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Objective. The purpose of this study was to investigate the feasibility of applying handcrafted radiomics (HCR) and deep learning-
based radiomics (DLR) for the accurate preoperative classification of glioblastoma (GBM) and solitary brain metastasis (BM).
Methods. A retrospective analysis of the magnetic resonance imaging (MRI) data of 140 patients (110 in the training dataset and 30
in the test dataset) with GBM and 128 patients (98 in the training dataset and 30 in the test dataset) with BM confirmed by surgical
pathology was performed. The regions of interest (ROIs) on T1-weighted imaging (TIWTI), T2-weighted imaging (T2WI), and
contrast-enhanced TIWI (T1CE) were drawn manually, and then, HCR and DLR analyses were performed. On this basis, different
machine learning algorithms were implemented and compared to find the optimal modeling method. The final classifiers were
identified and validated for different MRI modalities using HCR features and HCR + DLR features. By analyzing the receiver
operating characteristic (ROC) curve, the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to
evaluate the predictive efficacy of different methods. Results. In multiclassifier modeling, random forest modeling showed the best
distinguishing performance among all MRI modalities. HCR models already showed good results for distinguishing between the
two types of brain tumors in the test dataset (TIWI, AUC =0.86; T2WI, AUC=0.76; TICE, AUC =0.93). By adding DLR features,
all AUCs showed significant improvement (TIWI, AUC = 0.87; T2WI, AUC = 0.80; TLCE, AUC =0.97; p < 0.05). The T1CE-based
radiomic model showed the best classification performance (AUC=0.99 in the training dataset and AUC=0.97 in the test
dataset), surpassing the other MRI modalities (p < 0.05). The multimodality radiomic model also showed robust performance
(AUC=1 in the training dataset and AUC =0.84 in the test dataset). Conclusion. Machine learning models using MRI radiomic
features can help distinguish GBM from BM effectively, especially the combination of HCR and DLR features.

1. Introduction glioblastoma (GBM) has an incidence rate of 3.22 per

100,000 population and is the most common malignant
Brain metastases (BMs) are the most common tumors of the =~ primary brain tumor in adults [2]. According to the World
central nervous system (CNS), with an incidence of ap-  Health Organization (WHO) classification of CNS tumors,
proximately 7-14 per 100,000 population [1], whereas  gliomas can be categorized as grades I-IV based on
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histological characteristics; GBM 1is categorized as a WHO
grade IV glioma, accounting for the majority of gliomas [3].
According to the statistics of the Central Brain Tumor Registry
of the United States (CBTRUS), the incidence of BM and GBM
increases each year [2]. Patients with BM have a median
survival of 4-6 months [4], while the median survival of GBM
patients is 14 months [5], despite surgery, chemotherapy, and
radiation therapy. At present, the standard treatment for BM is
stereotactic radiotherapy, while the most effective therapeutic
method for GBM is surgery. Therefore, an accurate preop-
erative diagnosis is of significance for surgical planning, de-
termining the extent of resection [6], evaluating the need for
neoadjuvant therapy, defining the radiation therapy field, and
counseling patients and their families [7].

It is generally accepted that magnetic resonance imaging
(MRI) is an important modality for evaluating brain tumors.
In patients with a history of systemic cancer and multiple
lesions, the differentiation of BM from GBM may be easily
achieved using conventional MRI. However, single metas-
tases were estimated to occur in more than 25% of cases of
BM [8]. Additionally, systemic malignancy was present in
approximately 3% of high-grade glioma cases [9], and
multifocal lesions accounted for up to 20% of GBM cases in
some reports [10]. Furthermore, as both BM and GBM can
present with contrast-enhancing and necrotic areas, they
often present a similar anatomical appearance on MRI [8].
Therefore, the use of conventional MRI in differentiating
between single BMs and GBM lesions is limited.

Generally, BM and GBM are distinguished by some
observable MRI features. Lesions that show nodular or
ring-shaped inhomogeneous contrast enhancement and
hypointense signals on Tl-weighted imaging (T1WI) and
hyperintense signals on T2-weighted imaging (T2WI) are
visible on conventional MRI for both diseases. Compared with
GBM lesions, most BM lesions are multifocal, have relatively
clear boundaries, and are surrounded by severe edema.
Moreover, BM lesions have smaller volumes, smaller areas of
necrosis and cystic degeneration, and less enhancement than
GBM lesions. Nevertheless, these methods, with limited
sensitivity and specificity, are susceptible to individual sub-
jectivity, resulting in differences among radiologists. However,
the use of multiple MRI techniques is expected to significantly
improve the diagnostic results. Several studies have differ-
entiated between GBM and BM based on multiparametric
MRI data, including data from advanced imaging methods
such as diffusion [11, 12], perfusion [13, 14], and MR spec-
troscopy [15, 16]. Askaner et al. made a differential diagnosis
by statistically analyzing the relative cerebral blood volume of
the solid tumor area, peritumor area, and adjacent area on
perfusion-weighted imaging (PWI) [17]. The apparent diffusion
coefficient was used to compare and distinguish both diseases
on diffusion-weighted imaging (DWI) by Lee et al. [18].
Nevertheless, there is no widely held standard to distinguish
between GBM and BM, except histopathological evaluation.
Moreover, these advanced imaging methods are not readymade
tools in most radiology departments because they are relatively
time consuming, which limits their clinical promotion.

While histopathological evaluation is currently the gold
standard for brain tumor diagnosis [19], there is a growing
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body of evidence that the combination of quantitative im-
aging and machine learning algorithms can help with the
noninvasive differentiation of brain neoplasms based on
pretreatment MRI [20]. Radiomics is an emerging field that
aims to utilize the full potential of medical imaging by
extracting a large number of quantitative features, including
tumor intensity, shape, and texture [21]. Radiomics has
recently emerged as a powerful methodology to quantify the
characteristics of tumors and mine more biological infor-
mation in a noninvasive manner [22]. Many studies have
demonstrated that distinct tumor types in many organs can
be quantified by radiomic analysis, and the results of
radiomics can be used as imaging biomarkers to support
clinical decision making [23-25]. Radiomics can also reveal
novel characteristics of brain tumors, as demonstrated by a
recent study. Radiomic analysis has been shown to improve
diagnosis, prognosis, and decision making in the treatment
of patients over standard radiological assessment [26].
Machine learning models can combine a large number of
variables of different data types in a single model, thereby
maximizing the efficacy of prediction testing. Machine
learning technology has been widely used to diagnose
various types of tumors.

Previous studies have shown that radiomics offers im-
portant advantages in the assessment of the underlying
tumor pathophysiology and improves the ability to distin-
guish between tumors [27-29]. Although multiple classifiers
have been found in many previous radiomic studies, the
main purpose was to find the best classifier and not validate
the additional radiomic features. Because different radiomic
feature groups may have their own advantages or disad-
vantages due to the feature extraction method, we hy-
pothesized that the combined use of handcrafted radiomics
(HCR) and deep learning-based radiomics (DLR) might
provide extra benefits. To our knowledge, there have been no
reports validating the potential of the combination of HCR
and DLR for the classification of GBM and solitary BM
lesions. Thus, the present study sought to differentiate single
BM from GBM lesions by combining high-dimensional
radiomic features based on conventional MRI and machine
learning technologies.

2. Materials and Methods

The study was approved by the Institutional Review Board
(IRB) of Xiangya Hospital. According to the relevant
guidelines and regulations of the retrospective study, the
requirement for informed consent was waived. The study
workflow overview is shown in Figure 1.

2.1. Patient Data. This was a retrospective analysis of 268
patients with GBM and BM from Xiangya Hospital, Yunnan
Cancer Hospital, and Nanfang Hospital, proven patholog-
ically between January 1, 2010, and December 31, 2018.
Preoperative routine plain and enhanced MRI scans were
required for patients to be eligible for inclusion in the study.
Patients who had a treatment history (including surgery and
radiotherapy) related to GBM or BM were excluded. The 268
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FiGure 1: Study workflow overview.

patients were separated into two groups: 208 (98 BM and 110
GBM) patients from Xiangya Hospital were included in the
training dataset and 60 (30 BM and 30 GBM) patients from
Yunnan Cancer Hospital and Nanfang Hospital were in-
cluded in the test dataset. The diagnoses of all patients were
confirmed histologically on the basis of the 2016 WHO
classification system.

2.2. MRI Protocol. All MRI examinations were conducted in
the radiology department of Xiangya Hospital, Yunnan
Cancer Hospital, and Nanfang Hospital with a 3.0-T MRI
system. High-quality MRI images were obtained using
the following protocols: axial TIWI: layer thick-
ness =5mm, layer spacing=1.5mm, matrix=320x256,
and field of view (FOV) =24 x 24 cm; axial T2WI: layer
thickness =5 mm, layer spacing=1.5 mm, matrix =384x
384, and FOV =24 x 24 cm; and axial contrast-enhanced
TIWI (T1CE): layer thickness=5mm, layer spa-
cing = 1.5 mm, matrix =320 x 256, and FOV =24 x 24 cm.
All MRI images were retrieved from the picture archiving
and communication system for further image feature
extraction.

2.3. Region of Interest (ROI) Preprocessing. Through noise
reduction, offset field correction, and strict object internal
registration, we preprocessed each image using the public
software package FSL. Histogram matching was performed
such that the intensity levels between various objects were
comparable. All images were assessed by two neuroradiol-
ogists (each with 5-10 years of work experience) indepen-
dently. The ROIs of the entire tumor on TIWI, T2WI, and
T1CE images were created manually around the enhanced
part of the tumor layer by layer using ITK-SNAP software
[30]; areas of macroscopic necrosis, cystic changes, and
edema were avoided. A third senior neuroradiologist (with
15 years of work experience) reexamined the images and
made a final diagnosis when there was an inconsistency
between the two neuroradiologists.

2.4. HCR Feature Extraction. Based on the segmentation of
ROIs, we performed HCR feature extraction using PyR-
adiomics [31]. The high-throughput HCR features included
16 shape-based features, 18 histogram features, 20 gray level
co-occurrence matrix (GLCM) features, 14 gray level de-
pendence matrix (GLDM) features, 16 gray level run length



matrix (GLRLM) features, 16 gray level size zone matrix
(GLSZM) features, 5 neighboring gray tone difference
matrix (NGTDM) features, 728 wavelet features, and 273
Laplacian of Gaussian (LoG) features. The details of these
features are available in PyRadiomics documentation
(https://pyradiomics.readthedocs.io/en/latest/index.html).
Finally, 1106 HCR features were extracted from each MRI
ROI, and 3318 HCR features were extracted from each
patient.

2.5. DLR Feature Extraction. A convolutional neural net-
work (CNN) was also used to extract and summarize MRI
features. Here, we used a pretrained ResNet transferred from
ImageNet, which was built by Keras. The last fully con-
volutional layer was reset, and each ResNet could extract
1000 features from each MRI modality.

2.6. Feature Selection and Machine Learning Modeling.
Based on the HCR and DLR features, the random forest-
(RE-) based Boruta algorithm was applied to select the
optimal feature groups. Boruta is a wrapper algorithm that
performs robust, statistically grounded feature selection for
all relevant features [32]. By comparing the importance of
the original attribute with the importance of its randomized
copies [33], all relevant features were selected for subsequent
modeling. One RF-Boruta selection example is shown in
Figure 2. Then, for the selected HCR features and
HCR + DLR features of the three MRI modalities, a total of 6
radiomic feature groups were advanced to the next modeling
step. To find the optimal modeling method, six different
machine learning algorithms were adopted to build the
classifiers for the 6 feature groups. RF, decision tree, logistic
regression, AdaBoost, Gaussian processing, and support
vector machine were implemented using 10-fold cross-
validation of the training dataset in turn. Receiver operating
characteristic (ROC) curve analysis was performed, and the
area under the curve (AUC) of each model was obtained to
evaluate the predictive performance.

2.7. Model Establishment and Validation. After finding the
best modeling method, each classifier was established and
validated in the training dataset and tested in the test dataset.
The HCR models of the TICE, TIWI, T2WI, and multi-
modality features were built and compared; then, DLR
features were added, and the above process was repeated.
Through comparison of the ROC curves and AUC values,
the optimal MRI modality and machine learning model were
identified.

2.8. Statistical Analysis. All machine learning algorithms
were implemented using scikit-learn and Keras libraries, and
statistical analysis was carried out using SPSS (version 26,
IBM Corporation, Armonk, NY, USA). Independent ¢-tests
were used to assess differences in continuous variables be-
tween the patient groups, and Fisher’s exact tests were used
to assess noncontinuous variables. The DeLong test was
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FIGURE 2: The Boruta selection of HCR + DLR features of TICE
data. Green and yellow indicate high-importance features, and blue
and red indicate low-importance features.

performed to compare ROC curves. A P value < 0.05 was
considered statistically significant.

3. Results

3.1. Patient Characteristics. The clinical characteristics of the
patients in the training and test cohorts are given in Table 1.
There was no significant difference in age or sex between
patients with GBM and BM in the two cohorts.

3.2. Radiomics Features and Machine Learning Modeling.
A total of 1106 HCR features and 1000 DLR features were
extracted for each case from TIWI, T2WI, and T1CE data.
By Boruta selection, the relevant features were selected; the
details of each feature group are given in Supplementary
Material 1. For all 6 feature groups, the RF models all showed
better performance than the other machine learning algo-
rithms (p <0.05) (Figure 3).

With only HCR features, TICE showed the best dis-
tinguishing performance (AUC=0.99, in the training
dataset; AUC=0.93, in the test dataset), which was signif-
icantly better than that of TIWI and T2WI (p <0.05).
Adding DLR features, TICE showed significant improve-
ment (AUC=0.99, in the training dataset; AUC=0.97, in
the test dataset; p < 0.05) and remained the best model. TIWI
(AUC=0.99, in the training dataset; AUC =0.87, in the test
dataset; p <0.05) and T2WI (AUC=1.00, in the training
dataset; AUC = 0.80, in the test dataset; p < 0.05) also showed
significant improvement. All details are shown in Figure 4.
Supplementary Material 2 shows the robust performance in
the training dataset using 10-fold cross-validation.

Generally, multimodality radiomic models show better
diagnostic performance than single-modality models. In our
study, the multimodality model showed an AUC of 1.00 in
the training dataset and an AUC of 0.84 in the test dataset,
which were lower than those of the TICE- and TIWI-based
radiomic models (p <0.05). Table 2 and Figure 5 show a
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TaBLE 1: Cohort characteristics of 268 patients with BM and GBM.
Characteristics Groups Full (n=268) Training (n =208) Testing (n=60) P value
Meanz+ 55.48 55.63 54.96
Age (years - 0.74
ge (years) SD 9.18 9.36 8.68
Male 170 138 33
Gender 0.22
Female 98 70 27
BM 128 98 30
Tumor types
P GBM 140 110 30
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F1GURE 3: Performance of different machine learning modeling methods in 6 feature groups. (a)-(c) ROC curves of the HCR models based
on TICE, TIWI, and T2WI data, respectively. (d)-(f) ROC curves of the HCR + DLR models based on T1CE, TIWI, and T2WI data,

respectively.

comparison of the performance of the multimodality and
single-modality models.

4. Discussion

The accurate classification of GBM and single BM lesions is a
challenging clinical problem. Here, we provide a radiomic

method based on HCR combined with DLR that showed
potential for clinical application.

In this study, to overcome the disadvantages of current
studies, we used different machine learning methods to
preoperatively classify GBM and BM using a series of
radiomic features. We evaluated tumor features throughout
the tumor area rather than performing a largest
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F1GURe 4: Diagnostic performance of 6 feature groups. (a)-(b) ROC curves of the HCR model based on T1CE data in the training dataset and
test dataset, respectively. (c)-(d) HCR + DLR models of T1CE data in the training and test datasets. (e)-(h) HCR and HCR + DLR models of
T1WI data in the training dataset and test dataset. (i)-(1) Details of T2WI data.

TaBLE 2: The performance comparison of multimodality and single-modality models.

Models Training AUC Cross-validation mean AUC Test AUC Accuracy Sensitivity Specificity
T1CE-HCR 0.99 0.94 0.93 0.82 0.70 0.93
T1CE-HCR+DLR 0.99 0.95 0.97 0.85 0.84 0.93
T1IWI-HCR 1.00 0.90 0.86 0.71 0.75 0.78
T1IWI-HCR+DLR 0.99 0.91 0.87 0.76 0.75 0.83
T2WI-HCR 1.00 0.95 0.76 0.73 0.85 0.66
T2WI-HCR+DLR 1.00 0.96 0.80 0.78 0.80 0.83
Multimodality-HCR 1.00 0.92 0.81 0.71 0.70 0.82
Multimodality—HCR +DLR 1.00 0.96 0.84 0.75 0.71 0.91

The bold values represent the highest accuracy and specificity.

cross-sectional analysis, since the analysis of three-dimen-
sional tumor features may provide more diverse internal
information than that of two-dimensional features. The
majority of these features, such as wavelet, second-order,
and some first-order statistical features, cannot be identified
and quantified by the human eye, which highlights the
advantage of using automatic methods and extracting high-
order statistical features to assist in radiological assessment
and clinical decision making. Furthermore, we carried out
10-fold cross-validation and multicenter verification, which
enabled us to reduce regional deviation and improve the
universality of the approach. The predictive models were
built using HCR and DLR analysis. Based on HCR features,
six different machine learning algorithms were imple-
mented, including RF, decision tree, logistic regression,
AdaBoost, Gaussian processing, and support vector ma-
chine. The RF classifier showed the best performance
(AUC=0.93). The combined radiomic model, based on the
optimal HCR features and DLR features, showed the best
overall performance, with an AUC of 0.99 in the training set
and 0.97 in the test set. However, we should note that the
differences in performance among the different models were
not large enough to select one optimal model, specifically
considering that the investigated models seemed to perform
quite comparably and that the variance in AUC might be
partially attributed to the small sample size. Therefore, our

results can only be regarded to support our hypothesis and
need to be verified in future studies.

ResNet was proposed in 2015 as a CNN to solve the
problem of deep networks, such as the vanishing gradient
[34]. Residual neural networks reduce the complexity by
skipping the connection that skips training from a few layers
and connects directly to the output. Skipping effectively
simplifies the network, using fewer layers in the initial
training stages, makes it easier to optimize, and provides
additional accuracy from a considerably increased depth,
which makes it possible to train up to hundreds or even
thousands of layers and still achieve compelling perfor-
mance. Taking advantage of its image classification capa-
bility, ResNet is a powerful potential tool for clinical imaging
diagnosis. Some other deep learning methods have also been
developed to classify and detect brain tumors [35, 36], all of
which showed the clinical potential of artificial intelligence
technology.

Generally, the potential of multimodality MRI for ap-
plication may be better than that of single-modality MRI, but
there are some cases in which its performance can be limited.
In this study, the simple combination of selected features
from images obtained by different MRI modalities may be
one cause of limited performance; we know that more
heterogeneous data do not necessarily provide more valu-
able information. Moreover, some studies have shown that
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F1Ggure 5: ROC curves of the multimodality radiomic model. (a) Results of 10-fold cross-validation in the training dataset. (b) Comparison
of different machine learning models. (c) Final multimodality model in the training dataset. (d) Final multimodality model in the test

dataset.

single-modality models may have predictive potential better
than or equal to that of multimodality models [37, 38]. We
think that detrimental features usually decrease the overall
performance of the model.

There are some limitations to this study that should be
addressed. First, this was a retrospective analysis of a small
sample. Second, the ratio of BM to GBM lesions and the
variety of BM sources were not representative of the
general population, which could exhibit different char-
acteristics. Thus, a larger prospective study is needed for
verification. Third, in this study, a manual method was
used to segment ROIs. Although manual segmentation is
usually better than automatic segmentation and two re-
searchers participated in the segmentation process, seg-
mentation errors still occur. Fourth, we did not compare
the performance of the machine learning model with that
of a human reader.

5. Conclusions

In conclusion, our study suggests a radiomic machine
learning method for distinguishing BM from GBM lesions
preoperatively with favorable predictive accuracy and sta-
bility. In addition, this combination could yield valuable
insight into tumor progression, which could also facilitate
the implementation of a personalized approach in tumor
management. However, the results of our study need to be
used with caution; we only validated the feasibility of ap-
plying HCR and DLR for the accurate preoperative classi-
fication of GBM and solitary BM lesions.
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