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Abstract: Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes 

(mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using 

ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, 

solvent superficial velocity and matrix initial composition was evaluated. Moreover, the 

yield of the extraction was compared with that obtained with other supercritical solvents 

(supercritical CO2 and a near critical mixture of ethane and propane). The recovery of  

all-E-lycopene increased with pressure, decreased with the increase of the particle size in 

the initial stages of the extraction and was not practically affected by the solvent superficial 

velocity. The effect of the temperature was more complex. When the temperature increased 

from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a 

further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z 

isomerization could have occurred, as well as some degradation of lycopene. The recovery 

of all-E-lycopene was almost the same for feed samples with different all-E-lycopene 

content. Furthermore, when a batch with a higher all-E-lycopene content was used, 

supercritical ethane and a near critical mixture of ethane and propane showed to be better 

solvents than supercritical CO2 leading to a faster extraction with a higher recovery of  

the carotenoid. 
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1. Introduction 

Carotenoids include more than 750 compounds, representing one of the major natural coloring 

groups, that are responsible for the yellow, orange and red colors of many fruits, vegetables, flowers, 

fungi, algae and some animals. Lycopene is a lipid soluble carotenoid (C40H56) which presents Z-(cis) 

and E-(trans) geometrical isomers due to the presence of the methyl groups bonded to a polyenic 

chain. It is responsible for the red color of tomato and its based products, being the major carotenoid 

present in this fruit. Other available natural sources of this compound include watermelon, apricot, 

papaya, guava, pink grape-fruit, pumpkins and rosehip fruit [1–5]. On the other hand, some 

microorganisms have been reported in the last years as a promising source of this carotenoid [6,7]. 

Lycopene’s major commercial use is as a colouring agent in the feed, food, nutraceutical and 

pharmaceutical industries [8], although its biological properties, as anti-oxidant and anti-carcinogenic 

agent, have been gaining increased attention in the last decade [9]. Due to this fact, lycopene 

consumption is strongly recommended for reducing the risk of atherosclerosis, coronary heart diseases 

and some types of cancer [10].  

Commercially available lycopene is mainly obtained by extraction and purification of tomatoes 

using hexane and ethyl acetate as solvents or by chemical synthesis [11], although some  

lycopene-producing microorganisms are also being used on a smaller scale [6,7]. Lycopene content in 

tomatoes can vary greatly, depending on environmental factors, agricultural techniques and tomato 

types [12,13], with values ranging between 10 and 200 mg/kg (wet basis). Most of the compound is 

located in the insoluble fraction with the skin containing five times more lycopene than the  

pulp [10,14,15]. On the other hand, the lycopene bioavailability increases with cooking (heating) and 

smashing of the vegetable matrices [16]. 

Tomato industries produce large amounts of solid wastes, up to 3–4% of the processed fruit [17], 

consisting mainly of skins and seeds. As a consequence, most of the original lycopene in tomatoes is 

wasted. On the other hand, these solid residues are frequently used, without further treatment, as 

animal feed. Therefore, the extraction of this valuable compound could be a good alternative to the 

valorization of this by-product [18,19]. 

Supercritical fluid extraction of compounds with interest in the food and nutraceutical industries  

has received increased attention in the past three decades. It presents important advantages over the 

conventional organic extraction, such as reducing the use of toxic solvents, the possibility to work at 

moderate temperatures avoiding thermal degradation of the carotenoids, obtaining a solvent free 

extract, higher selectivity and in some cases higher yields. Carbon dioxide is the most used 

supercritical solvent due to its well described properties [20], but other solvents like ethane or propane 

have also being successfully applied [21,22]. The use of ethane instead of CO2 as supercritical solvent 

for the food industry may offer several advantages, since ethane, although being more expensive than 

CO2, has a low critical temperature, near that of supercritical CO2 and a low critical pressure (305.4 K 

and 48.2 atm [23]) which will allow reducing the energy costs associated to the process [21]. On the 

other hand, ethane is an apolar solvent, with a higher polarizability than CO2 [20], which makes it 

presumably a better solvent for the type of carotenoids found in tomato. 

Supercritical fluid extraction of lycopene from tomato industrial wastes has been recently proposed 

as an alternative technology [24–32]. Baysal et al. [25] studied the extraction of lycopene and 
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-carotene from the by-products of the tomato industry, using supercritical CO2. These authors 

evaluated the effect of pressure, temperature, time of extraction, solvent flow-rate and addition of  

co-solvent (ethanol).The maximum recovery of lycopene, 54%, was obtained at 55 °C and 300 bar 

with the addition of 5% (vol.) ethanol as co-solvent. Rozzy et al. [24] also extracted lycopene from 

tomato residues with supercritical CO2 and obtained as best extraction conditions 56 °C and 344.7 bar, 

obtaining 61% of the total lycopene. Sábio et al. [28] obtained a recovery of lycopene of 80%, from 

the skins and seeds of tomatoes, using supercritical CO2 at 60 °C and 300 bar. Ollanket et al. [31] 

achieved 100% recovery of lycopene with supercritical CO2 at 110 °C and 400 bar. Favati et al. [26] 

obtained a recovery of 64% of lycopene from industrial tomato wastes using supercritical CO2 

modified with sunflower oil, at 80 °C and 500 bar. Furthermore, Vasapollo et al. [27] extracted a 

maximum of 60% of lycopene from tomato with CO2, at 450 bar and 66 °C, using hazelnut oil as  

co-solvent. The published data show that supercritical fluid extraction is suitable for the extraction of 

lycopene from tomato industrial wastes. Nevertheless, to the best of our knowledge, none of the 

published studies deals with the use of ethane as supercritical solvent.  

The objective of this work was to study the effect of several parameters (pressure, temperature, 

solvent superficial velocity, particle size and matrix initial composition) on the extraction of  

all-E-lycopene from tomato industrial wastes using supercritical ethane. The comparison of the 

recovery of all-E-lycopene using other solvents (supercritical CO2 [32] and a near critical mixture of 

ethane and propane) was also carried out. 

2. Results and Discussion 

2.1. Effect of Matrix Composition 

Two tomato paste waste matrices, M1 and M2, with different all-E-lycopene contents (M1—127 g/g 

dry matter; M2—213 g/g dry matter), were submitted to supercritical ethane extraction at temperature 

of 60 °C, pressure of 300 bar and solvent superficial velocity of 1.44 cm/min.  

Figure 1 shows the recovery (mass of extracted compound by supercritical fluid extraction/mass of 

extracted compound by Soxhlet × 100) of all-E-lycopene from the two matrices, M1 and M2. It can be 

seen that the recovery of all-E-lycopene is almost the same for both matrices. This behavior is different 

than that obtained with supercritical CO2, in which matrices with higher lycopene content showed a 

slower extraction rate and a lower recovery of the carotenoid [32]. The extraction curves show that in 

the first period of the extraction (when the process is possibly controlled by the equilibrium between 

the supercritical ethane and the solutes in the solid matrix) almost all the lycopene is extracted. The 

higher solubility of lycopene in ethane (when compared with that in CO2) will allow a faster 

extraction. For the matrix with higher lycopene content possibly a higher amount of lycopene is 

accessible to the solvent and so more carotenoid will be extracted.  
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Figure 1. Recovery of all-E-lycopene as a function of ethane amount, at 60 °C, 300 bar, 

matrix particle size of 0.36 mm and solvent superficial velocity of 1.44 cm/min, for the two 

tomato waste matrices tested (M1 and M2). 

 

2.2. Effect of the Supercritical Solvent 

The sample of tomato paste waste M2 was also submitted to supercritical fluid extraction using 

supercritical CO2 [32] and a near critical mixture of ethane and propane. In Figure 2 the obtained 

recoveries are shown. It was verified that the mixture of ethane/propane led to the higher recovery 

(about 100%) of all-E-lycopene, followed by ethane (90%) and CO2 [32] (86%). Also the extraction 

was faster when ethane and the mixture of ethane and propane were used. This behavior could be 

explained in terms of the solubility of the compound in the supercritical solvent which will be higher 

in ethane and in the mixture of ethane + propane than in CO2. Suogi et al. [29] carried out supercritical 

fluid extraction of lycopene from tomato industrial wastes using CO2 and propane as solvents and 

verified that the extraction using propane required a lower amount of solvent than that using CO2. 

Furthermore, it was possible to work at lower pressures with the former solvent. On the other hand, 

Nobre et al. [33,34] found also that supercritical ethane and near critical mixtures of ethane and 

propane were better solvents for β-carotene (a structural isomer of lycopene) than CO2. Moreover, the 

solubility of this carotenoid increased with the amount of propane in the mixture of solvents.  

2.3. Effect of the Pressure and Temperature 

The effect of pressure on the recovery of the extraction was also studied. In Figure 3 is represented 

the recovery of all-E-lycopene from matrix M2, at temperature of 60 °C, superficial velocity of  

1.44 cm/min and pressures of 120, 200 and 300 bar. It can be seen that the recovery increases with 

pressure and rises drastically when the pressure increases from 200 to 300 bar, which is expected due 

to the increase in the solvent density with pressure. Also, the extraction is much faster at the highest 

pressure. This could possibly be due to the fact that the extraction of carotenoids occurred only after 

most of the lipids, mainly triglycerides, were extracted at 200 bar. 
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Figure 2. Recovery of all-E-lycopene from sample M2 as a function of solvent amount,  

at 60 °C, 300 bar, matrix particle size of 0.36 mm and solvent superficial velocity of  

1.44 cm/min, for the solvents tested. 

 

Figure 3. Recovery of all-E-lycopene from sample M2 as a function of solvent amount, at 

60 °C, solvent superficial velocity of 1.44 cm/min and matrix particle size of 0.36 mm for 

the several pressures tested. 

 

The effect of temperature in the recovery of all-E-lycopene was also studied and the results, 

expressed as recovery of all-E-lycopene versus temperature are represented in Figure 4. It is shown 

that the recovery of the carotenoid increased slightly when the temperature increased from 40 to 60 °C 

and remained almost the same with a further rise of the temperature to 80 °C. That increase is possibly 

due to some all-E- > Z isomerization occurred at the higher temperature used, since the supercritical 

extracts showed a higher amount of the Z isomer at this temperature. 
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Figure 4. Recovery of all-E-lycopene from sample M2 as a function of solvent amount, at 

300 bar, solvent superficial velocity of 1.44 cm/min and feed particle size of 0.36 mm, for 

the several temperatures tested. 

 

2.4. Effect of the Solvent Superficial Velocity and Particle Size 

To study the effect of the ethane superficial velocity through the extractor, supercritical fluid 

extraction experiments were carried out at the temperature of 60 °C, pressure of 300 bar, mean particle 

size of 0.36 mm. Three different solvent superficial velocities were used: 0.63, 1.44 and 2.58 cm/min.  

In Figure 5 are shown the obtained recoveries of E-lycopene as a function of the solvent amount.  

It can be observed that the final recoveries are independent of the three supercritical ethane flowrates, 

although, in the initial period of extraction the recovery increases slightly when the flow rate decreases. 

Figure 5. Recovery of all-E-lycopene from sample M2 as a function of solvent amount, at 

60 °C, 300 bar and matrix particle size of 0.36 mm for the several solvent superficial velocities. 

 

Moreover, the effect of the particle size on the supercritical extraction behaviour was also studied. 

Three different mean particle size samples of the tomato paste waste (0.15, 0.36 and 0.56 mm) were 

used in supercritical fluid extraction with ethane at 60 °C and 300 bar.  

In Figure 6 the recoveries of all-E-lycopene are shown as a function of the solvent amount. It was 

found that the final recovery of all-E-lycopene is practically independent of the particle sizes used in 

this work. The reduction of size increased the particle surface area and also can cause ruptures of the 
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cell walls becoming the all-E-lycopene more accessible to the supercritical solvent in the initial stages 

of extraction. 

Figure 6. Recovery of all-E-lycopene from sample M2 as a function of solvent amount, at 

60 °C, 300 bar and solvent superficial velocity of 1.44 cm/min, for the several matrix 

particle sizes tested. 

 

3. Experimental 

3.1. Materials 

Ethane (99.998% purity) was purchased from Air Liquide (Lisbon, Portugal). A solvent mixture of 

ethane and propane (99.995% purity) with 50%/50% (mole) was obtained from Praxair (Lisbon, 

Portugal). Tomato industrial wastes (a mixture of skins and seeds) were offered by a local tomato 

processing company: Fomento da Industria do Tomate SA — FIT. Lycopene standard (90–95% purity) 

was purchased from Sigma-Aldrich Chemie Gmbh (Steinheim, Germany). Acetone (p.a.), methanol 

(HPLC grade), acetonitrile (HPLC grade), and n-hexane (p.a) were obtained from Merck (Damstadt, 

Germany).  

3.2. Sample Preparation 

Two samples of tomato industrial waste were used, M1 and M2. The samples were collected in 

different occasions and from different types of tomato. Both samples were dried in an oven at the 

temperature of 40 °C up to a moisture content of 4.6%. The dried tomato pastes were then packed 

under nitrogen and stored at −20 °C. The product was ground prior to the supercritical fluid extraction 

measurements using a cutting mill and samples with mean particle size of 0.15, 0.36 and 0.56 mm 

were used for batch M2 and with particle size of 0.36 mm for batch M1. The amount of all-E-lycopene 

of the tomato waste was determined by Soxhlet extraction of 1 g of ground tomato waste using as 

solvent a mixture of acetone:hexane (1:1) for 6 hours and quantified by HPLC. The values obtained 

were: 127 g/g dry matter for matrix M1 and 213 g/g dry matter for matrix M2. 
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3.3. Experimental Procedure 

The supercritical measurements were carried out with a flow-type apparatus for the extraction of 

carotenoids from microalgae, whose details were described before [35]. In this apparatus, the metering 

pump compresses the liquid solvent to the desired pressure, which was controlled by a back-pressure 

regulator. In order to guarantee that the fluid reaches the extraction vessel at the desired temperature, 

the fluid passed through a heat exchanger immersed in a temperature-controlled water bath. After 

passing the extraction vessel the fluid was expanded to atmospheric pressure through a three-way 

valve, and the extract precipitates in the glass wool placed inside a glass U-tube, which was immersed 

in an ice and salt (NaCl) bath at the temperature of −21 °C. The total time of extraction varied between 

3 to 8 h Gas flowrate was monitored by a rotameter and the total volume of gas was measured with a 

wet test meter. The 5 mL extraction vessel had an internal diameter of 7.9 mm, being filled with about 

1.5 g of tomato industrial wastes, packed between two layers of glass wool. 

Fractions of 5 to 10 L of expanded gas were collected along the time. Three solvent superficial 

velocities were tested: 0.63 cm/min, 1.44 cm/min and 2.58 cm/min (flowrate of 0.16, 0.27 and 0.41 g/min). 

The extracts were collected by washing the glass wool, the inside of the three-way valve and the 

expansion tubing with acetone. The collected solutions were analyzed by HPLC in order to quantify 

the amounts of extracted lycopene. The HPLC system consisted of a Hewlett Packard 1100 series liquid 

chromatograph, with a UV/VIS detector adjusted to 470 nm. A mobile phase of methanol-acetonitrile 

(90:10 v/v) was used at 1 mL/min with the reversed phase column, 250 × 4.6 mm, Vydac 201 TP54. 

All-E-lycopene was identified by comparing the retention times of the carotenoid with those of the 

standard compound, which was also used to obtain calibrations curves, in order to determine the total 

amounts of all-E and Z-lycopene. In Figure 7A,B are shown the chromatograms obtained for the 

Soxhlet and supercritical fluid extracts, respectively. 

Figure 7. HPLC chromatograms of (A) Soxhlet extract; (B) supercritical fluid extraction 

extract (conditions: 60 °C, 300 bar, 0.36 mm and 1.44 cm/min). 1-lutein, 2-all-E-beta-carotene, 

3-Z-beta-carotene, 4-Z-lycopene, 5-all-E-lycopene.  

 

A 
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Figure 7. Cont. 

 

4. Conclusions 

Tomato industrial wastes (mixture of skins and seeds) were submitted to supercritical ethane in 

order to extract all-E-lycopene. The recovery of this carotenoid increased with pressure, decreased 

with the increase of particle size in the initial period of the extraction and was independent of the 

solvent flow rate. The increase in temperature from 40 to 60 °C leads to an increase in the recovery of 

all-E-lycopene. However, for a higher temperature, 80 °C, the recovery remained almost the same, 

indicating that possibly some all-E-Z isomerization (and also some degradation) could have occurred. 

On the other hand, the recovery of lycopene was almost the same for samples with different 

lycopene content. Furthermore, supercritical ethane and the near critical mixture of ethane and propane 

showed to be better solvents than supercritical CO2, leading to a faster extraction and a higher recovery 

of the carotenoid. 
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