Procedure for the Synthesis of Product (3a–3p) 
In a N2-filled glovebox, a 4 mL baked vial charged with a stir bar and 6.4 mg of 

[Ir(COD)2]BArF (0.005 mmol), 4.0 mg of rac-L1 (0.005 mmol) was added. Then, 0.2 mL of 
1, 4-dioxane was added into the vial and the resulting solution was stirred for 5 min. Then, 
1a (21 mg, 0.1 mmol) and 2a (56 mg, 0.5 mmol) were added. The vial was tightly capped 
with a screw cap and then removed from the glovebox and placed in a pre-heated alumi-
num block at 120 °C for 48 h. The reaction mixture was directly purified by column chro-
matography on silica gel with EtOAc/PE mixture as an eluent. 
2-(2-(octan-2-yl)phenyl)isoindolin-1-one (3a) 

White foam, 26.0 mg, 81% yield, 1H-NMR(400 MHz, CDCl3) δ 7.96 (d, J = 7.5 Hz, 1H), 
7.64–7.58 (m, 1H), 7.56–7.50 (m, 2H), 7.41–7.38 (m, 2H), 7.30–7.25 (m, 1H), 7.21 (d, J = 7.6 
Hz, 1H), 4.81–4.59 (m, 2H), 2.82–2.71 (m, 1H), 1.64–1.46 (m, 2H), 1.31–1.06 (m, 11H), 0.80 
(t, J = 6.4 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.28, 145.51, 140.45, 135.23, 131.41, 
130.60, 127.75, 127.24, 127.02, 125.95, 125.62, 123.23, 121.73, 53.18, 37.05, 32.72, 30.65, 28.37, 

Scheme 3. Asymmetric alkylation with chiral ligand.

3. Experimental Section

Unless otherwise stated, 1H-NMRand 13C-NMRspectra were recorded on a Bruker
(400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and
the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26),
carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Data
are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet,
dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of
doublet of doublets, m = multiplet, bs = broad singlet, etc.), coupling constants (Hz) and
integration. High-resolution mass spectra (HRMS) were obtained on IonSpec FT-ICR or
Waters Micromass Q-TOF micro Synapt high-definition mass spectrometer. Optical rotation
was determined on RUDOLPH AUTOPOL-VI apparatus. Melting points were measured
on INESA WRR-Y melting point apparatus. Flash chromatography was carried out with
300–400 mesh silica gel. All the key reactions were carried out under nitrogen atmosphere
with a stir bar in a sealed vial. 1,4-dioxane (99.5%, extra dry, stabilized) used for the key
reactions was purchased from Acros and degassed with nitrogen before use. [Ir(COD)2]
BArF was prepared according to literature methods. All the ligands were purchased from
Strem Chemicals and were used as received. All starting materials 1a–p were prepared
according to literature methods [22–24].

General Procedure for the Synthesis of Product (3a–3p)

In a N2-filled glovebox, a 4 mL baked vial charged with a stir bar and 6.4 mg of
[Ir(COD)2]BArF (0.005 mmol), 4.0 mg of rac-L1 (0.005 mmol) was added. Then, 0.2 mL
of 1, 4-dioxane was added into the vial and the resulting solution was stirred for 5 min.
Then, 1a (21 mg, 0.1 mmol) and 2a (56 mg, 0.5 mmol) were added. The vial was tightly
capped with a screw cap and then removed from the glovebox and placed in a pre-heated
aluminum block at 120 ◦C for 48 h. The reaction mixture was directly purified by column
chromatography on silica gel with EtOAc/PE mixture as an eluent.

2-(2-(octan-2-yl)phenyl)isoindolin-1-one (3a)

White foam, 26.0 mg, 81% yield, 1H-NMR(400 MHz, CDCl3) δ 7.96 (d, J = 7.5 Hz,
1H), 7.64–7.58 (m, 1H), 7.56–7.50 (m, 2H), 7.41–7.38 (m, 2H), 7.30–7.25 (m, 1H), 7.21
(d, J = 7.6 Hz, 1H), 4.81–4.59 (m, 2H), 2.82–2.71 (m, 1H), 1.64–1.46 (m, 2H), 1.31–1.06
(m, 11H), 0.80 (t, J = 6.4 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.28, 145.51, 140.45, 135.23,
131.41, 130.60, 127.75, 127.24, 127.02, 125.95, 125.62, 123.23, 121.73, 53.18, 37.05, 32.72, 30.65,
28.37, 26.80, 21.59, 21.28, 13.00. HRMS (ESI) calcd. for C22H28NO [M + H]+: 322.2081,
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Found: 322.2076. Chiralcel IC column, n-hexane/i-PrOH = 100:10, flow rate = 1.0 mL/min,
λ = 254 nm, tR (major isomer) = 25.168 min, tR (minor isomer) = 21.322 min. er: 87:13.

2-(2-(hexan-2-yl)phenyl)isoindolin-1-one (3b)

White foam, 24.9 mg, 85% yield, 1H-NMR(400 MHz, CDCl3) δ 7.89 (d, J = 7.4 Hz, 1H),
7.58–7.51 (m, 1H), 7.49–7.42 (m, 2H), 7.34–7.30 (m, 2H), 7.23–7.20 (m, 1H), 7.14 (d, J = 7.6 Hz,
1H), 4.77–4.51 (m, 2H), 2.79–2.62 (m, 1H), 1.61–1.40 (m, 2H), 1.25–0.95 (m, 7H), 0.73 (t, J = 7.0 Hz,
3H). 13C-NMR(101 MHz, CDCl3) δ 167.28, 145.50, 140.46, 135.25, 131.44, 130.59, 127.78, 127.26,
127.04, 125.97, 125.65, 123.29, 121.73, 53.19, 36.73, 32.79, 29.05, 21.77, 21.43, 12.92. HRMS (ESI)
calcd. for C20H24NO [M + H]+: 294.1706, Found: 294.1700.

2-(2-(1-phenylethyl)phenyl)isoindolin-1-one (3c)

White solid, 22.5 mg, 72% yield, m.p. = 130–132 ◦C. 1H-NMR(400 MHz, CDCl3) δ 7.96
(d, J = 7.1 Hz, 1H), 7.59–7.48 (m, 3H), 7.45–7.38 (m, 1H), 7.36–7.27 (m, 2H), 7.17 (d, J = 7.7 Hz, 1H),
7.05 (s, 3H), 6.95 (s, 2H), 4.54–4.31 (m, 2H), 3.53 (s, 1H), 1.61 (d, J = 7.0 Hz, 3H). 13C-NMR(101
MHz, CDCl3) δ 167.99, 146.41, 144.76, 141.97, 136.86, 132.21, 131.55, 128.59, 128.24, 128.22, 128.13,
127.93, 127.38, 127.35, 125.87, 124.13, 122.53, 53.40, 39.77, 21.85. HRMS (ESI) calcd. for C22H20NO
[M+H]+: 314.1514, Found: 314.1562. Chiralcel IC column, n-hexane/i-PrOH = 100:10, flow
rate = 1.0 mL/min, λ = 254 nm, tR (major isomer) = 19.801 min, tR (minor isomer) = 20.807 min.
er: 86:14.

2-(2-(1-(p-tolyl)ethyl)phenyl)isoindolin-1-one (3d)

White solid, 28.4 mg, 87% yield, m.p. = 140–142 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 7.2 Hz, 1H), 7.60–7.48 (m, 3H), 7.43–7.37 (m, 1H), 7.35–7.28 (m, 2H), 7.17
(d, J = 7.6 Hz, 1H), 6.87 (s, 4H), 4.44 (d, J = 16.9 Hz, 1H), 4.34 (q, J = 6.9 Hz, 1H), 3.67 (s, 1H),
2.27 (s, 3H), 1.59 (d, J = 7.0 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.00, 143.95, 142.27,
140.94, 135.70, 134.31, 131.21, 130.50, 127.83, 127.57, 127.18, 127.08, 126.93, 126.23, 126.18,
123.11, 121.45, 52.48, 38.22, 20.89, 19.88. HRMS (ESI) calcd. for C23H22NO [M + H]+:
328.1701, Found: 328.1708.

2-(2-(1-(4-methoxyphenyl)ethyl)phenyl)isoindolin-1-one (3e)

White solid, 29.8 mg, 87% yield, m.p. = 96–98 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.97 (d, J = 7.3 Hz, 1H), 7.60–7.46 (m, 3H), 7.43–7.37 (m, 1H), 7.36–7.28 (m, 2H),
7.17 (d, J = 7.7 Hz, 1H), 6.88 (s, 2H), 6.62 (d, J = 7.9 Hz, 2H), 4.45 (d, J = 16.9 Hz, 1H),
4.34 (q, J = 7.0 Hz, 1H), 3.70 (s, 4H), 1.58 (d, J = 7.1 Hz, 3H). 13C-NMR(101 MHz, CDCl3)
δ 166.93, 156.63, 143.99, 140.89, 137.42, 135.67, 131.22, 130.50, 127.55, 127.21, 127.19, 127.09,
126.81, 126.22, 123.08, 121.51, 112.53, 54.17, 52.47, 37.79, 20.96. HRMS (ESI) calcd. for
C23H22NO2 [M + H]+: 344.1651, Found: 344.1679.

2-(2-(1-(2-methoxyphenyl)ethyl)phenyl)isoindolin-1-one (3f)

White solid, 25.7 mg, 75% yield, m.p. = 157–159 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 7.1 Hz, 1H), 7.61–7.47 (m, 3H), 7.44–7.37 (m, 1H), 7.33–7.27 (m, 2H),
7.14 (d, J = 7.6 Hz, 1H), 7.08–6.98 (m, 1H), 6.88 (d, J = 7.4 Hz, 1H), 6.82–6.74 (m, 1H), 6.47
(d, J = 8.1 Hz, 1H), 4.84 (q, J = 6.9 Hz, 1H), 4.35 (d, J = 16.9 Hz, 1H), 3.42 (d, J = 16.8 Hz, 1H),
3.10 (s, 3H), 1.54 (d, J = 7.0 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.94, 156.09, 145.51,
142.09, 136.87, 135.06, 132.60, 131.21, 128.42, 128.30, 128.12, 127.86, 127.60, 127.08, 126.82,
124.03, 122.42, 120.29, 109.77, 54.38, 52.95, 31.96, 20.53. HRMS (ESI) calcd. for C23H22NO2
[M + H]+: 344.1651, Found: 344.1679.

2-(2-(1-(m-tolyl)ethyl)phenyl)isoindolin-1-one (3g)

White solid, 23.5 mg, 72% yield, m.p. = 119–121 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.97 (d, J = 6.7 Hz, 1H), 7.60–7.48 (m, 3H), 7.46–7.38 (m, 1H), 7.35–7.24 (m, 2H), 7.16
(d, J = 7.3 Hz, 1H), 6.98–6.92 (m, 1H), 6.83 (d, J = 6.6 Hz, 1H), 6.70 (s, 2H), 4.45–4.08
(m, 2H), 3.34 (s, 1H), 1.94 (s, 3H), 1.59 (d, J = 6.9 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ
167.86, 146.42, 144.73, 142.07, 137.89, 136.92, 132.32, 131.48, 128.52, 128.39, 128.25, 128.07,
128.05, 127.72, 127.31, 126.49, 124.17, 124.11, 122.43, 53.31, 39.92, 21.72, 21.00. HRMS (ESI)
calcd. for C23H22NO [M + H]+: 328.1701, Found: 328.1708.
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2-(2-(1-(4-fluorophenyl)ethyl)phenyl)isoindolin-1-one (3h)

White solid, 19.2 mg, 58% yield, m.p. = 134–136 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 7.2 Hz, 1H), 7.66–7.28 (m, 6H), 7.18 (d, J = 7.5 Hz, 1H), 6.93 (s, 2H), 6.84–6.70
(m, 2H), 4.56–4.28 (m, 2H), 3.65 (s, 1H), 1.58 (d, J = 7.0 Hz, 3H). 13C-NMR(101 MHz, CDCl3)
δ 167.94, 161.09 (d, J = 244.1 Hz), 144.57, 142.04, 141.78, 136.74, 132.15, 131.69, 128.77, 128.69,
128.66, 128.24, 127.88, 127.50, 124.16, 122.60, 114.93 (d, J = 21.1 Hz), 53.47, 38.94, 21.99.
HRMS (ESI) calcd. for C22H19FNO [M + H]+: 332.1451, Found: 332.1478.

2-(2-(1-(3-fluorophenyl)ethyl)phenyl)isoindolin-1-one (3i)

White solid, 18.5 mg, 56% yield, m.p. = 121–123 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 7.4 Hz, 1H), 7.59–7.38 (m, 4H), 7.37–7.31 (m, 2H), 7.19 (d, J = 7.7 Hz, 1H),
7.04–6.97 (m, 1H), 6.79–6.65 (m, 3H), 4.49 (d, J = 16.8 Hz, 1H), 4.41 (q, J = 7.1 Hz, 1H),
3.64 (s, 1H), 1.59 (d, J = 7.1 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.96, 162.77
(d, J = 245.8 Hz), 149.14, 144.08, 141.76, 136.80, 132.10, 131.70, 129.61 (d, J = 8.2 Hz),
128.70, 128.26, 128.22, 127.94, 127.63, 124.18, 123.20, 122.56, 114.16 (d, J = 21.4 Hz), 112.77
(d, J = 21.2 Hz), 53.45, 39.46, 21.70. HRMS (ESI) calcd. for C22H19FNO [M + H]+: 332.1451,
Found: 332.1478.

2-(4-methyl-2-(1-phenylethyl)phenyl)isoindolin-1-one (3j)

White solid, 20.3 mg, 62% yield, m.p. = 146–148 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 6.9 Hz, 1H), 7.59–7.47 (m, 2H), 7.36–7.28 (m, 2H), 7.17–6.93 (m, 7H), 4.48–4.24
(m, 2H), 3.53 (s, 1H), 2.42 (s, 3H), 1.61 (d, J = 7.1 Hz, 3H). 13C-NMR(101 MHz, CDCl3)
δ 168.09, 146.53, 144.30, 141.99, 138.39, 134.20, 132.32, 131.47, 128.62, 128.21, 128.07, 128.04,
127.99, 127.37, 125.83, 124.09, 122.52, 53.43, 39.68, 21.87, 21.52. HRMS (ESI) calcd. for
C23H22NO [M + H]+: 328.1701, Found: 328.1708.

2-(4-methoxy-2-(1-phenylethyl)phenyl)isoindolin-1-one (3k)

White solid, 27.4 mg, 80% yield, m.p. = 140–142 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.94–7.83 (m, 1H), 7.50–7.39 (m, 2H), 7.21 (s, 1H), 7.05–6.74 (m, 8H), 4.34–4.21 (m, 2H),
3.77 (s, 3H), 3.29 (s, 1H), 1.51 (d, J = 7.1 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 168.22, 159.53,
146.09, 141.97, 134.83, 132.26, 131.48, 129.63, 129.23, 128.25, 128.06, 127.32, 125.92, 124.07, 122.50,
114.30, 111.65, 55.50, 53.52, 39.94, 21.84. HRMS (ESI) calcd. for C23H22NO2 [M + H]+: 344.1651,
Found: 344.1679.

2-(4-fluoro-2-(1-phenylethyl)phenyl)isoindolin-1-one (3l)

White solid, 27.1 mg, 82% yield, m.p. = 129–131 ◦C. 1H-NMR(400 MHz, CDCl3) δ 7.87
(d, J = 7.1 Hz, 1H), 7.52–7.41 (m, 2H), 7.25–6.81 (m, 9H), 4.46–4.21 (m, 2H), 3.37 (s, 1H), 1.50
(d, J = 7.1 Hz, 3H). 13C-NMR(101 MHz, CDCl3) δ 167.03, 161.45 (d, J = 247.4 Hz), 146.34,
144.57, 140.83, 131.69, 130.91, 130.64, 128.80 (d, J = 9.0 Hz), 127.30, 127.15, 126.21, 125.10,
123.10, 121.50, 114.00 (d, J = 22.7 Hz), 113.09 (d, J = 22.6 Hz), 52.32, 38.87, 20.69. HRMS (ESI)
calcd. for C22H19FNO [M + H]+: 332.1451, Found: 332.1478.

2-(5-methyl-2-(1-phenylethyl)phenyl)isoindolin-1-one (3m)

White solid, 19.6 mg, 60% yield, m.p. = 157–159 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.96 (d, J = 7.1 Hz, 1H), 7.60–7.46 (m, 2H), 7.39 (d, J = 4.5 Hz, 1H), 7.33–7.18 (m, 2H),
7.13–6.89 (m, 6H), 4.51–4.21 (m, 2H), 3.53 (s, 1H), 2.34 (s, 3H), 1.59 (d, J = 7.1 Hz, 3H).
13C-NMR(101 MHz, CDCl3) δ 167.02, 145.58, 140.91, 140.59, 136.14, 135.52, 131.21, 130.46,
128.34, 127.79, 127.15, 127.05, 126.74, 126.27, 124.75, 123.07, 121.46, 52.35, 38.41, 20.86, 19.77.
HRMS (ESI) calcd. for C23H22NO [M + H]+: 328.1701, Found: 328.1708.

2-(5-methoxy-2-(1-phenylethyl)phenyl)isoindolin-1-one (3n)

White solid, 28.1 mg, 82% yield, m.p. = 170–172 ◦C. 1H-NMR(400 MHz, CDCl3) δ 7.95
(d, J = 6.3 Hz, 1H), 7.59–7.47 (m, 2H), 7.41 (d, J = 7.3 Hz, 1H), 7.28 (d, J = 6.1 Hz, 1H), 7.08–6.88
(m, 6H), 6.72 (s, 1H), 4.49–4.22 (m, 2H), 3.79 (s, 3H), 3.55 (s, 1H), 1.58 (d, J = 6.4 Hz, 3H).
13C-NMR(101 MHz, CDCl3) δ 167.93, 158.65, 146.79, 141.92, 137.57, 136.83, 132.16, 131.57, 128.64,
128.18, 128.13, 127.25, 125.79, 124.13, 122.54, 114.12, 113.79, 55.45, 53.32, 39.18, 22.02. HRMS (ESI)
calcd. for C23H22NO2 [M + H]+: 344.1651, Found: 344.1679.
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2-(5-chloro-2-(1-phenylethyl)phenyl)isoindolin-1-one (3o)

White solid, 16.7 mg, 48% yield, m.p. = 169–172 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.88 (d, J = 7.2 Hz, 1H), 7.55–7.41 (m, 2H), 7.41–7.30 (m, 2H), 7.22 (d, J = 7.1 Hz, 1H), 7.11
(s, 1H), 6.98 (s, 3H), 6.84 (s, 2H), 4.39–4.22 (m, 2H), 3.43 (s, 1H), 1.51 (d, J = 7.1 Hz, 3H).
13C-NMR(101 MHz, CDCl3) δ 166.83, 144.86, 142.50, 140.79, 136.96, 131.42, 130.76, 130.74,
128.03, 127.62, 127.43, 127.27, 127.22, 126.20, 125.03, 123.16, 121.54, 52.14, 38.45, 20.71. HRMS
(ESI) calcd. for C22H19ClNO [M + H]+: 348.1155, Found: 348.1168.

2-(5-fluoro-4-methyl-2-(1-phenylethyl)phenyl)isoindolin-1-one (3p)

White solid, 20.7 mg, 61% yield, m.p. = 130–132 ◦C. 1H-NMR(400 MHz, CDCl3)
δ 7.87 (d, J = 7.2 Hz, 1H), 7.52–7.39 (m, 2H), 7.24–7.19 (m, 2H), 6.98 (s, 3H), 6.85 (s, 2H),
6.77 (d, J = 9.6 Hz, 1H), 4.41–4.15 (m, 2H), 3.46 (s, 1H), 2.25 (s, 3H), 1.50 (d, J = 7.0 Hz, 3H).
13C-NMR(101 MHz, CDCl3) δ 166.96, 158.63 (d, J = 245.6 Hz), 145.26, 140.79, 139.20, 134.23
(d, J = 9.2 Hz), 130.89, 130.66, 129.45 (d, J = 5.7 Hz), 127.21, 127.15, 126.20, 124.89, 124.08
(d, J = 16.7 Hz), 123.13, 121.52, 113.85 (d, J = 22.7 Hz), 52.18, 38.20, 20.92, 13.64 (d, J = 2.9 Hz).
HRMS (ESI) calcd. for C23H21FNO [M + H]+: 346.1607, Found: 346.1635.

4. Conclusions

In summary, we have developed an iridium-catalyzed branched-selective C–H alkyla-
tion of N-arylisoindolinones with simple alkenes. With the assistance of the isoindolinone
skeleton as a directing group, site-selective C–H activation was achieved at the ortho-
position of the N-aryl ring. An array of biological N-arylisoindolinones were obtained
in good yields and excellent branched selectivities. With a BiPhePhos-type chiral ligand,
efficient asymmetric control was achieved with up to 87:13 er. The application of this
methodology toward other types of biologically-relevant structures as well as medicinal
studies of the resulted N-arylisoindolinones are currently ongoing.
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