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ABSTRACT: Organic anion transporting polypeptides 1B1 and 1B3 are transporters selectively expressed on the basolateral
membrane of the hepatocyte. Several studies reveal that they are involved in drug−drug interactions, cancer, and
hyperbilirubinemia. In this study, we developed a set of classification models for OATP1B1 and 1B3 inhibition based on more
than 1700 carefully curated compounds from literature, which were validated via cross-validation and by use of an external test
set. After combining several sets of descriptors and classifiers, the 6 best models were selected according to their statistical
performance and were used for virtual screening of DrugBank. Consensus scoring of the screened compounds resulted in the
selection and purchase of nine compounds as potential dual inhibitors and of one compound as potential selective OATP1B3
inhibitor. Biological testing of the compounds confirmed the validity of the models, yielding an accuracy of 90% for OATP1B1
and 80% for OATP1B3, respectively. Moreover, at least half of the new identified inhibitors are associated with
hyperbilirubinemia or hepatotoxicity, implying a relationship between OATP inhibition and these severe side effects.

KEYWORDS: organic anion transporting polypeptide B1, organic anion transporting polypeptide B3, OATP1B1, OATP1B3, liver,
hepatocyte, transporters, inhibitors, classification, Random Forest, Support Vector Machines, DrugBank, virtual screening

■ INTRODUCTION

Detoxification mainly takes place in the hepatocyte and is
accomplished by a diverse series of transferase-mediated
conjugation reactions with charged moieties such as gluta-
thione, glucuronide, and sulfate, resulting in negatively charged,
amphiphilic compounds that are efficiently secreted into bile or
urine. The hepatocyte is an epithelial cell which comprises two
membrane domains, the basolateral (sinusoidal) and the apical
(canalicular) membrane.1,2 Together with metabolizing en-
zymes, transmembrane transporters are important determinants
regarding drug metabolism and drug clearance by the liver.
Their significant role has been increasingly recognized in terms
of drug and metabolite pharmacokinetics.2,3 Transport proteins
in the basolateral membrane of the liver cause drugs to enter
the hepatocyte, where metabolism takes place, while in the
apical membrane of the hepatocyte the residing ATP-
dependent efflux pumps transfer drugs and metabolites from
the hepatocyte to bile. Among the transporters residing on the

basolateral (sinusoidal) membrane of human hepatocytes are
organic anion transporting polypeptides (OATP1B1, 1B3, and
2B1), NTCP, OAT2, and OCT1. Among the canalicular
transporters are MRPs (1, 2, 3, and 6), MDRs (1 and 3), BSEP
(ABCB11), and BCRP (ABCG2).2,4,5

OATPs are encoded by the genes of the SLCO/Slco (SLCO
for humans/Slco for rodents) superfamily.3,6−9 The particular
superfamily was originally named SLC21A. However, the
nomenclature of its members was updated and standardized
in 2004 on the basis of phylogenetic relationships, resulting in
its being renamed SLCO, the solute carrier family of
OATPs.3,6,7,9 11 human OATPs have been identified, which
are organized in 6 distinct families: OATP1, OATP2, OATP3,
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OATP4, OATP5, and OATP6. These might be split further
into subfamilies (OATP1A, OATP1B, and OATP1C).7,10−13

OATP1B1 (encoded by the SLCO1B1 gene) and OATP1B3
(encoded by the SLCO1B3 gene) are transporters exclusively
expressed on the basolateral membrane of the hepatocyte.6

They have a wide and overlapping range of substrates and
inhibitors, including various endobiotics, such as bilirubin,
estradiol-17β-glucuronide, thyroxine (T4), cholate, and taur-
ocholate. In the liver, OATPs take up bile acids, thus helping in
preservation of a circulating pool of bile acids, an important
factor for bile flow. This way they contribute to the bile acids
and cholesterol homeostasis.14,15 Furthermore, OATPs are
among the transmembrane transporters that regulate the uptake
of thyroid hormones into their target cells throughout the body,
as well as from the mother to the fetus.14,16−19 Apart from
endogenous compounds, OATPs can transport many marketed
drugs, such as erythromycin, levofloxacin, imatinib, pitavastatin,
and enalapril (substrates) and cyclosporine, atorvastatin,
telmisartan, and diazepam (inhibitors). Due to their wide
range of substrates and inhibitors, they are implicated in various
drug−drug interactions.20−24

Additionally, they are closely associated with cancer, as many
anticancer agents are OATP1B1 and 1B3 substrates or/and
inhibitors. Therefore, they affect the intracellular concentration
of these drugs and alter their effectiveness.25−27 The association
between OATPs and cancer is also based on the fact that the
localization and the expression level of these transporters alters
in cancer tissues, which further influences the uptake and
exposure of drugs.25,28−30Moreover, since these influx trans-
porters are working together with efflux transporters and
metabolizing enzymes, they are suspected to play an important
role in chemoresistance during chemotherapy.25,31,32

Last, but not least, OATPs are correlated to hyper-
bilirubinemia, a condition of accumulation of bilirubin in the
body. Hyperbilirubinemia has been extensively studied in terms
of neurotoxicity, where it appeared that bilirubin may change
synaptic potentials and functions of neurotransmitters. It can
also interfere with oxidative phosphorylation, enhance DNA
instability, interrupt protein synthesis, and block the activity of
mitochondrial enzymes. Therefore, apart from neurotoxicity,
bilirubin may lead to non-neural organ dysfunctions. Moreover,
hyperbilirubinemia can be considered as an early warning of
possible adverse effects such as hepatotoxicity, since hepatotox-
icity is often accompanied by elevated levels of bilirubin.33−35

Bilirubin is taken up to the hepatocyte by OATP1B1 and
1B3 and is subsequently metabolized into mono- and
diglucuronide conjugates by UGT1A1 (UDP-glucuronosyl-
transferase 1A1). These conjugated bilirubin-glucuronides are
excreted into bile by the hepatobiliary ABC-transporter MRP2
(multidrug resistance protein 2), as well as, to a smaller extent,
by BCRP.5,36 In the case of impaired biliary excretion, as a
compensatory pathway, the glucuronidated bilirubin may also
be secreted back to the sinusoidal blood by MRP3.5,33,36,37

Thus, since bilirubin is imported by OATP1B1 and 1B3, a
potential inhibition of those transporters can lead to the
increase of unconjugated bilirubin in the blood and eventually
cause hyperbilirubinemia.
Considering the multifactorial role of OATP1B1 and

OATP1B3 for drug uptake, efficacy, and metabolism, they
also have been included in the table of “Selected Transporter-
Mediated Clinical Significant Drug−Drug Interactions (7/28/
2011)” of the FDA.38 Therefore, predictive models allowing the
assessment of risk for a compound to interact with OATP1B1

and OATP1B3 would be useful tools at the early stage of drug
development. Classification models for OATP1B1 and B3
inhibition are already available in the literature.39−41 Karlgren et
al.40 generated a computational model for OATP1B1, based on
146 compounds (98 in the training set and 48 in the test set)
using orthogonal partial least-squares projection to latent
structures discriminant analysis (OPLS-DA) based on a set of
molecular descriptors. As a follow-up,41 they also published a
model for OATP1B1 and OATP1B3 inhibition, based on 225
compounds (two-thirds randomly assigned as a training set and
one-third as a test set), using multivariate partial least-squares
(PLS) regression and physicochemical descriptors. De Bruyn et
al.39 followed a proteochemometric modeling approach, using
almost 2000 compounds for their training set and 54
compounds as an external test set, combining protein-based
and ligand-based molecular descriptors and using Random
Forest as a classifier. After careful manual curation and removal
of compounds that showed contradictory class labels, we used
these data sets to develop a set of in silico classification models
suitable for virtual screening of compound libraries. This was
followed by virtual screening of DrugBank and subsequent
biological evaluation of the top ranked compounds, in order to
identify existent inhibitors among drugs that are currently on
the market or in the stage of clinical trials.

■ EXPERIMENTAL SECTION

In Silico Modeling for the Prediction of OATP1B1 and
OATP1B3 Inhibition. Selection and Curation of Data Sets.
High quality data sets are key for statistical modeling.42−45 For
our study we used two recently published large data sets for the
inhibition of OATP1B1 and 1B3, one containing 2000
compounds39 and one consisting of 225 compounds.41 The
first data set was used as a training set and the second data set
as an external test set. The external test set was downloaded
from ChEMBL,46 and the training set was kindly provided by
Gerard J. P. van Westen. Subsequently, both data sets were
curated according to a set of protocols, which have been
developed in house:47

• Inorganic compounds, salt parts as well as compounds
containing metals and rare or special atoms were
removed (MOE 2013.0801).48

• The chemotypes were standardized using an in-house
Pipeline Pilot (version 9.1.0.13)49 workflow.

• Duplicates and permanently charged compounds were
removed.

• 3D structures were generated using CORINA (version
3.4),50 and their energy was minimized with MOE
2013.0801, using default settings with an extra setting of
preserving the existing chirality and changing the
gradient to 0.05 RMS kcal/mol/A2.

Finally, the training and the test set were checked for
duplicates. In total, 68 and 70 overlapping compounds were
identified for OATP1B1 and OATP1B3, respectively. In most
cases, the overlapping compounds were of the same class (using
50% (±10%) inhibition as threshold, as defined by the initial
authors). For these cases, since the overlapping compounds
were mostly noninhibitors, we decided to remove them from
the training set and keep them in the test instead. Those
compounds showing contradictory class labels (10 compounds
for OATP1B1 and 2 compounds for OATP1B3) were removed
from both data sets.
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This procedure finally led to a training set of 1708
compounds (190 inhibitors and 1518 noninhibitors) for
OATP1B1 and of 1725 compounds (124 inhibitors and 1601
noninhibitors) for OATP1B3, respectively. The external test set
contained 201 compounds for OATP1B1 (64 inhibitors and
137 noninhibitors) and 209 compounds for OATP1B3 (40
inhibitors and 169 noninhibitors).
Generation of Statistical Models. Algorithms Used. The

open-source software WEKA (version 3-7-10)51 served as the
basis for generating classification models. The following
classifiers were explored: Naive Bayes, k Nearest Neighbors
(k = 5), Decision Tree (J48 in WEKA), Random Forest, and
Support Vector Machines (SMO in WEKA). Furthermore,
because of the highly imbalanced training set, the meta-
classifiers MetaCost and CostSensitive Classifier, as imple-
mented in WEKA, were used. They are both cost-sensitive
meta-classifiers that artificially balance the training set. In each
case, the cost matrix was set according to the ratio of
noninhibitors vs inhibitors. In the case of OATP1B1 the ratio
noninhibitors/inhibitors was equal to 8, thus the matrix used
during the application of cost was [0.0, 1.0; 8.0, 0.0]. For
OATP1B3 the respective ratio was equal to 13, thus the
respective cost matrix was [0.0, 1.0; 13.0, 0.0].
The best results were obtained using MetaCost52 as meta-

classifier and Random Forest (RF) and Support Vector
Machines (SMO) as base-classifiers.
Molecular Descriptors. Using MOE 2013.0801,48 all the

available 2D and selected 3D molecular descriptors (like the
whole series of Volsurf descriptors) were calculated. Addition-
ally, in order to generate models with open-source descriptors,
an analogous set of descriptors was calculated with PaDEL-
Descriptor (version 2.18).53 Additionally, several fingerprints
such as MACCS-keys using PaDEL and ECFPs using RDkit
were also calculated.
In a first run, a set of basic physicochemical descriptors were

used for model generation. This should allow us to derive basic
physicochemical properties driving OATP1B inhibition. For
MOE, these comprised a_acc (number of H-bond acceptors),
a_don (number of H-bond donors), logP (o/w) (lipophilicity),
mr (molecular refractivity), TPSA (topological polar surface
area), and weight (molecular weight, MW). The analogous
descriptors calculated with PaDEL included nHBAcc_Lipinski,
nHBDon_Lipinski, CrippenLogP, CrippenMR, TopoPSA, and
MW. The absolute values were not fully identical to those
calculated with MOE, as slightly different algorithms are used
by the two software packages. In order to further enrich the
original set of the six descriptors, a few topological descriptors
were additionally calculated, thus leading to a third set
comprising 11 molecular descriptors: nHBAcc_Lipinski,
nHBDon_Lipinski (number of H-bond donors and acceptors
according to Lipinski), CrippenLogP, CrippenMR (Wildman−
Crippen logP and mr), TopoPSA, MW, nRotB (number of
rotable bonds), topoRadius (topological radius), topoDiameter
(topological diameter), topoShape (topological shape), and
globalTopoChargeIndex (global topological charge index).
Finally, combining the three sets of descriptors with the two

base-classifier methods selected, six models were generated for
each transporter. A detailed description of the model settings is
given in the Supporting Information.
Model Validation. The statistical models were validated

using 5-fold and 10-fold cross-validation, as well as with the
external test set. The parameters used comprised Accuracy,
Sensitivity (True Positive Rate), Specificity, Mathews Correla-

tion Coefficient (MCC), and Receiver Operating Characteristic
(ROC) Area.54 A detailed description of all parameters is
provided in the Supporting Information. The cost for the
MetaCost meta-classifier was applied based on a standard
confusion matrix.
The performance of all models was relatively equivalent with

total accuracy values and ROC areas for the test set in the range
of 0.81−0.86 and of 0.81−0.92, respectively. Generally, the
OATP1B3 models performed slightly better than the ones for
OATP1B1. In order to retain as much information as possible,
all models were subsequently used for the virtual screening of
DrugBank, implementing a consensus scoring approach.
Therefore, the prediction score of each classification model
for every compound was summed up, giving a float score
prediction number between 0 and 6.

In Silico Screening of DrugBank. In order to perform a
prospective assessment of the predictivity of our models,
DrugBank (Version 4.1)55 (http://www.drugbank.ca/), which
contains 7740 drug entries including 1584 FDA-approved small
molecule drugs, 157 FDA-approved biotech (protein/peptide)
drugs, 89 nutraceuticals, and over 6000 experimental drugs, was
virtually screened, and the top ranked compounds were
purchased and experimentally tested. The in silico screen was
restricted to the small molecules (either approved or
experimental), since this is the chemical space upon which
the models were generated. Before the screening, the
compounds underwent the same curation process as the
compounds from the training and test sets. This resulted in a
screening set of 6279 compounds in total. For each screened
compound we obtained two scores for each model: (i) a binary
score, 0 if the compound was predicted as noninhibitor and 1 if
the compound was predicted as inhibitor; and (ii) a float-
number score between 0 and 1, [0, 0.5] if the compound is
predicted as noninhibitor and [0.5, 1] if the compound is
predicted as inhibitor. The individual binary and the float-
number scores for each model were added up and gave a
consensus class prediction (integer consensus score) and a
predictive score (float consensus score) for each compound,
which were afterward ranked from inhibitors to noninhibitors
according to these additive scores. In general, a compound was
considered as being an inhibitor if it was predicted as inhibitor
by at least 3 out of the 6 models for each transporter, while the
float-number score was also taken into consideration.

Selection of Compounds for Biological Testing. For the
selection and purchase of potential inhibitors, those com-
pounds having an integer consensus score of 6 were taken and
ranked according to their float consensus score. Subsequently, a
similarity search based on MACCS fingerprints and the
Tanimoto coefficient was performed with MOE, comparing
the selected screening hits from DrugBank with the compounds
included in the training and in the external test set. Thus, any
high ranked compound in DrugBank showing a Tanimoto
similarity higher than 0.85 to inhibitors from the training set or
the test set was excluded from the shopping list. Furthermore,
compounds that are known OATP1B1 and/or OATP1B3
inhibitors were also excluded. Last but not least, the final
selection of compounds for purchase was influenced by their
commercial availability and the respective costs. The ten
compounds that were finally selected were purchased from
Glentham Life Sciences, U.K. (http://www.glenthamls.com/, 6
compounds) and from Sigma-Aldrich (https://www.
sigmaaldrich.com, 4 compounds). The purity of all compounds
was ≥95%. Out of the ten compounds, nine were predicted as
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inhibitors for both OATP1B1 and OATP1B3 and one was
predicted as selective OATP1B3 inhibitor with a binary score of
6 for OATP1B3 and of 1 for OATP1B1.
Inhibition Assay for OATP1B1 and OATP1B3. Chinese

hamster ovary (CHO) cells that were stably transfected with
OATP1B1 or OATP1B3 and wild-type CHO cells were
provided by the University of Zurich, Switzerland, and have
been extensively characterized previously.24,56,57 Cells were
grown in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% FCS, 50 μg/mL L-proline, 100 U/
mL penicillin, and 100 μg/mL streptomycin. The culture media
of the transfected CHO cells additionally contained 500 μg/mL
Geneticin sulfate (G418) (Sigma-Aldrich, Munich, Germany).
Media and supplements were obtained from Invitrogen
(Karlsruhe, Germany). Cells were incubated at 5% CO2 and
37 °C. For uptake experiments, CHO cells were seeded in 24-
well plates (BD Biosciences, Heidelberg, Germany) at a density
of 25,000 cells/well. Uptake assays were generally performed
on day 3 after seeding, when the cells had grown to confluence.
24 h before starting the transport experiments, cells were
additionally treated with 5 mM sodium butyrate (Sigma-
Aldrich, Munich, Germany) to induce gene expression. Prior to
the uptake experiments, cells were rinsed twice with 2 mL of
prewarmed (37 °C) uptake buffer (116.4 mM NaCl, 5.3 mM
KCL, 1 mM NaH2PO4, 0.8 mM MgSO4, 5.5 mM D-glucose,
and 20 mM Hepes, pH adjusted to 7.4). Uptake was initiated

by adding 0.5 mL of uptake buffer containing 5 μM of the
fluorescent OATP1B1/1B3 substrate FMTX58 in the presence
or absence of inhibitors. After 10 min culture at 37 °C, uptake
was stopped by removing the uptake solution and washing the
cells 3 times with ice-cold uptake buffer. The cells were then
lysed with 0.5 mL of 0.5% Triton X-100 solution dissolved in
PBS and placed on a plate shaker for 30 min. Fluorescence was
measured in an Enspire Multimode plate reader (PerkinElmer,
Waltham, MA) at an excitation wavelength of 485 and an
emission wavelength of 528 nm.
IC50 values were determined by plotting the log inhibitor

concentration against the net uptake rate and nonlinear
regression of the data set using the equation

=
+ +

y
a

I s b1 [ /(IC ) ]50

in which y is the net uptake rate (pmol/μg of protein/min), I is
the inhibitor concentration (μM), s is the slope at the point of
inversion, and a and b are the maximum and minimum values
for cellular uptake (GraphPad Software, San Diego, CA, USA) .
Net uptake was calculated for each inhibitor concentration as
the difference in the uptake rates of the transporter-expressing
and wild-type cell lines. Unless otherwise indicated, values are
expressed as mean ± SD of three individual experiments.
Significant differences from control values were determined
using a Student’s paired t test at a significance level of p < 0.05.

Figure 1. Graphical representation of the numeric gap between inhibitors and noninhibitors of OATP1B1 and OATP1B3 for both the training and
the test set.

Table 1. Detailed Statistical Results of OATP1B1 Inhibition Models

model validation accuracy sensitivity specificity precision MCC ROC area

B1_6MOE_RF test set 0.846 0.719 0.905 0.780 0.638 0.815
10-fold CV 0.843 0.611 0.872 0.374 0.394 0.795
5-fold CV 0.858 0.621 0.888 0.410 0.428 0.790

B1_6MOE_SMO test set 0.841 0.672 0.920 0.796 0.622 0.869
10-fold CV 0.862 0.489 0.909 0.403 0.366 0.808
5-fold CV 0.862 0.495 0.908 0.402 0.368 0.791

B1_6PaD_SMO test set 0.811 0.719 0.854 0.697 0.568 0.814
10-fold CV 0.841 0.626 0.868 0.373 0.399 0.790
5-fold CV 0.843 0.605 0.872 0.372 0.390 0.787

B1_6PaD_SMO test set 0.821 0.609 0.920 0.780 0.570 0.851
10-fold CV 0.867 0.453 0.919 0.411 0.357 0.806
5-fold CV 0.864 0.453 0.915 0.400 0.348 0.799
test set 0.831 0.719 0.833 0.742 0.607 0.845

B1_11PaD_RF 10-fold CV 0.854 0.579 0.889 0.394 0.398 0.797
5-fold CV 0.853 0.595 0.885 0.394 0.404 0.801

B1_11PaD_SMO test set 0.821 0.547 0.949 0.833 0.568 0.868
10-fold CV 0.861 0.505 0.905 0.400 0.371 0.801
5-fold CV 0.861 0.500 0.906 0.401 0.370 0.790

consensus model 0.859
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■ RESULTS AND DISCUSSION

The Problem of Imbalanced Data Sets. One of the
major challenges when dealing with real life scenarios is the
imbalance of data sets. While most classification studies
published in the literature show an equal number of actives

and inactives, our data sets comprised a ratio of 8/1 for

noninhibitors/inhibitors for OATP1B1 and of 13/1 for

OATP1B3, respectively (Figure 1). This resulted in a very

poor performance when applying base classifiers directly on the

Table 2. Detailed Statistical Results of OATP1B3 Inhibition Models

model validation accuracy sensitivity specificity precision MCC ROC area

B3_6MOE_RF test set 0.847 0.775 0.864 0.574 0.574 0.847
10-fold CV 0.876 0.677 0.891 0.326 0.412 0.842
5-fold CV 0.871 0.661 0.887 0.312 0.394 0.821

B3_6MOE_SMO test set 0.852 0.825 0.858 0.579 0.603 0.919
10-fold CV 0.900 0.597 0.923 0.376 0.422 0.866
5-fold CV 0.893 0.589 0.916 0.353 0.401 0.852

B3_6PaD_RF test set 0.828 0.825 0.828 0.532 0.563 0.877
10-fold CV 0.870 0.677 0.884 0.312 0.400 0.844
5-fold CV 0.863 0.669 0.878 0.299 0.385 0.814

B3_6PaD_SMO test set 0.847 0.725 0.876 0.580 0.554 0.925
10-fold CV 0.894 0.516 0.923 0.342 0.365 0.853
5-fold CV 0.896 0.508 0.926 0.348 0.366 0.840

B3_11PaD_RF test set 0.842 0.775 0.858 0.564 0.565 0.886
10-fold CV 0.866 0.629 0.884 0.295 0.368 0.832
5-fold CV 0.863 0.645 0.880 0.294 0.372 0.825

B3_11PaD_SMO test set 0.866 0.750 0.893 0.625 0.602 0.924
10-fold CV 0.881 0.581 0.904 0.320 0.372 0.849
5-fold CV 0.883 0.613 0.904 0.332 0.394 0.844

consensus model 0.917

Figure 2. Comparative ROC plots of individual and consensus models for each transporter: (a) total OATP1B1 models ROC plot, (b) OATP1B1
models zoom ROC plot (TP rate [0.0, 0.5] and FP rate [0.0, 0.1]), (c) total OATP1B3 models ROC plot, and (d) OATP1B3 models zoom ROC
plot (TP rate [0.0, 0.5] and FP rate [0.0, 0.1]). Black continuous line represents the performance of the consensus model, with red 6MOE_RF, with
green 6MOE_SMO, with dark blue 6 PaD_RF, with yellow 6 PaD_SMO, with cyan 11 PaD_RF, with violet 11 PaD_SMO, and with dashed brown
line a random performance of 50%.
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training set, with sensitivity values lower than 0.2 (data not
shown).
There are several methods for dealing with imbalanced data

when using machine learning techniques.59−61 Indicatively, they
comprise undersampling, oversampling, bagging, boosting, and
application of costs. In our case, the application of a cost for
misclassification of the minority class, using the meta-classifier
MetaCost in WEKA, yielded the best results.
Classification Models for OATP1B1 and OATP1B3.

Combining several sets of descriptors with various base- and
meta-classifiers resulted in a cluster of models, based on
Random Forest and Support Vector Machines (SMO) in
combination with MetaCost as a cost-sensitive meta-classifier.
All models present in the final cluster were validated via 5- and
10-fold cross-validation, as well as with the use of an external

test set, composed of 201 and 209 compounds for OATP1B1
and OATP1B3, respectively.41 Although the latter data set has
been measured under different assay conditions than the
respective one used in the training set, a comparison of the
overlapping compounds showed high consistency. The
statistical results of all models were quite similar and are
presented in Tables 1 and 2.
As can be seen in Tables 1 and 2, all six models for each

transporter showed approximately the same performance. Thus,
we decided to implement a consensus scoring approach to
allow input of all models when screening DrugBank, since it has
been often suggested in the literature that consensus modeling
outperforms single modeling approaches.62−66 This would also
increase our confidence regarding the selection of potential
OATP1B1 and 1B3 inhibitors for experimental testing,

Table 3. Inhibition of OATP1B1 and OATP1B3
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especially in the case of contradictory results among different
models. For getting the consensus score, the prediction scores
of all models were summed up in order to get a final prediction.
The validity of this approach was partially confirmed by
calculating the ROC area of the consensus models based on the
results of the external test set, as well as by plotting the
respective ROC curves, using R67 (Figure 2). Although for both
transporters the consensus models did not exhibit the highest
AUC, the consensus model for OATP1B3 had the steepest
ROC curve vs all the individual ones and was thus selected as
the best solution for the subsequent in silico screen of
DrugBank. In the case of OATP1B1, the ROC curve was
steeper than the curves of five of the individual models, while
there was one model, the SMO_11 PaD_B1, which had a
slightly steeper curve. However, also for this case the consensus
model was used for screening, since the difference was almost
insignificant and we were in favor of using a majority vote for
screening and compound selection rather than relying on a
single model.
In Silico Screening of DrugBank. In order to

prospectively validate the in silico models, DrugBank was
virtually screened using all of the six classification models for
each transporter, and the compounds were ranked according to
the probability score of being an inhibitor. For OATP1B1,
5371/6279 compounds of DrugBank were predicted as
noninhibitors by the consensus vote of the 6 models
(85.5%), while 908/6279 were predicted as inhibitors. From
the predicted inhibitors, 271 compounds were given an integer
score of 6, i.e., they were predicted as inhibitors by all 6
classification models (4.36% of whole DrugBank). For
OATP1B3, the overall figures were quite identical (905/6279
compounds were predicted as inhibitors, with 407 compounds
showing a consensus score of 6/6). Integer and float consensus
scores of all compounds are provided in the Supporting
Information.
Besides validation of our models by identification of new,

hitherto unknown inhibitors of OATP1B1 and OATP1B3 from
DrugBank, we also aimed at identifying subtype selective
inhibitors. Unfortunately, the development of a 4-class
classification model gave poor statistical results (data not
shown). Thus, for each compound we compared the predictive
scores for both transporters. However, this was quite
challenging, since most of the compounds either were
presenting the same inhibition profile for both transporters or
they were already known OATP1B1 or 1B3 selective inhibitors.
Finally, with an integer consensus score of 1 and a float
consensus score of 2.062 for OATP1B1 vs 6 (integer score)
and 4.430 (float score) for OATP1B3, flavin adenine
dinucleotide was proposed as potential selective OATP1B3
inhibitor. As we could not identify a suitable OATP1B1
selective inhibitor, the remaining nine compounds that were
selected for biological testing were predicted to inhibit both
transporters. All of the selected OATP1B1/1B3 inhibitors, as
well as their assay results, are presented in Table 3.
Results of the Inhibition Assay. Since the model’s

threshold for inhibitors was 10 μM, compounds with IC50
values less than 1 μM were considered as strong inhibitors (++
+), compounds with IC50 values between 1 and 5 μM as
moderately strong inhibitors (++), compounds with IC50 values
between 5 and 10 μM as moderate inhibitors (+), and
compounds having IC50 values above 10 μM as slight inhibitors
as long as an IC50 value could be obtained. In cases in which it

was impossible to obtain an IC50 value, the compound was
considered as noninhibitor.
Considering that the classification models were generated on

a threshold of 10 μM, the obtained results are very encouraging
regarding the predictive capabilities of the models. The
consensus model for OATP1B1 was correct for 9/9 inhibitors,
while it was mistaken for the case of the selective OATP1B3
inhibitor. Flavin adenine dinucleotide was also an OATP1B1
inhibitor, which renders it a false negative. For OATP1B3, the
respective consensus model was able to predict correctly 8/10
compounds. The two remaining compounds (lapatinib and
trametinib) that were predicted as inhibitors had IC50 values
above the threshold of the model.
Searching in the literature for any association between these

newly identified OATP inhibitors and hepatotoxicity manifes-
tations, such as hyperbilirubinemia, revealed the following
findings: Carfilzomib was specifically reported as nonhepato-
toxic,68 and we could not find any association to hepatotoxicity
for flavin adenine dinucleotide, gliquidone, and N,O-didansyl-L-
tyrosine. Flavin adenine dinucleotide is a redox factor,
important for the function of many flavoenzymes,69 thus it
could not be particularly toxic, while gliquidone is considered a
safe antidiabetic drug and has actually been found to improve
liver injury in diabetic patients.70 N,O-Didansyl-L-tyrosine is an
antibacterial agent, still in the experimental stage, so it is quite
unlikely to have already reports regarding its toxicity. For
trametinib, no reports for hyperbilirubinemia were found.
However, it is known for elevating hepatic serum enzymes.71

Finally, dronedarone, fosinopril, lapatinib, rapamycin, and
zafirlukast are reported for causing hyperbilirubinemia, when
checking in online sources72 and in the literature,73 while there
are also some literature reports for hepatotoxicity of these
compounds.68,73−78

During the preparation of this manuscript, an additional
OATP1B1 classification model was published by van de Steeg
et al.79 Their Bayesian model was based on a training set of 437
compounds (37 inhibitors and 400 noninhibitors) and an
internal set of 155 compounds for validation (12 inhibitors and
143 noninhibitors), resulting from the screening of a
commercial library of 640 FDA-approved drugs. Among the
20 strongest OATP1B1 and OATP1B3 inhibitors are
rapamycin and fosinopril, which were also in our hit list. For
the rest of the compounds we tested, to the best of our
knowledge, they are reported for the first time in our study as
OATP1B1 and/or 1B3 inhibitors. Moreover, the analysis of the
top 20 compounds from van de Steeg et al. further confirmed
the validity and high predictivity of our models. For OATP1B1,
5 compounds were not virtually screened by us, either because
they did not exist in DrugBank or because they were removed
in some stage of the data set curation. Another 7 compounds
(cyclosporin A, atazanavir, dipyridamiole, telmisartan, nicardi-
pine, estradiol, spironolactone) were already included either in
our training set or in the test set (6/7 predicted correctly as
inhibitors). For the remaining 6 compounds, 5/6 are predicted
correctly as inhibitors by our consensus model (bromocriptine
mesylate, pranlukast, suramin, troglitazone and docetaxel),
while sulfasalazine is predicted as noninhibitor. However, for
sulfasalazine we must note that it was initially part of both the
De Bruyn39 data set and the Karlgren41 data set. As De Bruyn
et al. annotated it as noninhibitor, and Karlgren et al. evaluated
it as inhibitor, it was removed from both data sets.
Nevertheless, we must emphasize that De Bruyn et al. and
Karlgren et al. use different assays. The assay we used is similar
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to the one from De Bruyn et al. (the source of our training set),
while van de Steeg et al. use an assay similar to the one by
Karlgren et al. (the source of our test set). This implies that the
particular compound might give different results for different
assays, and that this is a probable reason for its misclassification
by our model.
For OATP1B3, an analogous picture occurs. Six compounds

were not virtually screened because of their absence in
DrugBank, 7 compounds (cyclosporin A, atazanavir, dipyr-
idamiole, telmisartan, mifepristone, fluvastatin, clarithromycin)
were included either in our training set or our test set, and for
the remaining 5 compounds we had an accuracy of 100% by
our consensus model (suramin, docetaxel, clobetasol propio-
nate, bromocriptine mesylate, and losartan).

■ CONCLUSIONS
The transportome of the liver is most probably the most
complex one in the human body. It comprises numerous uptake
and efflux transporters that regulate the concentrations of
metabolites and endogenous substrates, such as bile acids and
bilirubin. Thus, perturbation of this system by drugs might lead
to symptoms such as cholestasis or hyperbilirubinemia. With
this manuscript we introduce a set of in silico models which aid
in the potential early detection of hepatotoxicity manifestations,
such as hyperbilirubinemia, by predicting the probability of a
compound to block OATP1B1 and OATP1B3 mediated
transport of bilirubin. The models have been derived on the
basis of a large, manually curated data set, and have been
extensively validated by statistical methods, as well as by in
silico screening of DrugBank followed by experimental testing
of top ranked hits. Among the 9/10 hits confirmed as OATP
inhibitors, five are reported for causing hyperbilirubinemia.
These results strongly support the use of validated in silico
models for prioritizing compounds in the hit triaging process.
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