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Tracking live cells across 2D, 3D, and multi-channel time-lapse recordings is crucial for understanding tissue-scale

biological processes. Despite advancements in imaging technology, achieving accurate cell tracking remains chal-
lenging, particularly in complex and crowded tissues where cell segmentation is often ambiguous. We present
Ultrack, a versatile and scalable cell-tracking method that tackles this challenge by considering candidate segmen-
tations derived from multiple algorithms and parameter sets. Ultrack employs temporal consistency to select op-
timal segments, ensuring robust performance even under segmentation uncertainty. We validate our method on
diverse datasets, including terabyte-scale developmental time-lapses of zebrafish, fruit fly, and nematode embryos,
as well as multi-color and label-free cellular imaging. We show that Ultrack achieves state-of-the-art performance
on the Cell Tracking Challenge and demonstrates superior accuracy in tracking densely packed embryonic cells
over extended periods. Moreover, we propose an approach to tracking validation via dual-channel sparse label-
ing that enables high-fidelity ground truth generation, pushing the boundaries of long-term cell tracking assess-
ment. Our method is freely available as a Python package with Fiji and napari plugins and can be deployed in a
high-performance computing environment, facilitating widespread adoption by the research community.

Advancements in live imaging technologies1–7 have en-abled the visualization of cellular dynamics with unprece-dented spatiotemporal resolution8 over large fields ofview6, 7 encompassing thousands of cells,5, 9 producingvast amounts of multi-dimensional data.10 However, onekey challenge remains: the accurate reconstruction of celltrajectories and lineages in complex biological systems.11
This ability unlocks deeper insights into cellular state andbehavior,9, 12, 13 tissue mechanics,14 morphogenesis,2, 15, 16
and regeneration.17Cell segmentation and tracking have been persistentchallenges in bioimage analysis.11 While cell segmentationhas advanced rapidly with the advent of deep-learning-based methods,18–20 cell tracking continues to be an openproblem.11 The primary challenge stems from the ac-cumulation of segmentation errors over time, hinderinglong-term tracking, especially in dense and dynamic cel-lular environments. Most automatic tracking methodsemploy a two-step approach: first segmenting cells, thenlinking them across time frames.21–24 While computation-ally efficient, this approach struggles with the compound-ing of errors over time, particularly in dense tissues25 orwhen cells divide rapidly.Simultaneous segmentation and tracking offers apromising alternative,26–30 wherein multiple candidatesegments and/or inter-segment links are generated, andthen optimal candidates are selected by satisfying biolog-ical constraints (i.e. cells divide but do not merge) and

optimizing specific criteria (i.e. only keep links best sup-ported by the data). However, existing methods in thiscategory are constrained by their inability to utilize ar-bitrary segmentation inputs,28, 31 as well as limitations indata scale or dimensionality due to high computationalcosts.29, 30 These factors have limited their applicability totissue-scale problems.To address these challenges, we developed Ultrack, arobust and scalable method for large-scale cell trackingthat excels even under segmentation uncertainty. Ul-track can track cells (or nuclei) in 2D, 3D, and multi-channel datasets, accommodating a wide range of biolog-ical contexts. Ultrack seamlessly integrates with varioussegmentation algorithms, including state-of-the-art deeplearning-based cell segmentation tools18–20, 32–34 (Fig. 1a).By jointly evaluating candidate segmentations and tracks,Ultrack employs temporal consistency to select the mostaccurate segments (Fig. 1b). This approach leverages in-formation from adjacent time points to resolve cell seg-mentation and tracking ambiguities, enhancing perfor-mance, particularly in complex, densely packed tissueswhere cell boundaries are often uncertain (Supp. Video 1).We demonstrate the utility and robustness of Ultrackthrough a comprehensive set of benchmarks and real-world applications, including top-scoring performance onthe Cell Tracking Challenge.11 Our method shows im-proved tracking performance across various use casesand scales, from multi-color and label-free 2D datasets
1
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Fig. 1 | Ultrack overview. a, The Ultrack pipeline can process a variety of input images, including 2D, 3D, and multi-color datasets.These images are then processed by any segmentation algorithm or a combination of them. b Ultrack builds segmentationhypotheses between frames for tracking and solves an Integer Linear Programming (ILP) problem to identify cell segments andtheir trajectories. The resulting tracks can be exported in various formats compatible with multiple platforms. c, Illustration ofhow segmentation hypotheses are built using ultrametric contours: multiple segmentations are provided (first row), their binarycontours are extracted (second row), and these are combined into a multilevel contour, equivalent to a hierarchy (third row). d,Joint segmentation and tracking is performed using an Integer Linear Programming (ILP) formulation, modeling cell behaviors(e.g. cell division, cell death, or cells leaving the field of view) while finding non-overlapping cells with maximal association overtime. e, Ultrack can process arbitrarily sized datasets and scales from a laptop to a High-Performance Computing (HPC) cluster. f,Projection of a 3D image of a developing zebrafish embryo, with cell tracks overlaid and colored to indicate track orientation inthe xy-plane. 2
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to large-scale 3D time-lapse sequences of developing em-bryos.Additionally, we introduce a novel dual-channel sparselabeling approach that enables the generation of high-fidelity ground truth for tracking validation. This methodcombines ubiquitous fluorescence labeling with sparse,random labeling at a distinct wavelength, allowing for thecreation of annotations that would be impossible to pro-duce manually. This innovative validation strategy pushesthe limits of cell tracking assessment, enabling the evalua-tion of tracking performance over extended time periodsand in increasingly complex tissue environments.To ensure broad accessibility and ease of use, we pro-vide intuitive interfaces in Fiji,35 napari,36 Python, andcommand line, catering to researchers with diverse com-putational backgrounds. We also made efforts to ensureinteroperability with existing popular cell tracking frame-works such as TrackMate37 and Mastodon38 (see Fig. 1b).Thus, by enabling more accurate, scalable, and accessi-ble cell tracking, Ultrack can accelerate research in de-velopmental biology, cancer research, and regenerativemedicine, offering new insights into cellular behavior andtissue dynamics.
RESULTS
Avoiding premature mistakes with multiple segmenta-
tion hypotheses.

Cell tracking accuracy is compromised when cell segmen-tation (or detection) fails. To address this challenge, Ul-track considers multiple segment hypotheses instead ofprematurely committing to a particular choice of seg-ments (see Fig. 1a). These hypotheses can be obtainedfrom the original imaging data pixel intensities, multiplealgorithms (e.g. watershed plus Cellpose), or from one orseveral algorithms configured with different parameters.This approach allows the integration of various segmen-tation methods, maintaining compatibility with the grow-ing array of novel off-the-shelf segmentation models.39, 40
However, the main challenge of this approach and previ-ous joint segmentation and tracking methods, as well asthe main obstacle for their practical application, is the po-tentially large number of possible segmentation hypothe-ses, especially for large multi-dimensional datasets.
Efficient representation of segmentation hypotheses.

To address the challenge of managing multiple segmen-tation hypotheses, we use ultrametric contour maps(UCMs),41–43 which provide a compact representation ofthese hypotheses. Intuitively, UCMs are multi-level con-
tour maps that represent a hierarchy of possible cellboundaries, where the strength of each boundary reflectsits likelihood of being a true cell edge (Fig. 1c). This hierar-chical structure allows for the efficient encoding of multi-

ple possible segmentations within a single map. More for-mally, UCMs partition space into nested segments, wherevalid segments do not overlap, or are contained withinone another. This property enables Ultrack to efficientlyconsider multiple segmentation possibilities while track-ing cells, even in terabyte-scale datasets (see Fig. 1e), thatare challenging for existing joint segmentation and track-ing solutions.26, 28–30
Hence, the canonical Ultrack input consists of two mapsfor each time frame: (i) a foreground map distinguishingpotential cells from the background and (ii) a grayscale im-age representing the multilevel contour map (i.e., UCM),Fig. 1c. These two input maps can be generated from anymethod, making Ultrack compatible with a wide rangeof existing workflows (see Methods for technical details).Therefore, the same algorithm is always applied in everyapplication presented here, and the varying factor is theprocess of obtaining the multilevel contour map.

Tracking by maximizing temporal consistency.

Once all candidate segments and links between segmentsare determined, tracking involves solving a complex com-binatorial problem of selecting and associating the cor-rect cell segments across time from the set of multiplesegmentation and linkage hypotheses (see Fig. 1b andSupp. Video 1). As shown in Fig. 1d, we formulate this com-binatorial problem as an Integer Linear Program (ILP)28, 44
that simultaneously solves for the optimal selection oftemporally consistent segments while adhering to biolog-ical constraints. These constraints include cell division,cells entering (e.g. moving into the frame), or exiting (e.g.cell death or moving out of the field of view), and ensuringthat a pixel is not assigned to more than one cell.45 This ef-ficient and versatile mathematical formulation leverageshighly optimized solvers (Gurobi,46 Coin47) and thus canhandle tens of millions of segments from terabyte-scaledatasets (see Fig. 1e). Once solved, the ILP formulationnot only selects the most appropriate segments but alsoencodes the linkage data necessary to reconstruct the celllineages from the optimal association between the se-lected segments (see Methods for associations score defi-nition and ILP formulation details). Recapitulating cell lin-eages and migration patterns, as shown in the developingzebrafish embryo in Fig 1f and Supp. Video Supp. Video 1
Optimal parameter selection by temporal consistency.

Image segmentation techniques, from classical methodslike watershed to advanced deep-learning models, facesignificant challenges in parameter tuning due to severalfactors: (i) computational: extensive resources are re-quired to explore a large parameter space; (ii) practical:users often lack the expertise to tune parameters effec-tively; and (iii) technical: a single optimal parameter set
3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.610652doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610652
http://creativecommons.org/licenses/by-nc/4.0/


Allɣ = 1ɣ = 0.5ɣ = 0.25ɣ = 0.1c d

fa
ls

e 
ne

ga
tiv

e 
de

te
ct

io
ns

 ( 
  )

 T
RA

 - 
tr

ac
ki

ng
 a

cc
ur

ac
y 

(  
 )

0.10 0.25 0.50 1.00 All

0

100

200

300

400

0.6

0.7

0.8

0.9

1.0

ɣ

258

159
145

69

0.924

0.8600.860

0.774

0.628

418

ɣ

ɣ

yt
x

logical 
OR

b

average

gamma 
correction

a

 Done multiple for ɣ in 0.1, 0.25, 0.5, 1.0

C
el
lp
os
e 

ov
er

la
y

C
ro

p 
of

 o
ve

rla
y

C
ro

p 
of

 o
ve

rla
y

Fo
re

gr
ou

nd
C

on
to

ur
s

Cellpose foreground

contours

▶ false positives ▶ false negatives ▶ under segmentation

ULTRACK

30 μm

30 μm

200 μm

200 μm

200 μm

Fig. 2 | Multiple segmentation hypotheses alleviate the curse of parameter tuning. a, Segmentation pipeline using gammacorrection with varying settings (γ = 0.1, 0.25, 0.5, and 1.0) to generate diverse segmentation hypotheses. b, Ultrack’s approach:integrating multiple foreground and contour maps for joint segmentation and tracking. c, Impact of gamma correction onsegmentation quality: original images (top row), segmentation results (second and third rows) with errors highlighted by coloredarrows, foreground masks (fourth row), and contour maps (fifth row). d, Quantitative comparison of false negative cell detectionsand tracking accuracy (TRA) for individual gamma settings and Ultrack’s combined approach.

may not fit all aspects of a diverse dataset, such as whensegmenting cells of varying sizes.
Ultrack addresses these challenges by integrating mul-tiple segmentation labels derived from different parame-ter settings into a single multilevel contour map. This ap-proach leverages the temporal consistency of the trackingprocess to select the most appropriate segments for eachcell (see Fig. 1d), resulting in more effective segmentationthan what could be achieved with any single parameter

setting — even the optimal one.
To demonstrate this key feature of Ultrack, we trackedhuman hepatocarcinoma-derived cells expressing YFP-TIA-148 in their nucleus and cytoplasm from the Cell Track-ing Challenge (CTC)11 using the Cellpose ”cyto2” weights32

without any fine-tuning. In this dataset, cells have signifi-cantly varying intensities, impairing the model’s ability toconsistently segment every cell correctly. For example,using original image intensities (γ = 1.0), the segmenta-
4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.610652doi: bioRxiv preprint 

https://vimeo.com/1000960564/4dcd87aed4
https://doi.org/10.1101/2024.09.02.610652
http://creativecommons.org/licenses/by-nc/4.0/


tion model fails to detect dimmer cells (see Fig. 2c – sec-ond column from right). Conversely, altering the dynamicrange by taking the power of the image intensities withvalues closer to zero (γ = 0.1, 0.25, 0.5) improved the seg-mentation of dimmer cells but led to incorrect segmenta-tion or non-detection of now-saturated bright cells (Fig. 2c– right most column).To segment and track the combination of all parame-terizations of gamma, we extracted the binary foregroundand contour maps from the Cellpose labels, Fig. 2a. Next,we combined them into a single binary foreground and amultilevel contour map for tracking, Fig. 2b. Further dis-played in Supp. Video 2.We evaluated the tracking and segmentation perfor-mance for each individual gamma setting, as well as forthe combined contour map approach. To assess perfor-mance, we compared the results against the manually cu-rated ground truth provided by the Cell Tracking Challenge(CTC). Figure 2d summarizes the average results obtainedfrom the two publicly available datasets. We used two keymetrics for evaluation: the false negative detection rateand the tracking accuracy (TRA).49 For false negative de-tection, lower scores indicate better performance, whilefor TRA, higher scores are better (see Methods for details).These results demonstrate that Ultrack achieves moreaccurate tracking by leveraging multiple segmentation hy-potheses, even outperforming the optimal single parame-ter setting (γ = 0.5). This indicates that combining diversesegmentation inputs is often more effective in practice,thus eliminating the need for precise parameter tuningand offering a more robust approach to cell tracking.
Enhancing cell tracking accuracy through multi-channel
integration and color-aware associations.

Multi-color labeling has been shown to enhance cell seg-mentation and tracking capabilities, particularly in com-plex cellular environments.50, 51 However, applying state-of-the-art deep-learning models to such data often re-quires training on dataset-specific annotations, as pre-trained weights are typically optimized for single-channeldata. Ultrack addresses this challenge by combining mul-tiple segmentation inputs in two ways: by varying param-eters, as demonstrated earlier, and by integrating outputsfrom different segmentation algorithms applied to sepa-rate color channels.We demonstrate this key feature of Ultrack on a three-channel ”multi-color” dataset of metastatic breast adeno-carcinoma cells (MDA-MB-231) with RGB-markings froma lentiviral gene ontology (LeGO) vector system,52 andshow that we can effectively use models like Cellpose’s”cyto2”32 alongside classical algorithms by applying themindependently to each channel and then combining theoutputs into a single multilevel contour representation.

This approach circumvents the need for extensive re-training or fine-tuning typically required by other ap-proaches.37, 53 We combined six segmentation outputsfrom three image channels — three from Cellpose andthree from Otsu54 with watershed55, 56 — into a singlecontour and detection map for Ultrack (Fig. 3a). Whileclassical image processing approaches like watershed aregenerally less precise at splitting cell instances, they pro-vide greater control and allow for the detection of dim-mer cells, complementing the more sophisticated Cell-pose output. Furthermore, Ultrack can use the threecolor channels as a feature when associating segmentsbetween frames, which helps connect the right segmentsacross time (Fig. 3b).
We assessed the effectiveness of our multi-channelmulti-algorithm approach using progressively more so-phisticated strategies: (i) Individual pipelines using Cell-pose and watershed algorithms on a grayscale version(maximum intensity across multiple channels); (ii) Eachalgorithm applied independently on multiple channels;(iii) Combination of outputs from both algorithms in themulti-color configuration (Fig. 3a); (iv) Integration of colorfeatures into the association scores to improve linking ofsegments.
We manually curated 413 cell tracks, creating a gold-standard dataset for benchmarking our results. Demon-strating several key improvements. Incorporating colorchannels enhances cell distinction compared to grayscaleversions, notably reducing under-segmentation (green ar-row, Fig.3b, first two columns). The combination of wa-tershed and Cellpose algorithms proves particularly effec-tive, improving the detection of dimmer cells while main-taining Cellpose’s accurate segmentation. Furthermore,color-feature linking improves tracking in ambiguous sce-narios (Fig.3b, bottom center). Overall, Ultrack steadilyincreased accuracy as additional features (i.e., segmen-tation labels, color information) were incorporated. Thisdemonstrates its effectiveness in creating valid lineages(Fig. 3c and Supp. Video 3) from a large pool of segmenta-tion hypotheses without requiring a fine-tuned segmen-tation model, highlighting its versatility and robustness inmulti-color cell tracking scenarios.

Intensity-based tracking from label-free virtual staining.

As demonstrated in the previous section, off-the-shelfsegmentation models face challenges when datasets devi-ate significantly from the training distribution. Users thenoften resort to time-consuming tasks such as annotatingmultiple segmentation labels to fine-tune a new modelor implementing custom algorithms based on their exper-tise. This is particularly common because of the high di-versity of imaging modalities and datasets typically en-countered in Biology. Here, we show that our approach
5
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can circumvent these requirements by directly trackingimage intensities as if they were multilevel contours, thuseliminating the need for segmentation labels as input.
Our method relies on a single assumption: the inten-sity map must highlight cell boundaries in some way. Thiscould be achieved through membrane labeling, which de-lineates cells as a contour map, or through nuclear label-ing, which highlights cell interiors. By inverting the latter,we obtain an image where boundaries have higher inten-sity values than cell interiors.
To evaluate this approach, we tracked A549 cells us-ing quantitative phase imaging (QPI) data acquired withrecOrder59 on a widefield transmission microscope. Tradi-tional segmentation models like Cellpose perform poorlyon this data because QPI was not part of their trainingset.57 We obtained the intensity map using VSCyto2D,57 aconvolutional neural network for virtual staining (VS) thatpredicts membrane and nuclear markers from label-freedata.
To create the multilevel contour map, we combinedboth the nuclear and membrane channels by subtractingthe normalized and filtered nuclear channel from the fil-tered membrane channel (Fig. 4a). The foreground wascomputed by manually thresholding the membrane chan-nel and applying morphological filtering to close holes and

remove small objects. We then applied Ultrack to theforeground and the intensity map encoding cell contours(see Supp. Video 4).
For benchmarking, we tracked the virtual stained nu-clear channel and manually curated a set of 247 trackletsof lineages starting in the first frame to the last frame.The cell centroids of these tracks were used to create ref-erence gold-standard datasets following the Cell TrackingChallenge (CTC) format.
We compared against Cellpose with ”livecell cp3”weights58 applied to the QPI channel, followed by track-ing. With Ultrack applied to the combined membraneand nuclear VS channels, we detected most of the cells,Fig. 4b-c, while the off-the-shelf model failed to recog-nize them. We missed 2802 fewer associations betweencells (i.e. FN edges) and 3014 cell detections (i.e. FN de-tections) than VS with Ultrack, at the cost of detection of1000 false-positive cells.
This shows that tracking from image intensity directly,in this case from virtual staining, offers a competitive al-ternative to supervised segmentation and tracking meth-ods, which often fail when presented with unseen imagingmodalities, such as label-free quantitative polarization,Zernike phase contrast, DIC, or for different cell types.Thus eliminating the need for extensive human annota-
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tion to train segmentation models.
Improving tracking by temporal registration.

Imaging systems must balance multiple factors, includingthe field of view size, spatial resolution, imaging speed,and depth.60 A critical limitation often encountered is ac-quisition speed (i.e., temporal resolution), which hamperscell tracking performance. This is especially problematicwhen cells move rapidly and have similar appearances,complicating the assignment of cells between consecutiveframes.Registration of adjacent frames often compensates forlimited time resolution. However, collective cell motionwithin growing or deforming tissues frequently demon-strates local coherence that does not conform to sim-ple linear or affine transformations. This is due to thecomplex dynamics of some biological processes. In suchcases, non-linear registration, such as movement vectorfields,61, 62 is more appropriate. This approach effectivelyminimizes apparent motion when cells present distinctmigration patterns.Computing non-linear registration can be extremelytime-consuming or require complex, specialized algo-rithms. To address this, Ultrack provides its own graphics-hardware-accelerated (GPU) routines to compute vectorfields for 2D and 3D time-lapses. These routines arebased on automatic differentiation from deep-learningmodels,63 offering efficient computation without sacrific-ing accuracy (see Methods for details). The movementvector fields can be integrated into the tracking step, ap-plying local movement to each candidate segmentation.This approach avoids altering the original image data.Moreover, Ultrack accepts any vector fields representedas a grid, allowing users to utilize their preferred registra-tion methods.We evaluated the effectiveness of using vector fieldswith Ultrack on the Tribolium Castaneum cartographydataset64 from the Cell Tracking Challenge (CTC). Thisdataset features nuclear-labeled embryo cells imaged us-ing selective plane illumination microscopy (SPIM). Theepithelial cells’ ellipsoidal surface was transformed intoplanar cartography using the ImSAnE toolbox65 to facil-itate downstream analysis. However, this cartographictransformation introduced distortion and excessive mo-tion on the polar boundaries, as shown in Fig. 5a andSupp. Video 5.We compared the tracking accuracy with and withoutflow registration (Fig. 5b) at various temporal resolutions,starting by skipping ten frames (∆t = 10) up to the orig-inal framerate (∆t = 1), as illustrated in Fig. 5c-d. Theresults show: (i) At ∆t = 10 tracking accuracy improvedfrom 0.443 to 0.623 with flow registration; (ii) At ∆t = 5accuracy increased from 0.571 to 0.756; (iii) At original

time resolution (∆t = 1) similar results were obtained(0.927 vs. 0.929). Fig. 5c provides a specific examplewhere the flow field achieves the correct result, while acell identity switch occurs in the unregistered case.These results demonstrate that Ultrack’s temporal reg-istration capability enhances tracking accuracy, particu-larly when dealing with complex cell movements or lowertemporal resolution datasets.All these features — including its ability to handle mul-tiple segmentation hypotheses, integrate multi-channeldata, leverage intensity-based tracking, and apply tempo-ral registration—collectively enable robust cell tracking incomplex biological contexts. These capabilities are par-ticularly valuable when confronting the challenges posedby dense, three-dimensional tissues with dynamic cellularbehaviors. To demonstrate the power and versatility ofthis approach, we next evaluated Ultrack’s performanceon one of the most demanding applications in bioimageanalysis: tracking cells in developing embryos.
Ultrack achieves state-of-the-art cell tracking in develop-
ing embryos.

The Cell Tracking Challenge (CTC) is a long-standing bench-mark for cellular segmentation and tracking methods.11 Itprovides participants with training datasets to tune andtrain their algorithm parameters; the test sets are con-cealed and only accessible to the organizers. This struc-ture prevents information leakage between the trainingand testing phases and offers an unbiased evaluation ofeach algorithm’s performance. We assessed our methodusing their three 3D whole-embryo datasets: the C. ele-
gans (worm),66 D. melanogaster (fly),31 and T. castaneum(beetle) embryos.64

The worm dataset includes manually curated lineagedata and cell coordinates, as well as silver-standard seg-mentation annotations derived from a consensus amongprior challenge submissions.67 Using these annotations,we trained a U-Net model45, 68 that predicts two outputsper voxel: (i) whether the voxel is on a cell contour and(ii) whether that voxel is in the foreground. We optimizedthese predictions using three dice losses:69 (i) binary fore-ground prediction, (ii) binary cells’ contour prediction,and (iii) U-Net’s intermediate cell contour predictions.70
The cells’ contours and foreground were then used as in-puts for Ultrack. As shown in Table 1, Ultrack achieves atop combined segmentation and tracking score of 0.844.In general, training data for segmentation is not al-ways available nor easily obtained, which is a typical sit-uation users face. This is the case for the fly and bee-tle datasets, which lack ground truth to train segmenta-tion models. Instead, we asked whether we could forgomachine learning and use classical image-processing tech-niques for segmentation. We opted for a straightforward

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.610652doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610652
http://creativecommons.org/licenses/by-nc/4.0/


orientation
0.00

0.50

1.00

2.5 1.05.07.510.0

tracking score (TRA) versus imaging speed (Δt)

registered

unregistered

Δt

higher 
is better

Fig. 5 | Enhancing tracking accuracy through temporal registration. a, Consecutive frames, t (magenta) and t+ 1 (cyan),highlighting divergent motion along the right boundary. b, Vector field generated by non-linear registration, colored byorientation. c, Qualitative comparison of cell identity preservation: top row shows a cell identity switch in unregistered frames,identity switch indicated by red arrow, bottom row demonstrates improved consistency with flow registration. d, Comparativeanalysis of tracking accuracy for registered and unregistered data across different cell velocities (∆t), illustrating enhancedperformance with registration.

method. First, we detected the foreground using a Differ-ence of Gaussians filter and applied Otsu’s threshold54 toselect the foreground voxels. Next, we used image inten-sity as a proxy for cell boundaries by inverting and normal-izing these intensities between 0 and 1, so dimmer voxels,which are more likely to be the cells’ contours, representthe highest values.Combining this simple image-processing approach withUltrack’s handling of multiple hypotheses implicit in thecontour representation yields noteworthy results com-pared to competing approaches that require training data.As shown in Table 1, for the fly dataset, Ultrack achieved acombined segmentation and tracking score of 0.708, com-pared to 0.617 for the next best method. Similarly, forthe beetle dataset, Ultrack scored 0.841, while the nextbest result was 0.804 (see Methods for additional details).These outcomes demonstrate Ultrack’s capability to per-form well even when deep-learning models are unavail-able. See Supp. Video 6 for recordings of the results.
High-quality cell tracking ground-truth via sparse fluo-
rescence labeling.

While the Cell Tracking Challenge (CTC) provides a valu-able unbiased benchmark for evaluating segmentationand tracking, it relies primarily on human-generated an-notations. These annotations, while crucial, are inher-ently limited in scale and potentially in quality due to thechallenge of manually annotating the latest-generation 3Dlive microscopy datasets.1, 2, 6, 7, 9, 15, 16 Such datasets oftenspan hundreds of gigabytes to terabytes, recording thou-sands of cells over hundreds or more time points, making

manual annotation a task that is not only time-consumingbut often beyond human capability. Moreover, in denselylabeled or multi-dimensional datasets, distinguishing in-dividual cells can be highly uncertain and sometimes im-possible.15, 16, 24, 31, 64
Encouraged by Ultrack’s performance on the CTC, wedeveloped a higher-fidelity ground truth dataset thatcould overcome these limitations and potentially providea more challenging benchmark of a crowded and dynamiccellular environment from a developing zebrafish embryo.We applied a dual labeling protocol that combines ubiq-uitous fluorescence nuclear labeling (H2B-mNeonGreen)with sparse random nuclear labeling at a distinct wave-length (pMTB-ef1-H2B-mCherry). Sparse labeling wasaccomplished by early-stage microinjection of a marker(Tol2 transposase-mediated integration, see Methods fordetails) that propagates to daughter cells upon division,effectively recapitulating their lineage (Fig. 6a).
The sparsity of this second channel significantly sim-plifies tracking and allows for rapid curation into a setof high-quality, or ”platinum-level,” annotations (Fig. 6b).Cells in the sparse channel were automatically tracked us-ing Ultrack and then manually curated to ensure the high-est quality standards (Fig. 6b–top). This curation processinvolved selecting long, green-overlapping, high-qualitylineages, conducting visual inspections, and making nec-essary corrections, resulting in 152 annotated trackletsspanning from 85 to 521 frames. This methodology notonly simplifies the manual curation process but also re-veals cell trajectories that are challenging to annotatemanually using conventional methods on dense datasets,
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Dataset Rank combined score tracking score segmentation score(CTB) (TRA) (SEG)
Worm
C. elegans

1st 0.844ultrack 0.987MPI 0.759MU
2nd 0.829KTH 0.979JAN 0.729KIT
3rd 0.808KIT 0.975IGFL 0.722KTH
4th - 0.967ultrack 0.722ultrack

Fly
D. melanogaster

1st 0.708ultrack 0.802ultrack 0.613ultrack
2nd 0.617KTH 0.785JAN 0.613KTH
3rd 0.591JAN 0.785MPI 0.397JAN

Beetle
T. castaneum

1st 0.841ultrack 0.955MPI 0.746ultrack
2nd 0.804MPI 0.936ultrack 0.684RWTH
3rd 0.785RWTH 0.886RWTH 0.654MPI

Table 1 | Segmentation and tracking scores for 3D embryo datasets of the Cell Tracking Challenge. Ultrack results, as of August2024, are highlighted in bold. Ultrack obtains the highest combined segmentation and tracking score (CTB) for all three datasetsand is the method with the best balance between segmentation (SEG) and tracking (TRA) metrics.

see Supp. Video 7.As evident in Fig. 6c, tracking is easier at earlierstages of development when cells are less numerous, lessdensely packed, and when the optical properties of thetissue are more favorable for imaging. Despite these chal-lenges, cell nuclei in the sparse channel are consistentlyeasier to track compared to the dense channel (Fig. 6c,first row).We used these high-quality sparse-channel-derivedtracking labels to evaluate Ultrack’s accuracy on the ubiq-uitously labeled channel. We used two segmentation ap-proaches as in:45 (i) image processing to produce fore-ground masks and nuclei boundaries directly and (ii) aconvolutional neural network to generate foreground andcontour images. Hence, the Ultrack setup was kept thesame, and only the input foreground and contour mapswere modified. Figure 6c compares the tracking resultsusing the sparse channel (red) and the ubiquitous chan-nel (green) using the deep-learning-based contour map,approach (ii), for three frames (150, 400, and 500), show-casing the disproportionate difficulty of tracking cells inthe dense versus sparse channel.To quantitatively assess the performance, we evaluatedour automatic dense tracking results against the manuallycurated sparse tracking over two time periods, Fig 6d: thefirst 150 frames as the previous work24 and an extendedperiod of 500 frames, nearly covering the entire time-lapse. Assessing tracking performance with five metrics,24
all expressed as proportions relative to the total numberof annotated edges: (i) FN: false-negative edges (i.e. miss-ing connections between cells), (ii) IS: identity switches(i.e. incorrect association between cells), (iii) FP-D: false-positive divisions, (iv) FN-D: false-negative divisions, and(v) the sum error rate that combines the first four metrics.As expected, tracking accuracy drops for longer imag-ing periods (500 versus 150 frames, see Fig. 6d), reflect-

ing the growing complexity of the developing organismalready apparent in Fig. 6c. Notably, Ultrack with a deep-learning-based input, which benefits from available train-ing data, consistently outperforms plain image process-ing contour and foreground maps, maintaining compara-ble accuracy over 500 frames to what the image intensity-based approach achieves in just 150 frames. This perfor-mance demonstrates the robustness of the deep-learningmethod in maintaining high tracking accuracy over ex-tended periods of embryonic development, even as thetracking task becomes increasingly challenging.

To contextualize our results within recent advances incell tracking for embryo-scale 3D datasets, we comparedour findings to those reported by Malin et al.24 Theirstudy, which used a similar multi-view light-sheet micro-scope setup,71 established a baseline sum error rate of0.078 for tracking neuronal cells in zebrafish embryos dur-ing 150 frames. As shown in Fig. 6d, Ultrack achieves alower proportion of sum errors for both deep learningand intensity-image-based contour maps on 150 frames(0.049 and 0.070, respectively). Moreover, when usingdeep learning, we maintain accuracy (0.073) comparableto our baseline (0.078) even over a much more challeng-ing 500-frame period. This extended performance is par-ticularly noteworthy, as it underscores the robustness ofour method in maintaining high tracking accuracy overprolonged periods of embryonic development despite in-creasing tissue complexity, cell density, and imaging arti-facts. These results not only validate the effectiveness ofour dual-channel approach but also highlight Ultrack’s po-tential to push the boundaries of long-term cell trackingin complex biological systems.
10
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Fig. 6 | Sparse fluorescence labeling enables high-fidelity tracking validation over extended time-lapses. a, Validation pipelineusing sparse fluorescence labeling: (i) Embryos with ubiquitous green nuclear labeling (H2B-mNeonGreen) are injected with DNAplasmids expressing red fluorescent protein pMTB-ef1-H2B-mCherry; a single embryo is then selected for imaging. (ii)Simultaneous imaging of red and green channels. b (iii) Independent tracking of cell nuclei in both channels. (iv) Selection andmanual curation of a subset of cell nuclei tracks from the red channel. (v) Comparison of curated tracks to those obtained fromubiquitous labeling. c, Comparative visualization of red (first column) and green (second column) channel segmentation andtracking results at different time points, and combined results overlaid grayscale intensity colored in red and green (last column);cell density and tracking difficulty increase over time (top to bottom), d, Quantitative evaluation of tracking accuracy underdifferent conditions and durations: using deep learning for cell contour estimation (first row) vs. direct image-intensity-basedsegmentation (second row); measurements taken up to the first 150 frames (first column) and 500 frames (second column).Metrics shown are proportions of false-negative edges (FN), identity switches (IS), false-positive divisions (FP-D), false-negativedivisions (FN-D), and their sum. The red vertical line indicates the baseline sum error rate for 150 frames of 0.078 for comparisonwith Malin et al.24

Ultrack scales to terabyte-scale high-resolution large-
field-of-view light-sheet datasets.

To demonstrate Ultrack’s scalability and performance onmassive datasets, we employed it to recover cell lineages

of nuclear-labeled zebrafish embryos9 acquired using thefast (1 stack per minute), high-resolution (20x magnifica-
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Fig. 7 | Multi-terabyte cell tracking of zebrafish embryo. a, Pipeline for joint segmentation and tracking using a convolutionalneural network and Ultrack. b, Intermediate results at each stage: original image (first column); predicted foreground (secondcolumn) and contour probabilities (third column); Ultrack segmentation (fourth column) and tracking results (fifth column). c,Detailed views of fully automated lineage reconstructions, showcasing two rounds of cell divisions and their corresponding 2Dslices. d, Distribution of the proportion of error-free tracks for varying lengths across three embryos. Indicating that, on average,50% of the lineages are error-free for at least 62 frames.

tion and 1.0 NA Olympus objective), and large-imaging-volume (≥ 1 mm3) DaXi light-sheet microscope,6 produc-ing uncompressed time-lapse data ranging from 1.7 to 3.7terabytes, capturing 8.6 to 13.2 hours of zebrafish devel-opment (Fig. 7a,b).
Our workflow began with training a U-Net to predictnuclei pixels (foreground) and their contours (Fig. 7a,b).

We then applied Ultrack to these network predictions.Leveraging Ultrack’s command-line interface (CLI) andSLURM,72 we processed these massive datasets withinhours using distributed computing in a high-performancecomputing (HPC) environment. For example, a 3.7 TBdataset (791 × 448 × 2174 × 2423 voxels, T × Z × Y × X) wasprocessed in approximately 8.2 hours (Fig. 1e).
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Ultrack’s computational scaling extends across comput-ing environments, from high-performance clusters to off-the-shelf laptops. Ultrack supports out-of-core process-ing: it is able to process arbitrarily large datasets, eventhose significantly larger than available memory (RAM) —as long as a single image (2D or 3D) can fit into memory(see Methods for details). We could process the same 3.7TB dataset on a 64 GB RAM laptop in 5 days, accessingdata remotely via a 1 Gbps connection (Fig. 1e).The tracking resulted in millions of segments acrosshundreds of time frames. To assess performance, wemanually evaluated time-lapses until the first trackingmistake, recording the duration of error-free tracks. Weemployed a stratified sampling strategy, manually anno-tating distinct regions (head, body, tail bud, and pre-somitic mesoderm) at various time points and image qual-ities. From these strata, we randomly sampled approxi-mately 140 lineages per embryo (n = 3). Figure 7d showseach fish’s cumulative proportion of error-free tracks andtheir mean. On average, it took 62 frames for a track-ing error to appear in 50% of the lineages, meaningthat for a period of approximately 1 hour of develop-ment (60 frames), half of the tracks are completely error-free, demonstrating Ultrack’s robust performance over ex-tended periods. Figure 7c and Supp. Video 8 provides adetailed view of an automatically reconstructed lineage,capturing two rounds of cell divisions and illustrating Ul-track’s ability to maintain accurate tracking through mul-tiple cell generations.These results underscore Ultrack’s capacity to ef-ficiently process and accurately track cells in multi-terabyte, high-resolution datasets utilizing HPC resourcesor standard hardware. This scalability and versatility makeUltrack a powerful tool for analyzing large-scale develop-mental processes at unprecedented resolution and scale.
Ultrack attains near-perfect cell tracking of organ-scale
3D datasets.

Cell tracking is often crucial in scenarios with fewer cells,where perfect lineage reconstruction is necessary to un-cover precise details of cell behavior, such as division, mi-gration, and death.73, 74 To evaluate Ultrack’s performancein such a context, we chose the zebrafish neuromast asour model system, given its well-defined structure and im-portance in studying sensory organ development. Previ-ous efforts in segmenting and tracking cells in this organincluded manual tracking of cells75 or semi-automatedsegmentation of single frames.76 To our knowledge, noother study has reported the fully automatic segmenta-tion and tracking of cells in this complex 3D organ for ex-tended time-periods.We imaged a zebrafish neuromast for 42 hours us-ing membrane and nuclei markers. Imaging was per-

formed on an Olympus IX83 microscope equipped witha microlens-based, super-resolution spinning disk confo-cal system (VT iSIM, VisiTech International), using a 60x1.3 NA silicone-oil objective. This setup yielded a datasetof 500 frames in two colors, with volumes of 73 × 1024 ×1024 voxels, at a resolution of 250 × 76.6 × 76.6 µm pervoxel. Frames were captured every 5 minutes.To ensure optimal segmentation accuracy, we fine-tuned a 3D Cellpose model32 to segment cells using bothcolor channels. We then converted the Cellpose predic-tions into foreground and contour maps for input intothe Ultrack algorithm (Fig. 8a). This approach allowedus to reconstruct lineages spanning the entire time-lapse,capturing diverse cellular events such as migration withinthe organ, cell division, and cell death (Fig. 8b-c andSupp. Video 9).To assess Ultrack’s accuracy, we visually inspected thegenerated lineages and manually corrected any errors,creating ground-truth reference lineages. Using the CellTracking Challenge (CTC) evaluation routines, we quanti-fied Ultrack’s performance (Fig. 8d). Ultrack achieved aTRA (tracking accuracy) score of 0.9989, demonstratingits high precision in this challenging scenario.We compared Ultrack’s performance against Track-Mate,37 using identical Cellpose segmentations as input.To ensure a fair comparison, we first optimized both Ul-track’s and TrackMate’s parameters using a different 50-frame dataset. Key parameters tuned included minimumand maximum cell size and the maximum movement. Wethen applied these optimized settings to the full 500-frame dataset reported here.In this case, Ultrack’s tracking results exhibit a morethan 2-fold reduction in errors (279 vs. 721), with 442fewer mistakes needing manual correction when com-pared to TrackMate. The primary source of errors in Track-Mate’s results stemmed from imperfect Cellpose segmen-tations (Fig. 8d). Despite TrackMate’s segmentation fil-tering options, it struggled to correct issues such as over-segmentation and false merges. In contrast, Ultrack’s ap-proach naturally incorporates these imperfect segmentsinto its hypotheses, allowing for more accurate mergingand tracking (Fig. 8e).These results demonstrate Ultrack’s ability to maintainhigh tracking accuracy in this complex, long-term imagingscenario and, thus, its utility for detailed studies of cellularbehavior and tissue dynamics.
Democratizing high-performance cell tracking at all skill
levels.

Cell tracking software often represents one of the mostcomplex components in image analysis pipelines, primar-ily due to the necessity of handling the time dimension— a factor frequently overlooked in segmentation and
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Fig. 8 | Near-perfect nuclear- and membrane-based 3D tracking of zebrafish neuromast cells. a, Pipeline for joint segmentationand tracking using Cellpose and Ultrack, showing 3D schematics (top) and 2D slice examples (bottom) at each stage: original2-color image, Cellpose segmentation, foreground and contour probabilities, Ultrack segmentation, and tracking results. b,Dendrogram recovered by Ultrack for 71 cells over 500 frames (41.7 hours), with orange lines representing cell lineages and bluehighlights indicating examples detailed next: c, Time-lapse images illustrating cell movement (red outlines), division(yellow/orange outlines), and death (green outlines). d, Quantitative comparison between Ultrack (blue) and TrackMate (pink).The bar chart shows error counts for various metrics, with Ultrack obtaining 442 fewer mistakes than TrackMate. e, Two examplesdemonstrating Ultrack’s robustness to over-segmentation, showing the original image (left), fragmented TrackMate results(middle), and accurate Ultrack segmentation and tracking (right) despite imperfect Cellpose input.

other image processing operations. Moreover, it operateson non-matrix data (i.e. track lineages), where efficientdata processing routines are less prevalent. This complex-ity has historically restricted accessibility to a broad userbase, with only a few longstanding solutions like Track-

Mate37 and others,21, 22, 31 alongside specialized solutionsfor handling larger datasets.24
Ultrack addresses these challenges by offering a ver-satile, user-friendly solution that caters to a wide rangeof users, from biologists with minimal programming ex-
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1 import napari
2 from ultrack import MainConfig, Tracker
3
4 # Load your data
5 foreground = ...
6 contours = ...
7
8 # Create config
9 config = MainConfig()

10
11 # Run tracking
12 tracker = Tracker(config)
13 tracker.track(foreground=foreground, contours=contours)
14
15 # Visualize results in napari
16 tracks, graph = tracker.to_napari()
17 napari.view_tracks(tracks[["track_id", "t", "z", "y", "x"]],
18                    graph=graph)
19 napari.run()

1 # SLURM submission example
2 sbatch --array=0-$DS_LENGTH segment.sh $IN_PATH
3
4 # Path: segment.sh
5 #SBATCH ...
6 ultrack segment $1 -cfg config.toml \
7 -r napari-ome-zarr -cl contours -fl foreground \
8 -b $SLURM_ARRAY_TASK_ID

b
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Fig. 9 | Ultrack’s multi-interface approach enables cell tracking for diverse user needs and computational environments. a,Napari plugin interface showcasing multi-color automatic cell tracking results. The interface includes workflow selection, inputconfiguration, image processing results, segmentation and tracking visualization, workflow settings, and execution control. b, Fijiplugin interface guiding users through workflow selection, input specification, and advanced settings. It also provides executioncontrol and displays Ultrack server logs. c, Example of image data overlaid with cell detections and tracks as viewed in the Fijiinterface. d, A concise Python API example (18 lines) demonstrating data loading, configuration, tracking execution, and resultvisualization in napari. e, Sample SLURM submission script for Ultrack’s CLI, illustrating its integration with high-performancecomputing environments for distributed processing.
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perience to machine learning experts requiring customiz-able inputs. By providing multiple interfaces and scalableprocessing capabilities, Ultrack democratizes access to ad-vanced cell tracking technology, enabling efficient analysisof datasets of various sizes across different computationalresources (see Fig. 1e).
At the heart of Ultrack’s accessibility is its multi-interface approach. Ultrack offers two options for userswho prefer a graphical interface: napari and Fiji. The

napari plugin (Fig. 9a) integrates transparently with thePython ecosystem, providing a comprehensive set of fea-tures for non-coding users. This interface offers graphics-hardware-accelerated pre-processing, vector-field flowcomputation, and full configuration of Ultrack parame-ters. Complementing this, the Fiji plugin35 (Fig. 9b) ex-poses Ultrack’s algorithm to Fiji’s mature ecosystem andbroad user base, allowing seamless integration with exist-ing Fiji workflows and ensuring compatibility with populartools like TrackMate37 and Mastodon.38 Supp. Video 10presents them in action.
For users comfortable with programming, Ultrack pro-vides a user-friendly Python API (Fig. 9c,d) that exposes allof its functionalities, allowing for easy customization andreproducible workflows. This API accepts various arrayformats (numpy, zarr, dask, etc.), and can export data intomultiple file formats, including networkx,77 tables (i.e.,data frames),78 Cell Tracking Challenge,11 and TrackMate37

formats, enhancing its interoperability with other toolsand workflows. Additionally, Ultrack offers a commandline interface (CLI, see Fig. 9e) designed for batch pro-cessing and streamlined workflows, which supports dis-tributed processing in high-performance computing en-vironments. This CLI accommodates any file format sup-ported by existing napari reader plugins, eliminating theneed for data conversion — a crucial feature for handlinglarge datasets.
DISCUSSION
Ultrack advances cell tracking by offering a robust, scal-able solution for analyzing complex cellular dynamicsacross various scales and dimensions. Its integration ofsegmentation and tracking, leveraging multilevel contourmaps (UCMs), enables effective analysis in challengingscenarios where previous methods often struggled.

The method’s versatility is demonstrated through itstop-scoring performance in 3D embryonic cell trackingchallenges, even when using non-learned classical imageprocessing algorithms. This ability to perform well with-out training data or fine-tuning addresses a critical chal-lenge in the microscopy field, where 3D annotations areoften scarce.11 Furthermore, Ultrack’s capacity to com-bine results from parameter sweeps eliminates the com-mon problem of identifying optimal segmentation param-eters. This flexibility extends to working directly with im-

age intensities thus circumventing the need for explicitsegmentation in certain scenarios, for example, virtualstaining of label-free images. This approach is not limitedto label-free imaging such as quantitative phase imagingbut extends to virtually any imaging method – whetherconventional fluorescence microscopy, label-free tech-niques, or virtual staining approaches – that can produceintensity maps highlighting cellular structures such as nu-clei or membranes. By leveraging these intensity-basedrepresentations and employing direct tracking, Ultrack of-fers an adaptable and efficient solution that bypasses theneed for extensive annotation or fine-tuning of segmen-tation models. Ultrack also excels in processing multi-channel data by combining multiple single-channel labels,a feature that, when paired with technologies for engi-neering multi-colored cells,50, 51 promises to enable a newgeneration of high-accuracy lineage reconstruction. Fi-nally, Ultrack addresses challenges associated with lowtemporal resolution through GPU-accelerated flow-fieldregistration between frames, broadening its applicabilityto more experiment designs.
The introduction of a dual-channel sparse labelingapproach for validation offers a more challenging andheterogeneous benchmark compared to previous stud-ies focused on specific cell subsets or biological con-texts.15, 16, 31, 64 This approach paves the way for more ro-bust validation of tracking algorithms over extended peri-ods in large datasets.
Ultrack’s scalability, tested on both high-performancecomputing clusters and laptops, addresses the growingdemand for tools capable of handling increasingly largeand complex datasets produced by advanced imagingtechnologies.1, 6, 7 This flexibility in computational require-ments democratizes access to high-quality cell trackingacross diverse research settings.
Ultrack’s integration with popular platforms like Fiji35

and compatibility with established tracking frameworkssuch as TrackMate37 and Mastodon38 positions it forwidespread adoption. Its multiple interfaces, rangingfrom graphical user interfaces to command-line tools forhigh-performance computing environments, align withcommunity efforts to make complex computational toolsmore accessible to biologists.19, 20, 33, 34, 36, 79
Despite all of this, Ultrack has its limitations, as the seg-mentation hypotheses are only as good as the providedforeground and contour maps. Therefore, despite its ro-bustness to spurious candidate segmentations, when pro-vided with an overwhelming number of incorrect segmen-tations or systematic errors that are consistent over time,the ILP optimization might favor erroneous segments.
Looking ahead, several promising avenues for futuredevelopment emerge: (i) Integration of advanced deep-learning techniques, particularly transformer-based mod-els for sequence prediction,80 could further improve long-
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term tracking accuracy. (ii) Expansion of the sparselabeling approach to generate large-scale, high-qualitydatasets for training and benchmarking future tracking al-gorithms. (iii) Development of interactive correction toolsleveraging Ultrack’s multiple segmentation hypotheses tofacilitate efficient manual curation of tracking results. (iv)Exploration of Ultrack’s potential applications beyond de-velopmental biology, including cancer research, immunol-ogy, and regenerative medicine.In conclusion, Ultrack’s innovative approach for jointsegmentation and tracking, combined with its scalabilityand accessibility, has the potential to accelerate researchacross a wide range of biological disciplines by enablingmore accurate, efficient, and accessible cell tracking. Ul-track opens new avenues for investigating complex cellu-lar behaviors, tissue dynamics, and developmental pro-cesses at unprecedented scales and resolutions.
Supplementary Videos

1. Ultrack intuition and overview;2. Using multiple segmentation hypotheses with tem-poral consistency helps reduce the challenges of pa-rameter tuning;3. Enhanced multi-color cell tracking by integrating seg-mentation results from multiple algorithms;4. Improved cell tracking in label-free imaging by lever-aging virtual staining;5. Enhancing tracking accuracy through temporal regis-tration;6. Visualizing Ultrack’s Cell Tracking Challenge bench-mark results;7. Sparse fluorescence labeling enables high-fidelitytracking validation over extended time-lapses;8. Multi-terabyte cell tracking of zebrafish embryo;9. Near-perfect nuclear- and membrane-based 3Dtracking of zebrafish neuromast cells;10. Ultrack’s guided user interfaces across multiple plat-forms facilitate cell tracking, catering to diverse userneeds and computational environments.
Code and data availability
The repository for the Ultrack python packageand its updated versions are available at https:

//github.com/royerlab/ultrack. The Fiji plugincan be found at https://github.com/royerlab/

ultrack-imagej. The imaging data is accessible at
https://public.czbiohub.org/royerlab/ultrackand https://public.czbiohub.org/royerlab/

zebrahub/imaging/single-objective

METHODS
Animals All zebrafish care and experimental procedurescomplied with protocols approved by the Institutional An-imal Care and Use Committee at the University of Califor-nia San Francisco (UCSF). Adult fish were maintained at

28.5 °C and fed twice daily using an automatic feeder.81
Embryos were raised at 28.5°C, and staged based onhours post fertilization (hpf). For light-sheet microscopyand injection experiments, we used two transgenic lines:tg(h2afva:h2afva-mCherry) (a gift from J. Huisken, Univer-sity of Göttingen) and tg(eef1a1/1:H2b-mNeonGreen) (agift from D. Wagner, UCSF). Zebrafish neuromasts wereimaged using the transgenic line tg(cldnb:lyn-mscarlet) xtg(she:h2b-EGFP).82, 83

Multi-colored cell line generation and imaging. MDA-MB-231 metastatic breast adenocarcinoma cells (ATCC)were maintained in Dulbecco’s Modified Eagle Medium(DMEM, VWR) with 10% (v/v) fetal bovine serum (FBS,Seradigm VWR), and penicillin and streptomycin (50U/mL, ThermoFisher Scientific). Cells were stably modi-fied with a variety of RGB-markings with lentiviral geneontology (LeGO) vector system, as described in Weber et
al..52 Lentivirus was prepared as described in Shah et al..84
In brief, pseudoviral particles were generated using 293TNcells (System Biosciences, SBI) co-transfected with lentivi-ral packaging and envelope plasmids (psPAX and pMD2.G,gifts from Didier Trono), and one plasmid of interestcontaining fluorophore eGFP, mCherry, or EBFP2 (Ad-dgene, #25917, #27339, #85213). Supernatants contain-ing lentivirus were collected, passed through a 0.45 µmfilter, concentrated by ultracentrifugation at 200,000 ×g for 4 hours at 4°C, resuspended in phosphate-bufferedsaline (PBS, VWR), and stored at -80 °C. MDA-MB-231swere transduced simultaneously with all three constructsat equal viral titer and a range of multiplicity of infec-tions (MOI). To optimize color diversity, a fraction of cellsexpressing fluorophore was assessed at five days post-transduction using fluorescent microscopy, and a condi-tion with ≈ 50% transduction rate of all fluorophores(MOI ≈ 0.7) was selected for subsequent experiments.Cells were seeded 12 h before imaging at a density of
≈ 10,000/well on a glass-bottom plate coated with 50
µg/mL rat tail type I collagen (Corning) in 0.02N glacialacetic acid (Sigma) overnight at 4°C. Imaging was per-formed on a Keyence BZ- X800 imaging system equippedwith temperature, humidity, and CO2 control, and imageswere acquired at 10X magnification at ten-minute inter-vals for 2 days.
Microinjection for zebrafish sparse labeling. DNA plas-mids (pMTB-ef1-H2B-mCherry2 gifted by D. Wagner,UCSF) were extracted and purified with a QIAprep SpinMiniprep Kit (Cat. No. 27104). Purified DNA was di-luted to 100 ng/l in water (InvitrogenTM UltraPureTM
DNase/RNase-Free Distilled Water, Cat. No. 10977015)and saved in -20. Zebrafish Tol2 mRNA was prepared us-ing pT3TS-Tol2 plasmids shared by Ekker lab.85 pT3TS-Tol2 plasmid DNA was linearized by the restriction enzymeBamHI digestion. Linearized plasmids were gel-purified
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with a QIAquick Gel Extraction Kit (Cat. No. 28704). The5’-capped mRNAs were synthesized using InvitrogenTM
mMESSAGE mMACHINETM T3 Transcription Kit and pu-rified by lithium included in the kit (ThermoFisher, Cat.No. AM1348). The purified RNA was dried and dissolvedwith 20 l DNase/RNase-Free water. Dilute it to 200 ng/land save it as stock in -70 degrees. Before the experiment,the stocked DNA and RNA were thawed, and 1 µL DNAplus 1 µL RNA was mixed with 3 µL of DNase/RNase-Freewater containing 0.05% phenyl red. For each microinjec-tion, a 4 nL mixture was injected into a single cell of a 4-8 cell stage embryo from the Tg [ef1-H2B-mNeonGreen]strain. All injections were done with an injector (WPIPV830 Pneumatic Pico Pump), and a micromanipulator(Narishige, Tokyo, Japan). 50 to 100 embryos were in-jected for each experiment. The injected embryos areready for mounting and imaging at approximately 4.5 hpf.
Sample preparation for single objective light-sheet mi-
croscopy (DaXi). Embryos are first dechorionated andthen gently embedded into a 1% solution of low-gelling-temperature agarose (Sigma, A0701). The samples arethen transferred in a glass-bottom cell culture dish (35mmCell Culture Dish with Glass Bottom 20mm – Stellar Sci-entific) and positioned at the correct imaging angle usinga custom-made capillary. When solid, the agarose sur-rounding the tail was cut off and removed using a dis-section knife and forceps to permit full development andtail elongation. During the time lapses, the embryos areplaced in an embryo-medium solution with 0.016% tri-caine to prevent embryo movement.
Quantitative phase imaging and virtual staining TheA549 cells were cultured at 37°C and 5% CO2 and main-tained between 20% and 90% confluency. The cells wereseeded on a 12-well glass bottom plate (Cellvis, P12-1.5H-N) and imaged using a wide-field microscope (Leica Dmi8).The quantitative phase volumes are virtually stained us-ing the VSCyto2D model to highlight landmark channel or-ganelles such as the nuclei and cell plasma.57
Simultaneous sparse and ubiquitous labels imaging.Four hours post-microinjection, injected embryos ( 4 hpf)were screened using a Thunder Imager Model Organ-ism (Leica Microsystems). An embryo with 20%-30%H2B-mCherry2 expressing cells (compared to ubiquitousH2B-mNeonGreen cells) was selected and transferred toa glass-bottom petri dish (35mm Cell Culture Dish withGlass Bottom 20mm, Stellar Scientific) containing 0.3xDanieau’s embryo medium. The embryo’s chorion wasremoved using sharp forceps under the same micro-scope. The dechorionated embryo was then gently trans-ferred to a petri dish containing 0.1% low-temperaturemelting agarose (Sigma, A0701) using a glass pipette.Subsequently, the embryo was transferred to FEP tubes(Valco-TFEP130, OD 1/16”, ID 0.03”, Vici Metronics) with

agarose via micropipette through a 200 µl tip (Eppen-dorf). Both ends of the FEP tube were sealed with 2%low-temperature melting agarose to secure the embryo.The tube was placed in the chamber of an adaptive multi-view multi-color light-sheet platform9 using a customizedholder insertion tool filled with low-toxicity silicone (Kwik-Sil™, World Precision Instrument). The mounting systemwas similar to that previously described in Zebrahub,9but with an upside-down mounting direction. The cham-ber was filled with embryo water, which was circulatedwith 0.016% tricaine during imaging. For whole-embryoimaging, the multi-color-interleaved mode was used withan exposure time of 20 ms per channel with the Open-SimView9 microscope. The imaging volume comprised493 z-planes with 1.625 µm z-steps. Images were capturedat 90-second intervals, starting at the shield stage (6 hpf),and ending after 24 hpf.
DaXi microscope parameters. We used our DaXi imag-ing platform6 to perform high-resolution tail developmentimaging (1.0 NA). We use two orthogonal, oblique lightsheets for each time point to improve the image fieldof view coverage. During imaging, the exposure was setto 20ms, the z-step to 1.24ms, the imaging volume wasadapted to each sample, and the time step was around60 seconds. Time-lapse sessions are about 10 hours longand usually cover a developmental window from 1 or 2somites to 27 somites.
Software. The Ultrack package, including its RESTAPI, and additional image analysis routine andplotting were implemented using Blosc, CuPy,
FastAPI, imagecodecs, iohub, httpx, ggplot2,
napari, networkx, Numba, NumPy, Pandas, PyTorch,
scikit-image, SciPy, SLURM, tifffile, traccuracy,
uvicorn, websockets, and zarr.36, 63, 72, 77, 78, 86–92

Datasets Table 2 presents the datasets evaluated in thispaper. While not a requirement, some images of the CellTracking Challenge were upsampled for improved accu-racy.
Light-sheet imaging data pre-processing. Upon acquisi-tion, the imaging data are converted to the ome-zarr for-mat93, 94 using the iohub87 Python package. Next, theraw multi-view images are fused. Phase-cross correla-tion techniques are applied to correct inter-frame move-ments to ensure stability throughout the time-lapse se-quence. In cases where deep-learning methodologies areutilized, image normalization is performed, scaling pixelintensities to the range between 0 and 1 using a user-specified lower and upper quantile, and their backgroundis subtracted using area white top-hat transform. Thesepre-processing routines and other image processing op-erations are implemented and accessible via https://

github.com/royerlab/dexpv2.
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Dataset T, C, Z, Y, X Size (GB) Usage Ref.
YFP-TIA-1 (CTC) 30, 1, 1, 1024, 1024 0.063* Fig. 2 48MDA-MB-231 300, 3, 1, 1440, 1920 2.5 Fig. 3 this workLabel-free 48, 1, 8, 2046, 2003 5.85† Fig. 4 57Beetle proj. (CTC) 135, 13, 2447, 1719 14.76* Fig. 5 64Worm (CTC) 165, 31, 512, 712 3.73* Tab. 1 66Fly (CTC) 50, 125, 603, 1272 9.59* Tab. 1 31Beetle (CTC) 105, 983, 1846, 983 376* Tab. 1 64Sparse zebrafish 522, 2, 505, 2217, 2170 5072 Fig. 6 this workLate zebrafish 791, 1, 448, 2174, 2423 3733 Fig. 7 9Neuromast 500, 1, 73, 1024, 1024 71.3 Fig. 8 this work

Table 2 | List and references of datasets. †: size before 3D to 2D virtual staining. * indicates averaged size and shape. The sizepresented in Fig 1f is regarding the input contour map, which can include projections and upsampling.

GPU-accelerated flow field estimation. Flow field esti-mation of large 3D volumes can be extremely challeng-ing and computationally intensive, often following parti-cle image velocimetry strategies that estimate local trans-lation using phase cross-correlation for small patches ofthe data.61 Instead of maximizing cross-correlation, whichminimizes the mean-squared error between frames givena field in the coordinate space, we employ gradient de-scent to optimize the coordinate space directly. Thischoice, justified by its enhanced computational efficiencyand simplicity, allows for the integration of any differen-tiable function within the coordinate space. The loss func-tion is defined as:
L(θ) = ∥It−1 − grid sample(It, C + θ)∥1 + TV (θ) (1)

where It denotes the frame at time t, C represents theidentity coordinates (i.e. no movement), θ indicates themovement flow field we optimize, and TV denotes theL1 total variation loss on the flow field. The grid samplefunction, a differentiable data sampling method from Py-Torch,63 enables this process. This routine is tailored forspecialized GPU hardware, greatly enhancing processingspeed. The θ optimization is performed for a fixed num-ber of iterations over multiple image resolutions, startingfrom the lowest resolution, which is then used to initializethe next θ optimization stage.
Label conversion to contour and foreground map. Theconversion of multiple segmentation labels into fore-ground and contour maps involves two main processes.For the foreground map generation: (i) each label is trans-formed into a binary map, with non-zero pixels assigneda value of one (foreground) and zero pixels remaining asbackground; (ii) these individual maps are merged intoa single foreground map by taking the maximum valueacross corresponding pixels from all segmentation maps;(iii) this logical OR operation ensures that any pixel be-longing to at least one segment is included in the finalforeground map. For the contour map generation: (i) to

preserve each label and its dual contour, we process eachlabel map to create a binary contour map, where pixelsare set to one if their neighboring pixels have differing la-bels, indicating a boundary; (ii) the final contour map isthen created by averaging these individual binary contourmaps; (iii) this averaging approach, as opposed to summa-tion, keeps pixel values within the 0 to 1 range.
Candidate hierarchical (nested) segmentation. The goalof hierarchical segmentation is to compute a set of nestedpartitions (i.e. segmentations) from a multilevel contourmap, where each level corresponds to a different segmen-tation threshold. While a naive approach resorts to bina-rizing the contour map at each level and computing theconnected components of the binary images, Ultrack em-ploys a more sophisticated and computationally efficientmethod: the hierarchical watershed algorithm.43, 95 Thisalgorithm represents the image as a graph G = (V,E),whereV are the pixels or voxels, andE denotes the edgesconnecting adjacent voxels. It defines a non-decreasingorder of edge weights:

w(p, q) =
I(p) + I(q)

2
(2)

where p, q ∈ E and I(p) is the image intensity at apixel p of a contour map. The algorithm then recoversnested segmentations using a region merging approachbased on Kruskal’s minimum-spanning tree96 and Tarjan’sunion-find algorithms.97 The process begins with an initialsegmentation where each pixel forms its own segment.It then iteratively: (i) selects the minimum unseen edge
(p, q); (ii) merges the segments of p and q if they are notalready in the same segment; (iii) continues until all edgeshave been processed. Importantly, this segmentation pro-cess operates within each connected component of thebinary foreground mask, allowing the algorithm to ignorebackground regions and thereby greatly speeding up theprocess. For further details on hierarchical segmentationprocessing and implementation, see.45
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Candidate segmentation association. For each candi-date segmentation, we compute the potential temporalassociations (i.e., tracks). Let H represent the set of allsegmentations derived from hierarchical segmentations.We define ET as the set of pairs representing potentialassociations between these segmentations, with w(·, ·)denoting their respective weights. The association pro-cess involves the following steps: (i) For each segmenta-tion i ∈ H, where t denotes the time point of segment i,we compute its k-nearest neighbors within a predefinedradius using their centroid coordinates at time t − 1; (ii)These pairs are then included in ET ; (iii) The associationscore between any two segmentations i and j is calcu-lated as w(i, j) = IoU(i, j)γ . Where γ is consistently setto four throughout our study and IoU represents the in-tersection over union between the segmentation masksof i and j.
Segmentation selection and tracking ILP. Given H and
ET , as defined previously, we compute the joint segmen-tation and tracking by solving an integer linear program-ming (ILP) optimization problem. This ILP framework aimsto find the optimal pairing between segments that maxi-mizes their association while adhering to biological con-straints. The ILP is formulated as follows:

argmax
x

=
∑

i,j∈ET

wijxij+∑
j∈H

wαxαj + wβxjβ + wδxδj (3)
s.t. yj =xαj +

∑
i∈Ht−1|i,j∈ET

xij ∀ j ∈ H (4)
yi + xδi =xiβ +

∑
j∈Ht+1|i,j∈ET

xij ∀ i ∈ H (5)
yi ≥xδi ∀ i ∈ H (6)

yi + yj ≤1 ∀ i, j ∈ H | i ⊂ j (7)
yi,xαi, xiβ , xδi ∈ {0, 1} ∀ i ∈ H (8)

xij ∈{0, 1} ∀ i, j ∈ ET (9)
In this formulation, yi indicates whether a segment is se-lected, and xij indicates the selected associations, xαi,
xiβ and xδi are slack variables indicating an appear-ing, disappearing and dividing cell, respectively. Eq. 3 isthe objective function to maximize the association be-tween segmentations. The first term in the objectivefunction represents the weight of segmentation associ-ations, whereas the subsequent terms account for ap-pearance, disappearance, and division events, which areuser-defined non-positive penalization weights. Eq. 4 andEq. 5 ensure flow conservation, stipulating that an ap-pearance, division, or incoming association must corre-spond to at least an outgoing association or a cell disap-pearance. Eq. 6 restricts cell division to pre-existing cells,

and Eq. 7 prevents selecting overlapping segmentations,thereby enforcing that each pixel is uniquely selected.
Tracking evaluation metrics. The evaluation scores werecalculated using official binaries from the Cell TrackingChallenge (CTC) for datasets submitted to the competi-tion. Additional calculations were performed using the
traccuracy Python package.98 The TRA metric quanti-fies the cost-effectiveness of editing a predicted lineageinto the reference lineage, divided by the cost of con-structing the lineage from scratch, AOGM0. This is math-ematically defined as:

AOGM =wNSnNS + wFNnFN + wFPnFP

+ wEDnED + wEAnEA + wECnEC (10)
TRA =1− min(AOGM,AOGM0)

AOGM0
(11)

where nNS represents the number of node splits (i.e.undersegmented cells), nFN and nFP are false negativeand false positive nodes respectively, nED and nEA de-note false positive and negative edges, and nEC repre-sents nodes with incorrect semantics. The weights are setas follows: wNS = 5, wFN = 10, wFP = 1, wED = 1,
wEA = 1.5, and wEC = 1, emphasizing the greater com-plexity in correcting missing units compared to deletingextra. For further details, refer to Matula et al.49 Thecombined CTC score averages the TRA and SEG scores.The SEG score calculates the average intersection overunion (Jaccard index) across all segmentation instances.A ground-truth (gt) segmentation instance, Gj , is pairedto a predicted instance Pi if:

|Pi ∪Gj | > 0.5|Gj | (12)
This criterion ensures that the overlap between the pre-dicted and gt instances is at least half the size of the gt in-stance, guaranteeing a single match per gt instance. Thesame criterion matches nodes in the AOGM metric cal-culation.On the multi-color and label-free cell culture experi-ments where not all lineages are annotated, we appliedthe recommended CTC protocol, where the first frame ofthe ground truth is provided to indicate which lineagesshould be kept, all the remaining lineages are removed,and the CTC metric is computed between this subset oflineages and the annotated data.

Zebrafish sparse tracking evaluation metrics. The sparsetracking data evaluation uses implementation from thePython package linajea.24 The metrics are the propor-tion of different types of mistakes over the total num-ber of edges (i.e. connections between cells of adjacentframes) of the ground-truth data. Because the data issparse, only a subset of metrics are valid estimates for theremaining unlabeled data, them being:• FN: Proportion of false negative (i.e. missing edges);• IS: Proportion of identity switches (i.e. edges associ-ating incorrect cells);
20
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• FP-D: Proportion of false positive divisions (i.e. fakedivision) within a 1-frame tolerance.• FN-D: Proportion of false negative divisions (i.e. miss-ing division) within a 1-frame tolerance.• sum: the sum of all the above.
Color features association. The image intensity informa-tion can be used to filter out segments between adjacentframes that are unlikely to represent the same cell. To dothat, we compute a normalized distance between the av-erage intensities of segments; if this distance exceeds apredefined threshold z, their association is excluded fromthe tracking Integer Linear Programming (ILP) formula-tion. Specifically, the relationship must satisfy the follow-ing conditions:

max

∣∣∣∣µi − µj

σj

∣∣∣∣ ≤ z (13)
where µj is the mean intensity vector within the mask ofa segment Sj at time t and σj the standard deviation, theoperations are done element-wise and max results in ascalar from it. Here, compared to a neighboring segment
Si at t− 1. The threshold z was set to 3.0 throughout themulti-color experiments.
Fiji plugin and Python interoperability. Fiji35 is a Java-based software that can be extended through pluginsdeveloped in the same language. To integrate Ultrackwith Fiji, we developed a RESTful API99 using the FastAPIframework,88 facilitating communication between Javaand Python. This API employs websockets100 for persis-tent communication, enabling real-time event logging andoutput streaming from Ultrack to Fiji. We created a graph-ical user interface (GUI) in Java that serves as a Fiji plugin,leveraging the API provided with the Ultrack Python pack-age. This interface grants access to features and function-alities of both systems. The GUI components and user ex-perience are implemented using the Bootstrap 5101 front-end framework. To promote broader interoperability, Ul-track adheres to API specifications detailed in our docu-mentation (https://royerlab.github.io/ultrack/
rest_api.html), allowing integration with various pro-gramming languages beyond Java and Python.
Napari plugin. Napari36 is a Python library for n-dimensional image visualization, annotation, and analy-sis. It features a GUI built with Qt,102 which is extensi-ble with Qt primitives in Python. We developed a cus-tom plugin for Napari integration that still scales withlarge datasets. In addition to the tracking standard work-flow, the plugin offers basic preprocessing operations tofit most users’ needs, which can benefit a significantspeedup from GPUs, if any are available. Ultrack’s param-eters can be tuned through the GUI. The processing runsin the background in a separate thread, and for that rea-son, the intermediate results can be visualized using thenative Napari viewer. By the tracking execution finish, theresults can be exported to several formats, such as Track-

mate,37 NetworkX graph,77 and Zarr array.
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