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A subpathway is defined as the local region of a biological pathway with specific
biological functions. With the generation of large-scale sequencing data, there are
more opportunities to study the molecular mechanisms of cancer development. It
is necessary to investigate the potential impact of DNA methylation, copy number
variation (CNV), and gene-expression changes in the molecular states of oncogenic
dysfunctional subpathways. We propose a novel method, Identification of Cancer
Dysfunctional Subpathways (ICDS), by integrating multi-omics data and pathway
topological information to identify dysfunctional subpathways. We first calculated gene-
risk scores by integrating the three following types of data: DNA methylation, CNV,
and gene expression. Second, we performed a greedy search algorithm to identify
the key dysfunctional subpathways within pathways for which the discriminative
scores were locally maximal. Finally, a permutation test was used to calculate the
statistical significance level for these key dysfunctional subpathways. We validated the
effectiveness of ICDS in identifying dysregulated subpathways using datasets from liver
hepatocellular carcinoma (LIHC), head-neck squamous cell carcinoma (HNSC), cervical
squamous cell carcinoma, and endocervical adenocarcinoma. We further compared
ICDS with methods that performed the same subpathway identification algorithm but
only considered DNA methylation, CNV, or gene expression (defined as ICDS_M,
ICDS_CNV, or ICDS_G, respectively). With these analyses, we confirmed that ICDS
better identified cancer-associated subpathways than the three other methods, which
only considered one type of data. Our ICDS method has been implemented as a freely
available R-based tool (https://cran.r-project.org/web/packages/ICDS).

Keywords: multi-omics data, copy number variation, DNA methylation, subpathway activity, pathway topological
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INTRODUCTION

Cancer is a complex disease involving multiple biological
processes and multiple factors, including genomic, epigenomic,
and transcriptomic aberrations associated with cancer formation
and development (Forozan et al., 2000; Zhang et al., 2012).
Identifying molecular markers of cancer is a major challenge
and can effectively clarify diagnosis and treatment. With the
development of high-throughput sequencing technology, it is
possible to understand the pathogenic mechanisms of cancer at
the molecular level (Wang et al., 2014; Liu and Xu, 2015; Zhang
et al., 2017). Large-scale cancer genomics projects, such as the
Cancer Genome Atlas (TCGA) (Giordano, 2014), provide multi-
omics profiles from a large number of patient samples from
many cancer types. This may provide a basis for the systematic
understanding of the development of cancer. However, both
copy number variation (CNV) and DNA methylation changes
may affect gene expression, and integration of these data may
enhance essential gene characterization in cancer progression
(Kim et al., 2010; Xu et al., 2010). Many studies have shown that
the use of multi-omics data for integrated analysis helps us to
understand the pathogenic mechanisms of cancer. For example,
Xu et al. (2010) have shown that the correlation between gene
expression and CNV has biological effects on carcinogenesis
and cancer progression. Additionally, Zhang et al. (2013) has
classified the prognosis of patients with different subtypes of
ovarian cancer by integrating four types of molecular data
related to gene expression. In view of these works, our goal is
to explore the multi-layered genetic and epigenetic regulatory
mechanisms of cancer.

Biological pathways are models containing structural
information between genes, such as interactions, regulation,
modifications, and binding properties. In addition, genes in the
same pathway usually coordinately achieve a particular function.
With the appearance of some traditional pathway-analysis tools,
such as GSEA (Subramanian et al., 2005) and SPIA (Tarca
et al., 2009), the pathway-based approach has become the
first choice for complex disease analysis to facilitate biological
insights. Existing biological-pathway databases provide pathway
topological information, such as with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Wixon and Kell, 2000), which
is being updated to suit the needs for practical applications and
act a systematic reference knowledge database to understand the
metabolism and other cellular processes. Recently, the KEGG
pathway database has become one of most widely used resource
for biological function annotation (Kanehisa et al., 2017).

Based on pathway topological information, the subpathway
concept was proposed in our previous study in which we
confirmed that key subpathways – rather than entire pathways –
were more suitable for explaining the etiology of diseases (Li
et al., 2009, 2013). Subpathways contain fewer components,
which enables a more accurate interpretation of the biological
function of the disturbance, for the future study of precision
medicine. Subpathway-GM (Li et al., 2013) was proposed to
identify disease-relevant subpathways by integrating information
across genes, metabolites, and pathway structural information
within a given pathway; using this, 16 statistically significant

subpathways were identified as associated with metastatic
prostate cancer. SubpathwayMiner (Li et al., 2009) uses a
subgraph-mining method to find subpathways where all of the
genes have highly similar functions; this method identified36
dysfunctional subpathways – enriched by differentially expressed
genes – as associated with the initiation or progression of lung
cancer. Recently, some other methods have been developed to
identify subpathways from pathway topology. One example is
MIDAS (Lee et al., 2017), which determines condition-specific
subpathways and fully utilizes quantitative gene-expression data
and network-centrality information across multiple phenotypes.
Moreover, the following subpathway-activity measurement tools
have been designed to identify activated subpathways between
two phenotypes: PATHOME (pathway and transcriptome
information) (Nam et al., 2014), TEAK (Topology Enrichment
Analysis frameworK) (Judeh et al., 2013), and MinePath (Mining
for Phenotype Differential Sub-paths in Molecular Pathways)
(Koumakis et al., 2016). Moreover, there is also some other
methods proposed network-based analysis to discover de novo
pathway. For instance, de novo pathway enrichment extracted
sub-networks enriched in biological entities active by combining
experimental data with a large-scale interaction network (Batra
et al., 2017). These subpathway-analysis methods mainly identify
dysfunctional subpathways only by comparing the expression
levels of their involved genes between tumor and normal tissues.
In this way, other genetic characterizations of genes, such
as CNVs and DNA methylation, are ignored. However, both
DNA methylation and CNVs in cancer genomes frequently
perturb the expression levels of affected genes and, thus, disrupt
pathways controlling normal growth. It is therefore necessary
to integrate gene expression information and other genetic
information, such as DNA methylation and CNVs, to identify
dysfunctional subpathways.

In this study, we propose a novel method, termed
Identification of Cancer Dysfunctional Subpathways (ICDS),
to identify dysfunctional subpathways by integrating multi-
omics data and pathway topological information. In ICDS,
the first step is to calculate gene-risk scores to evaluate the
contribution of genes to cancer states by considering the
following three molecular characterizations: DNA methylation,
CNV, and gene expression. In the second step, we convert
the KEGG pathway into an undirected-pathway network
with genes as nodes and biological relationships as edges,
and use a greedy search algorithm to search for candidate
dysfunctional subpathways within the pathways for which
the discriminative scores are locally maximal. Finally, a
perturbation test is used to calculate statistical significance
for these dysfunctional subpathways. We applied the ICDS
method to liver hepatocellular carcinoma (LIHC), head-neck
squamous cell carcinoma (HNSC), and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) datasets,
and compared our results with three analytical methods that only
used DNA methylation, CNV, or gene expression to calculate
subpathway-activity scores (defined as ICDS_G, ICDS_CNV,
ICDS_M, respectively). Through these analyses, we confirmed
that ICDS could better identify cancer-associated subpathways
compared to the other three methods.
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MATERIALS AND METHODS

Datasets
The datasets containing gene expression, CNV, and DNA
methylation information were collected from the TCGA website1.
We downloaded TCGA RNA-seq level-3 data, which were
processed and normalized and used the Reads Per Kilobase per
Million mapped reads (RPKM) values for the gene-expression
levels. Finally, there were 19,754 genes used in 424 LIHC, 546
HNSC, and 309 CESC samples. CNV profiling was estimated
using the GISTIC2 method (Mermel et al., 2011), and was
annotated to genes using the UCSC cgData HUGO probeMap.
For example, the LIHC dataset contains CNVs in 24,776 genes
from 373 cancer samples. In this study, we further filtered 364
LIHC samples with matched gene-expression profiles.

We downloaded TCGA level-3 Illumina Human-
Methylation450 Bead Array data for DNA methylation.
The LIHC DNA methylation level-3 dataset contain β-values
for 20,105 genes from 429 samples, which included 50 normal
samples and 379 lung-cancer samples. The β-values are
calculated by M/(M+U+100) with a range from 0 to 1, in
which M is methylated allele frequencies and U is unmethylated
allele frequencies. Overall, higher β-values indicate higher
methylation. For three datasets, we removed genes with values of
zero in more than 80% of the samples. In this paper, we also use
the data from HNSC and CESC samples, which were processed
using the above procedure. Detailed data information is shown
in Supplementary Table S1.

The KEGG pathway database contains experimentally
verified pathway structural information (e.g., interactions,
regulation, modifications, and binding between genes). We
collected 294 KEGG biological pathways, and each pathway
was converted to an undirected network with genes as nodes
and biological relationships as edges on the basis of pathway
structural information using the “iSubpathwayMiner” system
(Li et al., 2009, 2013).

Calculated Gene Risk Score in Cancer
There are many factors influencing tumorigenesis, such as gene
expression, CNV and DNA methylation. For each gene, we
calculated its risk score in cancer by considering the following
three types of genetic molecular features: gene expression, CNV,
and DNA methylation. With the above data, we used the Student’s
t-test (Hogben, 1964) to calculate the adjusted p-value for
differential expression level and differential methylation level of
each gene in the tumor and normal samples (denoted by pgene
and pmethy). According to results of GISTIC2 analysis, the sample
was then divided into a copy-number-variated group and an un-
variated group for each gene, and then the differential expression
level of the gene in the two groups was calculated by Student’s
t-test (denoted by pcnv). It is difficult to define the quantitative
relationship and relative degree of each factor’s influence on
tumorigenesis, so we assume that gene expression, CNV, and
DNA Methylation equally contribute to the cancer development.
The gene risk score (RS) was calculated by integrating the

1https://tcga-data.nci.nih.gov/tcga/

above three p-values with Fisher’s combined probability test.
This method computed a combined statistic S from the adjusted
p-values obtained from the three individual datasets as shown in
Equation (1). Usually, the statistic S followed a χ2 distribution
with 2k degrees of freedom, and we then calculated the null
hypothesis p-value of the statistic S. Finally, we converted the
p-value to a z-score according to the inverse-normal cumulative-
distribution function (CDF), and the z-score was taken as the RS
of each gene in cancer.

S = −2 log
∏
m

pm, m = gene, cnv,methy (1)

Calculated Subpathway-Activity Score
Previous studies have confirmed that subpathways can provide
more detailed biological information than whole pathways. In
this study, we proposed a novel method to combine gene-risk
score with pathway topological structure to infer subpathway
activities. The RS of genes were obtained by the above method,
considering gene expression, CNV and methylation. For a
KEGG pathway, we performed a greedy algorithm to search
for dysfunctional subpathways within the pathways for which
the discriminative scores were locally maximal. Specifically,
the search algorithm started from a seed gene i which had a
significantly high risk score (p < 0.001) and expanded iteratively,
after which it selected one of the neighbors of the seed gene to
form the current subpathway. For a subpathway k, the activity
score (ASk) was the average of the RS of the member genes in the
subpathway, calculated by Equation (2):

ASk =
∑
i

RSi
√
n

(2)

In Equation (2), i is the index of the gene in the subpathway
k, while n is the number of genes involved in the subpathway. At
each iteration, the algorithm adopted a gene from the neighbors
of genes in the current subpathway, which produced maximal
increases between ASk+1 and ASk. The search algorithm will
stops when no additional gene increases in the score ASk+1 over
(1+r) ASk or the distance in the current subpathway between any
two nodes is greater than 3 in order to keep the search locally.
The improvement rate r is chosen to avoid too large subpathway
region, resulting in the addition of redundant weak information.
The parameter r = 0.05 has been demonstrated to be appropriate
in the greedy heuristic algorithm applied in the biological
network (Chuang et al., 2007). When the Jaccard index between
each pair of subpathways in the same pathway was more than
0.6, they were combined, which ensured that the subpathways
we found in our method contained more information and reduce
redundancy. Furthermore, we only considered subpathways with
more than five genes and less than 100 genes, to avoid overly
narrow or broad functional subpathways.

Significance Test of the Subpathway
We provided two statistical test methods for each candidate
subpathway, of which one was a whole gene-based perturbation,
and the other was a local-gene perturbation in a particular
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pathway. Users can choose the test method that they prefer.
The first test perturbs the gene labels on the entire gene list in
the pathway networks, and recalculates the activity score of the
subpathway, denoted as ASk_perm1. This test was used to test the
correlation between real subpathways and disease phenotype. In
this study, we performed 10,000 perturbations for this test and
calculated statistically significant p-value = M/N, in which M is
the number of ASk_perm1 greater than the real subpathway score
ASk, and N is the number of perturbations. In addition, the
second test perturbed the gene names in the pathway to which the
subpathway belonged, and recalculated the activity score of the
subpathway, denoted as ASk_perm2. This test was used to test the
correlation between real subpathways and pathway structure. We
also performed 10,000 perturbations and the score of each real
ASk was indexed on the null distribution of all ASk_perm2 whose
p-values could be evaluated. The p-values were adjusted using
the false discovery rate (FDR) method proposed by Benjamini
and Hochberg to correct for multiple comparisons (Benjamini
et al., 2001). In this study, both FDR at 0.001 was used as the
subpathway-significance threshold. We have implemented ICDS
as an R-based package that is publicly available on CRAN2.

RESULTS

Analyses of Hepatocellular Carcinoma
Data
A workflow diagram of the ICDS is shown in Figure 1.
We first applied ICDS to identify dysfunctional subpathways
in LIHC. The LIHC dataset was obtained from TCGA,
and its detailed information is shown in Supplementary
Table S1. In the LIHC dataset, we calculated the risk score
of 16,207 genes by considering the following three types of
genetic molecular features: gene expression, CNV, and DNA
methylation. We set the genes with p < 0.001 (derived from
the combined statistic S) as the seed genes in the pathway
network for the subpathway search algorithm (see Materials
and Methods). Subpathways were selected which satisfied two
permutation tests with FDR1 < 0.001 and FDR2 < 0.001 out
of the 10,000 permutations. ICDS identified 19 dysfunctional
subpathways associated with LIHC, belonging to 12 entire
pathways (Table 1 and Supplementary Table S2), of which up
to nine were reported to be associated with tumor occurrence,
development, and metastasis.

The most significant subpathway was path 00230_1 in
purine metabolism, which contained 61 genes. Some studies
have confirmed that the purine-metabolism pathway is highly
correlated with the occurrence and metastasis of liver cancer.
In multiple cancer cells, a marked imbalance in the enzymic
pattern of purine metabolism is linked with transformation
or progression, such as in kidney, liver, and colon carcinomas
(Weber, 1983). The subregion corresponding to the subpathway
included 61 genes (Supplementary Figure S1A), such as
adenosine monophosphate deaminase 1 (AMPD1) and
adenosine kinase (ADK), which are important enzymes

2https://cran.r-project.org/web/packages/ICDS

involved in purine metabolism. ADK plays a significant role in
affecting apoptosis and may become a target for the treatment
of cancer (Dzeja et al., 1998). More evidence is mounting
regarding the direct relationship between defects in ADK and
AMP metabolic signaling (e.g., AMPD) and human diseases
(Pavlova and Thompson, 2016), which is a set of collaborative
interactions that converts adenosine monophosphate (AMP)
to inosine monophosphate (IMP) as part of the process of the
purine nucleotide cycle. Compared with normal hepatocytes,
the levels of ADK and AMPD1 in LIHC cells were significantly
different in expression and methylation (pgene = 6.58e-05 of ADK
and pgene = 0.0042 of AMPD1; pmethy = 1.05e-05 of ADK and
pmethy = 9.48e-12 of AMPD1) (Supplementary Figure S1B).
The abnormality of ADK and AMPD1 changes the metabolic
homeostasis of cells and promotes the progression of cancer
cells (Pedley and Benkovic, 2017).

To assess the effectiveness of ICDS, we compared our results in
LIHC with three other analytical methods in which we calculated
the RS of genes by considering only one of the following
types of data: gene expression, CNV, or DNA methylation
(defined as ICDS-G, ICDS-CNV, or ICDS-M, respectively).
Next, we used the same procedure as above to find significant
subpathways and used the same parameter settings. Using
the methods of ICDS-G and ICDS-M, we obtained three
and one significant subpathways, respectively, and the entire
pathways they belonged to were all found by the ICDS method
(Table 1). Using the method ICDS-CNV method, we could
not find any significant subpathway. If we consider the genetic
differences or expression differences based on a single type
of data, we may lose important information. However, ICDS
exclusively identified 15 significant subpathways marked with red
asterisks in Figure 2A, and the KEGG pathways they belong to
could not be found based on the three other methods. Some
pathways identified by ICDS were the chemokine signaling
pathway and focal adhesion, which have been reported to be
related to the occurrence and development of hepatocellular
carcinoma (Zhao et al., 2011). It has been reported in the
literature that the chemokine signaling pathway is involved in
the establishment of a tumor-promoting microenvironment and
in the development and progression of hepatobiliary cancer
(Zlotnik and Yoshie, 2000). Drug targeting of the chemokine
pathway is a promising approach for the treatment or even
prevention of hepatobiliary cancer. Chemokines play a vital
role in tumor progression and metastasis, where the binding of
chemokines to their receptors leads to a conformational change,
which activates signaling pathways and promotes migration
(Zhao et al., 2011). Meanwhile, the subpathway path:04062_1
in the chemokine signaling pathway (Figure 2B), exclusively
identified by ICDS, included the chemokine family (CC or CXC)
and its receptors family (CCR or CXCR). All of these chemokine
families exert their biological effects by binding to chemokine
receptors that interact with G protein-linked transmembrane
receptors (Decaillot et al., 2011). In the subpathway path:04062_1
(Figure 3A), the CXC motif chemokine 12 (CXCL12) is a
chemokine protein that is differentially expressed between LIHC
and normal samples (pgene = 1.53e-35), and both the expression
of CCL20 and CCR2 are regulated by differential methylation
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FIGURE 1 | Flow diagram of ICDS methodology. (A) Calculated risk score of genes (RS) in cancer by considering three types of genetic molecular features: gene
expression, CNV and DNA methylation. (B) Combine gen-risk score with pathway topological structure to infer the subpathway activity score (AS); subpathways with
discriminative activity score in cancer were identified via a greedy search algorithm. (C) A permutation test is performed on the risk score of genes, and pathways are
prioritized by FDR after permutation tests.

(pmethy = 3.07e-18, 2.3e-16). Importantly, the ICDS method not
only recognized subregions of differential gene expressions but
also detected some genetically or epigenetically diverse regions
(e.g., CNVs and methylations). Another subpathway of the
chemokine signaling pathway was path:04062_4, which contains

9 genes (Figure 3B). We found that four of these genes were
mainly influenced by differential expressions and five were
mainly influenced by differential methylation. Thus, our method
can efficiently find dysfunctional local regions in biological
pathways and indicate their perturbation by deriving specific
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TABLE 1 | Subpathways identified by ICDS with FDR < 0.001 in the LIHC dataset.

SubpathID Pathway Size∗ FDR1 FDR2 ICDS-G ICDS-CNV ICDS-M

path:00230_1 Purine metabolism 61 <E-11 9.13E-11
√

path:00240_1 Pyrimidine metabolism 51 <E-11 1.76E-07
√

path:04380_1 Osteoclast differentiation 13 <E-11 3.29E-06
√

path:00830_1 Retinol metabolism 23 <E-11 3.29E-06

path:04062_1 Chemokine signaling pathway 24 <E-11 3.46E-06

path:04510_10 Focal adhesion 8 <E-11 3.46E-06

path:04152_1 AMPK signaling pathway 24 <E-11 6.34E-06
√

path:05166_1 HTLV-I infection 16 <E-11 6.34E-06

path:04062_4 Chemokine signaling pathway 9 <E-11 9.45E-06

path:00240_3 Pyrimidine metabolism 7 <E-11 1.23E-05

path:04062_7 Chemokine signaling pathway 10 <E-11 1.31E-05

path:04110_10 Cell cycle 8 <E-11 2.10E-05

path:04110_11 Cell cycle 9 <E-11 3.13E-05

path:04630_4 Jak-STAT signaling pathway 5 <E-11 3.43E-05

path:00240_2 Pyrimidine metabolism 7 <E-11 3.75E-05

path:00240_4 Pyrimidine metabolism 8 <E-11 6.61E-05

path:00230_4 Purine metabolism 10 <E-11 1.10E-04

path:04110_1 Cell cycle 25 <E-11 1.85E-04

path:04114_1 Oocyte meiosis 28 <E-11 9.42E-04

∗The number of genes in the subpathway.

types of molecular aberrations (CNV, differential methylations or
differential gene expressions).

Analyses of Head-Neck Squamous Cell
Carcinoma Data
The HNSC datasets were obtained from TCGA, and their
detailed information is shown in Supplementary Table S1. ICDS
identified 17 significant dysfunctional subpathways associated
with HNSC belonging to 9 entire pathways and the subpathways
exclusively identified by the ICDS method are marked with red
asterisks in Figure 4A (Table 2), of which up to eight have
been reported to be central to the growth and survival of cancer
cells. Subpathways were selected that satisfied two tests with
FDR1 < 0.001 and FDR2 < 0.001 (see Materials and Methods).

Path:04919_4 is a significant subpathways (Figure 4B and
Supplementary Table S3) belonging to the thyroid hormone
signaling pathway (Figure 4C). Many studies have confirmed
that the thyroid hormone signaling pathway is a critical
component in tumor progression (Kim and Cheng, 2013). Loss
of normal function of thyroid-hormone receptors by deletion or
mutation can contribute to cancer development, progression and
metastasis. Thyroid Hormone Receptor Alpha (THRA) belongs
to the nuclear receptor superfamily, is located on different
chromosomes, and encodes thyroid hormone (T3) binding
thyroid hormone receptor (TR) isoforms, which have been shown
to mediate the biological activities of cells (Laudet et al., 1993;
Wagner et al., 1995). TRs can function as tumor suppressors,
because reduced expression of TRs due to hypermethylation or
deletion of TR genes is found in human cancers. The samples
had significantly different methylation of THRA (pmethy = 4.79e-
12) in HNSC, and low expression of THRA is known to

activate PIK3R1, which provides instructions for synthesizing a
subunit of phosphatidylinositol 3-kinase (PI3K). PI3K signaling
is important for many cell activities, including cell growth,
division, and migration (Jaiswal et al., 2009). However, we
calculated the RS of PIK3R1in HNSC, and its contributions with
differential methylation were greater than that of differential
expression (pmethy = 4.78e-12; pgene = 1.46e-06) (Figure 4B).

Similarly, we compared the results of HNSC with the three
methods above (ICDS-G, ICDS-CNV, and ICDS-M). Using the
methods of ICDS-G and ICDS-M, we obtained two significant
subpathways and the pathways they belonged to were also
found by the ICDS method. However, 13 subpathways identified
by ICDS were missing from all of the other methods (ICDS-
G, ICDS-CNV, and ICDS-M) (Table 2). For example, the
subpathway path:00830_3 in retinol metabolism pathway was
identified by ICDS but not by ICDS-G, ICDS-CNV, or ICDS-
M, and Supplementary Figures S3, S4 show the distribution
of the activity score of path:00830_3, combined and individual
data source, for the real subpathways and for the randomization
cases. The local region of the subpathways was reported to be
central to the growth and survival of cancer cells (Supplementary
Figure S2A). Specifically, vitamin A (retinol) can control
mucosal lesions before the occurrence of HNSC and prevent
the occurrence of second primary tumors. Therefore, retinol
metabolism is essential for the early diagnosis and treatment of
HNSC. Retinoic acid (RA) is a critical signaling molecule that
regulates gene transcription and the cell cycle (Tzimas and Nau,
2001), and retinal is then metabolized by NAD/NADP-dependent
retinal dehydrogenases (RALDH) and by retinal oxidase enzymes
to RA (Chen et al., 1995). Additionally, CYP26C1 in the
path:00830_3 is involved in the metabolic breakdown of retinoic
acid, which could be more effective in the growth inhibition
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FIGURE 2 | (A) Subpathways identified by ICDS with FDR < 0.001 in the LIHC dataset. The y-axis represents significant subpathways sorted by FDR2, while the
x-axis represents the –log transformed FDR2. Compared to the three methods (ICDS-G, ICDS-CNV and ICDS-M), the subpathways exclusively identified by the
ICDS method are marked with red asterisks. (B) Annotation of genes in subpathway path:04062_1 and path:04062_4 to the original chemokine signaling pathway in
KEGG. Genes are marked with red, and the light-yellow circle corresponds to subpathway path:04062_1 and the blue circle to subpathway path:04062_4.
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FIGURE 3 | (A) Dysfunctional subpathway (path:04062_1) of chemokine signaling pathway in LIHC. (B) Dysfunctional subpathway (path:04062_4) of chemokine
signaling pathway in LIHC. The vertex in the subnetwork represents a gene, and green and purple colors in the vertex represent the proportion of the gene’s
differential expression scores and differential methylation scores between cancer samples and normal samples; orange colors represent the proportion of influence of
CNV on gene expression.

of cancer cells (Thatcher and Isoherranen, 2009). Moreover, in
the HNSC dataset, some genes mainly showed differences in
the degree of methylation compared to normal samples, such
as CYP26C1 (pmethy = 9.25e-34) and ALDH1A2 (pmethy = 1.65e-
13). Other components in the same subpathway, path: 00830_3,
mainly showed differences in the degree of expression compared
to normal samples, such as AOX1 (pgene = 3.11e-18) and ADH4
(pgene = 2.75e-38) (Supplementary Figure S2B). Therefore,
the ICDS method that we proposed can effectively identify
disordered genetic and epigenetic subpathways.

Analyses of Cervical Squamous Cell
Carcinoma and Endocervical
Adenocarcinoma Data
We applied ICDS to identify dysfunctional subpathways in
CESC (see Materials and Methods). With the threshold of
FDR1 < 0.001, we obtained four significant subpathways
that had just exceeded the threshold FDR2 (Supplementary
Table S4), and all of these subpathways were associated with
the development and progression of CESC tumors. Meanwhile,
using the method of ICDS-G, we obtained three significant
subpathways, and the pathways they belonged to were also
found by the ICDS method (Supplementary Tables S4,
S5). Subpathway 04020_1 in the calcium-signaling pathway,
identified by ICDS, was simultaneously neglected by the
other three methods.

Interestingly, subpathway 04020_1 (Figure 5A) in the
calcium-signaling pathway is involved many G-protein coupled
receptors (GPCRs), such as TACR1, TACR2, and HTR2B, and
downstream heterotrimeric guanine nucleotide-binding proteins
(G-proteins; GNA14) (Figure 5B). In this subpathway, many
GPCRs had significant patterns of expression changes in CESC

patients, such as TACR1 (pgene = 9.92e-32), TACR2 (pgene = 3.82e-
08), and HTR2B (pgene = 2.76e-26). Moreover, with CESC
samples, AVPR1A, which is a GPCR in cells, mainly showed
differences in methylation and expression compared to normal
samples. Many studies have shown that the abnormal expression
and activity of GPCRs is associated with the development and
progression of cancers (Audigier et al., 2013; Moody et al.,
2016). GPCRs play a role as key transducers of signals from
the extracellular milieu to the intracellular milieu of cells. It
has been confirmed that many GPCRs are highly expressed in
specific cancer cells, such as in cervical, breast, and prostate
cancer cells (Dey et al., 2010). Similarly, abnormal expression of
GPCRs contributes to the development of cancer (Radhika and
Dhanasekaran, 2001; O’Hayre et al., 2013). Furthermore, initial
signal transduction, such as that of calcium signaling, is achieved
primarily by GPCRs activated downstream of heterotrimeric G
proteins (Hanlon and Andrew, 2015; Schafer and Blaxall, 2017).
Calcium-signaling channels are important for the proliferation,
migration, and differentiation of cells, including tumors. CESC is
associated with the significant upregulation of calcium-signaling
pathways (Perez-Plasencia et al., 2007; Monteith et al., 2012).

Comparison of ICDS With Other Pathway
Analysis Methods
In recent years, the pathway-based and subpathway-base
approaches have become the first choice for complex disease
analysis in order to yield biological insight. To explore whether
ICDS could provide new biological insights in identifying
important subpathways, we compared ICDS with three widely
used pathway-based and subpathway-base approaches including
SPIA (Tarca et al., 2009), GSEA (Subramanian et al., 2005),
and SubpathwayMiner (Li et al., 2009). These three methods
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FIGURE 4 | (A) SubPathways identified by ICDS with FDR < 0.001 in the HNSC dataset. The y-axis represents significant subpathways sorted by FDR2, while the
x-axis represents the log-transformed FDR2. Compared to the three methods (ICDS-G, ICDS-CNV, and ICDS-M), the subpathways exclusively identified by ICDS
method are marked with red asterisks. (B) Dysfunctional subpathway (path:04919_4) of thyroid hormone signaling pathway in HNSC. The vertex in the subnetwork
represents a gene, and green and purple colors in the vertex represent the proportion of the gene’s differential expression scores and differential methylation scores
between cancer samples and normal samples; orange colors represent the proportion of influence of CNV on gene expression. (C) Annotation of genes in
path:04919_4 to the original thyroid hormone signaling pathway in KEGG. Genes are marked with red, and the light-yellow circle corresponds to path:04919_4.
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TABLE 2 | Subpathways identified by ICDS with FDR <0.001 in the HNSC dataset.

SubpathID Pathway Size∗ FDR1 FDR2 ICDS-G ICDS-CNV ICDS-M

path:04062_1 Chemokine signaling pathway 41 <E-30 2.73E-09
√

path:04919_4 Thyroid hormone signaling pathway 7 <E-30 1.67E-06
√

path:00830_3 Retinol metabolism 11 <E-30 1.79E-06

path:04062_6 Chemokine signaling pathway 10 <E-30 3.82E-06
√

path:04919_6 Thyroid hormone signaling pathway 5 <E-30 5.59E-06

path:04062_5 Chemokine signaling pathway 8 <E-30 1.40E-05

path:00830_1 Retinol metabolism 17 <E-30 1.60E-05

path:04151_6 PI3K-Akt signaling pathway 10 <E-30 1.60E-05

path:04919_5 Thyroid hormone signaling pathway 9 <E-30 1.86E-05

path:00830_4 Retinol metabolism 7 <E-30 2.06E-05

path:04380_1 Osteoclast differentiation 15 <E-30 2.21E-05
√

path:04024_6 cAMP signaling pathway 9 <E-30 2.48E-05

path:04024_2 cAMP signaling pathway 11 <E-30 2.17E-04

path:04261_5 Adrenergic signaling in cardiomyocytes 6 <E-30 2.20E-04

path:04072_6 Phospholipase D signaling pathway 5 <E-30 4.90E-04

path:05206_3 MicroRNAs in cancer 5 <E-30 6.0E-04

path:05206_6 MicroRNAs in cancer 5 <E-30 8.50E-04

∗The number of genes in the subpathway.

FIGURE 5 | (A) Dysfunctional subpathway (path:04020_1) of calcium signaling pathway in CESC. The vertex in the subnetwork represents a gene, and green and
purple colors in the vertex represent the proportion of the gene’s differential expression scores and differential methylation scores between cancer samples and
normal samples; orange colors represent the proportion of the influence of CNV on gene expression. (B) Annotation of genes in path:04020_1 to the original calcium
signaling pathway in KEGG. Genes are marked with red, and the light-yellow circle corresponds to path:04020_1.

mainly identify dysregulated pathways or subpathways by using
gene expression data, however, the ICDS method identifies
the dysregulated subpathways by integrating the three types of
data: DNA methylation, CNV, and gene expression. In order to
compare the results of the above methods uniformly, we chose
to compare the entire pathways identified by them. In HNSC
datasets, ICDS identified 17 statistically significant subpathways,
which belong to nine entire pathways. SPIA and GSEA found five
and eight significant pathways, and SubpathwayMiner did not

yield any significant pathways. Through comparing the results
of these methods, we found that ICDS identified six statistically
significant pathways, which were simultaneously missed by other
methods (Supplementary Table S6). The significant pathways
exclusively identified by ICDS, such as the cAMP signaling
pathway, chemokine signaling pathway, Retinol metabolism etc.,
have been well reported to be associated with the development
of HNSC (Tzimas and Nau, 2001; Tanaka et al., 2005). For
example, the thyroid hormone signaling pathway and retinol
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metabolism were reported to be central to the growth and
survival of cancer cells. A subpathway of Retinol metabolism
identified by ICDS methods (Supplementary Figure S2A) is
essential for the early diagnosis and treatment of HNSC. These
results indicate that the ICDS method may uncover something
new dysregulated subpathways.

DISCUSSION

The occurrence and development of diseases, especially cancer,
involves a complex biological network (Zou et al., 2016). Genetic
variation, epigenetic changes, abnormal gene-expression levels,
and many other factors will change in the characteristics of
living organisms. With the generation of large-scale sequencing
data, more opportunities exist to study the multi-omics
molecular mechanisms of cancer development. In systems
biology, dysfunctional genes may jointly activate biological
pathways. Therefore, the most critical step in exploring complex
disease mechanisms is to identify the functional pathways in
which these dysregulated genes are located. We proposed the
concept of subpathways in our previous work (Li et al., 2009,
2013). The subpathway, defined as a local region of an entire
pathway, contains fewer components, which enables a more
subtle and accurate interpretation of the biological function of
disturbances involved in cancer progression.

In this study, the employed method was based on a priori
biological pathways (e.g., KEGG), each of which represents a
network of interactions between genes, proteins, and chemical
molecules. The main purpose of this study was to discover
important dysfunctional subregions based on the pathway
topological structure. ICDS used Fisher’s combined probability
test to integrate gene expression, CNVs, and methylation to
calculate the RS of genes. As the gene expression, CNV and
DNA methylation are not completely independent, and thus
the independence assumption of Fisher’s combined probability
test may be violated here. This may be a limitation of
our ICDS method. Alternatively, the Brown’s method (Poole
et al., 2016) can also be used to integrate multiple data
source, and it does not suffer from this limitation. A larger
RS in cancer indicated a greater correlation between the
gene and the cancer phenotype. Next, we used a greedy
algorithm to search for subpathways in each KEGG pathway
network, so that subpathway activities were local maxima.
This algorithm have also been used to identified subnetwork
markers of breast cancer metastasis in the human protein–
protein interaction network previously, and achieved higher
accuracy in the classification of metastatic versus non-metastatic
tumors (Chuang et al., 2007). To avoid excessive redundancy in
the candidate subpathways, we set several parameters, such as
seed gene (p-value of combined statistic S < 0.001), subpathway
size (5 < size < 100), and overlap between subpathways
(i.e., Jaccard index between each pair of subpathways in
the same pathway < 0.6), which can be set by a user of
the ICDS package.

We applied the ICDS method to LIHC, HNSC, and CESC
datasets. Based on these analyses, we demonstrated that ICDS can

effectively identify dysfunctional subpathways correlated with
a cancer phenotype. For the HNSC dataset, the subpathway
path:04062_1 was the most significant subpathway and included
41 genes belonging to chemokine signaling pathway. Studies
have confirmed that the chemokine signaling pathway is a
critical component of tumor progression. These genes did not
simultaneously have changes in copy number, methylation,
and gene expression. However, these subregions could still be
found through our integration algorithm, which is the most
prominent advantage of our method. To further validate the
ICDS method, we compared it with three other methods that
only considered one type of data – gene expression, CNV, or
DNA methylation – named as ICDS-G, ICDS-CNV, and ICDS-
M, respectively. The results showed that the ICDS method was
able to identify new risk subpathways associated with cancer
that were simultaneously neglected by the other three methods.
Thus, it is essential to integrate multi-omics data to identify
additional dysfunctional subpathways in cancer. In the future,
we will involve other omics data, such as proteomics, to improve
our ICDS method.

To provide users with convenient and simple analytical tools,
we have integrated the ICDS, ICDS-G, ICDS-CNV, and ICDS-
M methods into an available R-based package on CRAN3. If
users are considering using the ICDS method, they need to
input three datasets of gene expression, copy number, and
methylation. The ICDS-package will produce a prioritized list
of subpathways. With this method, ICDS is used to find key
subpathways related to cancer phenotypes, and it is expected
that it can be used to mine for key subnetworks within some
prior networks (e.g., the PPI network) based on integrating
DNA methylation, CNV, and gene expression data. In addition,
ICDS may identify key subpathways as biomarkers to distinguish
high and low risk cancer patients. For this purpose, researchers
should input the molecular profile of genes with different
stage samples, such as patients in different stages of glioma.
Therefore, we have developed a free and robust tool to
identify dysfunctional subpathways in cancer by integrated multi-
omics data.
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