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More recently, lower limb exoskeletons (LLE) have gained considerable interests in

strength augmentation, rehabilitation, and walking assistance scenarios. For walking

assistance, the LLE is expected to control the affected leg to track the unaffected

leg’s motion naturally. A critical issue in this scenario is that the exoskeleton system

needs to deal with unpredictable disturbance from the patient, and the controller has

the ability to adapt to different wearers. To this end, a novel data-driven optimal control

(DDOC) strategy is proposed to adapt different hemiplegic patients with unpredictable

disturbances. The interaction relation between two lower limbs of LLE and the leg of

patient’s unaffected side are modeled in the context of leader-follower framework. Then,

the walking assistance control problem is transformed into an optimal control problem.

A policy iteration (PI) algorithm is utilized to obtain the optimal controller. To improve the

online adaptation to different patients, an actor-critic neural network (AC/NN) structure

of the reinforcement learning (RL) is employed to learn the optimal controller on the basis

of PI algorithm. Finally, experiments both on a simulation environment and a real LLE

system are conducted to verify the effectiveness of the proposed walking assistance

control method.

Keywords: walking assistance control, reinforcement learning, leader-follower multi-agent system, lower limb

exoskeleton, hemiplegic patients, actor-critic neural network

1. INTRODUCTION

With the increasing requirement of accomplishing complex or difficult tasks in the fields of
industry and human daily life, wearable devices/robots have attracted more attentions (Fang et al.,
2018, 2019). As one of wearable devices, the lower limb exoskeleton (LLE) integrates artificial
intelligence technologies, control and robotic theory, and has become a hot topic own to its practical
applications. Note that so many injuries caused by neuromuscular diseases, and accidents reduce
the walking ability, most assistive exoskeletons are developed to aid paraplegic patients (Dollar and
Herr, 2008; Strausser and Kazerooni, 2011). On the other hand, stroke has gradually become a
global health-care problem, which inspires many researchers to pay attention to walking assistance
or rehabilitation case for hemiplegic individuals (Ho et al., 2011; Bortole et al., 2015; Iqbal and
Baizid, 2015; Louie and Eng, 2016).

From the functions point of views, the LLE can be categorized in three classes of applications,
namely, strength augmentation (Walsh et al., 2006; Huang et al., 2016, 2019), walking
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assistance (Esquenazi et al., 2017; Zhang et al., 2017), and
rehabilitation (Sankai, 2010; Huo et al., 2014). For strength
augmentation, the wearers usually have walking ability, and the
influence of human-robot interaction force should be considered
in the controller designs. For walking assistance case, one
usually uses the LLE to assist patients’ walking/training in which
the patients lose their ability to walk. Thus, LLE has served
as a device for rehabilitation/walking training with paraplegia
and hemiplegia. In recent, some researchers have introduced
biological signals of human body into the controller designs, such
as Electromyography signal (EMG) (Kiguchi et al., 2004) and
Electroencephalogram signal (EEG) (Kilicarslan et al., 2013).

In the early research works of rehabilitation and gait recovery
of hemiplegia, researcher proposed Ankle-Foot Orthosis (AFO)
to achieve good recovery performance (Tyson and Thornton,
2001; Fatone et al., 2009). In order to provide active power
assistance for hemiplegic patients, many powered orthosis with
activemotors have been developed, such as active AFO developed
by Blaya and Herr (2004) and Series Elastic Remote Knee
Actuator (SERKA) developed by Sulzer et al. (2009). However,
these kinds of orthosis are designed for repairing local motion
function of hemiplegic patients in particular scenarios, such as
the SERKA is design for stroke patient with stiff-knee gait (SKG).

For the assistance control problem of LLE with hemiplegia,
one usually focus on how to derive the LLE to generate a normal
motion that aid the patients walking or recovering (Maciejasz
et al., 2014; Hassan et al., 2018). Sankai developed a single leg
exoskeleton system for hemiplegic patients based on the Hybrid
Assistive Limb (HAL) (Kawamoto et al., 2009). For the studies on
the HAL system with single leg case, motion information of the
unaffected side is generated to synchronize gait of the affected
side (Kawamoto et al., 2014). Note that the single leg based
HAL system should be re-designed as the wearer has different
disabled side. In Fisher et al. (2011), a powered exoskeleton
was used to improve patients with hemiparesis walking function
via robot assisted gait training. In Murray et al. (2014), the
authors proposed a control approach of a LLE to provide
walking assistance, without giving desired joint angle trajectory,
for facilitating recovery. More recently, the walking assistance
control problem for a LLE with hemiplegia was investigated via a
learning-based control method (Huang et al., 2018).

In most of the existing relevant works, the case of disturbances
caused by system or external environment has not been
taken into consideration in the designs of controllers. In fact,
disturbances caused by system or external environment will affect
the control performance of system, which should be considered
in controller designs. On the other hand, the precise system
dynamics of exoskeleton is difficult to establish, which decreases
the control performance of the model-based methods in real
systems. To solve this issue, the system identification is needed
that would introduce new approximation errors. Therefore, the
motivation of this paper aims to address these problems.

Motivated by the above-mentioned discussions and
observations. In this paper, a data-driven optimal control
(DDOC) strategy is proposed for walking assistance of lower
exoskeleton with hemiplegic patients. First, the interaction
communications between the both two low limbs of LLE and

hemiplegic patient are modeled as a leader-follower multi-agent
system (LFMAS) framework. Then, a policy iteration (PI)
algorithm is employed to compute the optimal assistance
controller. Further, in order to improve adaptive performance
for walking assistance with different hemiplegic patients, a
RL method, called actor-critic neural network (AC/NN), is
proposed to achieve better control performance, where the
learning process only relays on measurement data from the LLE
system. The main contributions of this paper can be summarized
as follows:

1. Different from most of the existing control method which is
designed in a model-based fashion, a DDOC strategy based
on PI algorithm is proposed to learn the optimal assistance
controller for walking. The proposed method is designed in a
model-free manner without the requirement of the complete
knowledge about the accurate dynamics of the exoskeleton
system and system identification.

2. An adaptive online-learning based AC/NN structure is
employed for the implementation of the controller design,
which aims to perform adaptability performance for different
patients and achieve good robust against disturbances.

Moreover, the proposed DDOC method is validated through
a two degree-of-freedom (2-DOF) simulation environment,
and then it is successfully applied on a real LLE system
with healthy subjects who simulate paraplegia. Both simulation
and experimental results verify that the proposed control
approach has robustness performance against disturbances and
has adaptive ability for different wearers or even the same wearer
with different gait patterns.

The rest of this paper is organized as follows. In section 2,
the modeling process of LFMAS for exoskeleton system with
hemiplegic patients is established, the system dynamics of the
exoskeleton and problem formulation are given. Then, section 3
proposes the PI based optimal assistance controller designs.
Section 4 proposes the data-driven adaptive control strategy by
making using of RL framework on the basis of the PI algorithm.
In section 5, the proposed control methods are illustrated in
simulation scenario and is applied to an actual exoskeleton
system with healthy people who simulate hemiplegic patients in
section 6. Section 7 gives the conclusions and future work.

2. MODELING AND PROBLEM
FORMULATION

In this section, the modeling process for the LLE with hemiplegic
patients, namely LFMAS, is given to describe the interaction
relations among both lower limbs of LLE and patients’ legs. An
information exchange rule is introduced for the LFMAS. Then,
the system dynamics and control problem are formulated.

2.1. Modeling Exoskeleton System as
LFMAS
In this paper, the focus is aim at designing an adaptive assistance
controller of a LLE system with both lower extremities to assist
hemiplegic individual walking. It should be noted that, for
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FIGURE 1 | The modeling of Leader-Follower Multi-Agent System. (A) The

schematic diagram of the LFMAS (The notations 0, 1, and 2 denote leader,

follower 1, and follower 2, respectively). (B) Communication topology network

of the LFMAS structure.

hemiplegic patients, one of the two legs usually loses walking
ability and the other one is normal. Therefore, before introducing
the controller designs, it is necessary to tackle how to model the
interaction relations among them appropriately such that both
low limbs and the LLE can achieve their mutual communication.

In light of the cooperative distributed control, leader-

follower mechanism has been wildly utilized in multi-agent
systems control (Hu and Feng, 2010), where the main idea is
that information interactions among agents are achieved in a
distributed way. In this paper, this mechanism is extended to
model the unaffected leg of the hemiplegic patients and the
both lower extremities of exoskeleton as a LFMAS, where the
structure of the LFMAS for exoskeleton system with hemiplegic
individuals is illustrated in Figure 1A. That is, the exoskeleton
with hemiplegia is divided into three components: one leader
agent and two follower agents. In other words, the unaffected
leg of patient is regarded as the leader of LFMAS, equipped with
an Inertial Measurement Unit (IMU) sensors for measuring its
joints’ states. Furthermore, both two lower extremities of the LLE
system are defined as two follower agents, i.e., follower 1 and
follower 2 which can be described as follows:

1. Follower 1 is the exoskeleton leg of unaffected side, which
synchronizes the leader agent’s (unaffected side of patient’s leg)
motion immediately.

2. Follower 2 is the other side of exoskeleton’s limb with the
disabled leg of patient, the patient’s disabled leg is tightly
connected with the exoskeleton.

In the framework of LFMAS, it should be pointed that there is
a phase difference between the motion of the affected side and
the unaffected side, naturally, In other words, follower 1 first
synchronize to the leader’s motion trajectory and then follower
2 is expected to track to the leader’s trajectory motion after half
gait cycle interval.

To guarantee walking assistance control performance, on the
basis of LFMAS, the information interaction scheme should be
designed for both lower extremities and patient’s legs, which
means that the information/data (LLE’s state and control signal)
can be transmitted among them. To this end, the following gives
an information exchange rule to describe the evolution of the
agents’ communication.

(i) Information Evolution Rule: The information update for
follower agent i (i = 1, 2) includes combining its own
information with those received from its neighbors, and
Leader can transmit its information to Follower. Assume that
each agent has a weight vector ai = [aij], in which each
element aij represents that agent i assigns to the information
obtained from a neighboring agent j. Figure 1B denotes
the communication topology network between agents where
arrows indicate the direction of information flow.

(ii) Weight Rule: LetN(i) be the neighbors set of the ith Follower
agent. For arbitrary i ∈ {1, 2}, if j ∈ N(i), aij > 0; if j /∈ N(i),
aij = 0. Let

∑

j∈N(i) aij = di be the sum of the neighbors’

weights for agent i.

2.2. Dynamics Model of LLE System
In this paper, the dynamics of the LLE system is described as a
second-order nonlinear mechanical system (i.e., Euler-lagrange
system). Therefore, the dynamics of the both lower extremities,
i.e., follower 1 (i = 1) and follower 2 (i = 2) of the exoskeleton
are described as follows:

Hi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi, i = 1, 2 (1)

where qi = (qih, qik)
⊤ ∈ R2 denotes the joints’ angle of

the LLE, qih and qik represent the hip joint and knee joint,
respectively. Hi(qi) denotes inertia matrix, Ci(qi, q̇i) represents
the centripetal and coriolis matrix. Gi(qi) denotes the gravitation
term, τi = (τiu, τid)

⊤ are the input torques generated by up and
down motors for hip and knee joint. Further, we can rewrite
Equation (1) as a state-space form:

[

q̇i
q̈i

]

=

[

q̇i
−Hi

−1(Ciq̇i + Gi)

]

+

[

0

Hi
−1

]

τi

or equivalently,

η̇i(t) = fi(ηi(t))+ gi(ηi(t))ui, (2)

where ηi(t) = [q⊤i , q̇
⊤
i ]
⊤, gi(ηi(t)) =

[

0

Hi
−1

]

, fi(ηi(t)) =
[

0 I
0 −Hi

−1Ci

]

ηi(t)+

[

0

−Hi
−1Gi

]

, τi = ui.

The dynamic of the leader (the motion trajectory of patient’s
unaffected leg) is given by:

η̇r(t) = f (ηr(t)), (3)

where ηr(t) indicates the joint angle collected from human via an
IMU sensors matched on the pilot’s leg.
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2.2.1. Design Objective
The goal is to generate the controller strategy ui to ensure the
trajectory ηi(t) generated by Equation (2) can track the trajectory
ηr(t) in Equation (3). That is, it is desired to make the following
tracking error index go to zero:

lim
t→∞
‖ηi(t)− ηr(t)‖ = 0. (4)

In order to achieve control objective, the local neighbor tracking
errors of dynamics (2) for follower i are defined as

ξi(t) =
∑

j∈N(i)

aij(ηi(t)− ηj(t))+ ci(ηi(t)− ηr(t)), (5)

where N(i) and aij have been defined in section 2.1. ci > 0
denotes the pinning gain, which means agent i can obtain the
Leader’s information.

Taking the derivation of Equation (5), combining Equation (2)
and Equation (3), the dynamics of the tracking errors are
written as

ξ̇i(t) = fξi + (di + ci)gi(t)ui(t)−
∑

j∈N(i)

aijgj(t)uj(t), (6)

where fξi (t) =
∑

j∈N(i) aij(fi− fj)+ ci(fi− f ), di indicates the sum

of the weights of the ith follower agent.

3. POLICY ITERATION BASED
CONTROLLER

Based on the system modeling and problem formulation, in
this section, the walking assistance control problem will be
transformed to an optimal control problem by introducing local
cost functions and using optimization theories. Then, the state-
of-the-art algorithm called policy iteration (PI) is proposed to
obtain the solution to the coupled Hamilton-Jacobi-Bellman
(HJB) equation, and thus the optimal controller u∗i (t) is obtained
for solving walking assistance problem.

From the perspective of optimal control (Vamvoudakis and
Lewis, 2010) and inspired by RLmethods (Mnih et al., 2015, 2016;
Sutton and Barto, 2018), we use a local cost function to assess
the long-term learning and control performance, which is defined
as follows:

Vi(ξi(t)) =

∫ ∞

t
ri
(

ξi(s), ui(s), u(j)(s)
)

ds, (7)

where u(j)(t) denotes the neighbors’ control of Follower agent

i, and ri
(

ξi(t), ui(t), u(j)(t)
)

= ξ⊤i (t)Qiiξi(t) + u⊤i (t)Piiui(t) +
∑

j∈N(i) u
⊤
i (t)Siju(j)(t) is the reward function, where the Qii > 0,

Pii > 0 and Sij > 0 are symmetric positive definite weighting
matrices, respectively. For the notation simplification, we set
ri(ξi(t), ui(t), u(j)(t)) = ri(ξi(t), ui(t)).

Till now, the walking assistance control problem is
transformed into an optimal control problem, which aims to
design a distributed controller to guarantee the Design Objective
as well as minimizing the local cost function (Equation 7).

Further, the Hamilton function is represented as

Hi

(

ξi(t), ui(t),Vi(ξi(t))
)

= ri(ξi(t), ui(t))+ ∇V
⊤
ξ ξ̇i(t), (8)

where Vi(0) = 0, ∇Vξ = ∂Vi(ξi(t))/∂ξi(t) is a partial
differential part.

Using the stationary condition for Equation (8), i.e., let
∂Hi(t)/∂ui(t) = 0, the optimal controller u∗i (t) is obtained as

u∗i (t) = −
1

2
(di + ci)P

−1
ii g⊤i (t)∇Vξ . (9)

The optimal cost function V∗i (ξi(t)) satisfies the following
coupled Hamilton-Jacobi-Bellman (HJB) equation:

Hi

(

ξi(t), u
∗
i (t),V

∗
i (ξ (t))

)

= ri(ξi(t), u
∗
i (t))+ ∇V

∗⊤
ξ ξ̇i(t) = 0.

(10)
Since the coupled HJB equation Equation (10) exists the
nonlinear item and partial differential part, which makes it hard
to be solved analytically. Therefore, the PI algorithm (Liu and
Wei, 2014; Wang et al., 2014), is introduced to approximate
the HJB equation and cope with this issue by a successive
iteration way.

Let uli(t) and V l
i (ξi(t)) represent iterative control and iterative

Q-function, respectively, with l is iteration index. There are two
components in PI algorithm, one is policy evaluation and the
other is policy improvement. The detailed iterative performing
process can be summarized as follows:

PI Algorithm: Start with admissible initial control u0i .

Step 1. Policy Evaluation: Given the control policy uli, solve for

value function V l
i (ξ (t)) by

Hi

(

ξi(t), u
l
i(t),V

l
i (ξ (t))

)

= ri(ξi(t), u
l
i(t))+∇V

l⊤
ξ ξ̇i(t)=0.

(11)
Step 2. Policy Improvement: Compute the control law uli by

ul+1i (t) = −
1

2
(di + ci)P

−1
ii g⊤i (t)∇V

l
ξ . (12)

Step 3. If ‖V l
i (ξi)−V

l−1
i (ξi)‖ ≤ ǫ (ǫ is a small positive constant),

end. Else, let l = l+ 1, go to step 1.

The PI algorithm is an effective method to solve the various
optimal control problems. It has been proved that the iterative
cost function and the iterative control strategy in PI will converge
to the optimal values V⋆

i (t) and u⋆
i (t) through iterations (Peng

et al., 2019, 2020).
It is worth noting from the above algorithm that the PI

algorithm requires the knowledge of system models, i.e., gi(t)
exists in the controller (Equation 12). In this sense, system
identification is needed normally (Ghan and Kazerooni, 2006),
but it is not suitable for the practical exoskeleton system with
different hemiplegic patient. Since for different wearers/patients,
the identification process needs to be reconstructed. To overcome
this difficulty, the following section will present a data-driven
adaptive control strategy with an online-learning fashion. It
should be emphasized that this method avoids needing the
knowledge of the accurate system dynamics, and no system
identification is introduced.
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4. IMPLEMENTATION OF CONTROLLER
DESIGN

In this section, we will present the DDOC algorithm base on
PI algorithm to achieve online-learning-based control and better
adaptive performance for different patients via a neural network
(NN) framework of RL called AC/NN. In the AC/NN, actor
network is used to approximate controller and critic network
is introduced to estimate cost function online, respectively. The
detailed descriptions are given as follows.

4.1. The Critic NN Modular
First, the critic networks are adopted to approximate the cost
function Vi(t) as follows:

V̂i(t) = ŵ⊤ci (t)ϕci(zci(t)), (13)

where zci is an input information of the critic modular
and information from ξi, ui, and u(j), ϕci(zci) denotes the

activation function, and Ŵci is the weight vector of the critic
network modular.

Then, at each time step, the Hamilton function (8) can be
approximated as follows:

eci(t) =

∫ t+△T

t
ri(ξi, ui)ds+ V̂i(t+ △ T)− V̂i(t)

=

∫ t+△T

t
ri(ξi, ui)ds+ ŵ⊤ci

(

ϕci(zci(t+ △ T))− ϕci(zci(t))
)

,

(14)
where △ T > 0 denotes the time interval.

Then, the Equation (14) is utilized to define the approximation
error for the critic NNs. Thus, the squared residual error function
to be minimized is defined as

Eci(t) =
1

2
‖eci(t)‖

2 =
1

2
e
2
ci(t). (15)

Then, by making use of gradient descent based weight update
rule (Si and Wang, 2001), the tuning weight law can be adopted
as follows

˙̂wci(t) =− ̺ci
∂Eci(t)

∂eci(t)

∂eci(t)

∂V̂i(t)

∂V̂i(t)

∂ŵci(t)

=− ̺ciϕci(zci)
(

ŵ⊤ci1ϕci(zci)+

∫ t+△T

t
ri(ξi, ui)ds

)

,

(16)

where1ϕci(zci) = ϕci(zci(t+ △ T))−ϕci(zci(t)), ̺ci is the learning
rate of the critic network modular for agent i.

4.2. The Actor NN Modular
Next, define the actor neural networks, which is employed to
estimate the control strategy, as follows:

ûi(t) = ŵ⊤ai(t)ϕai(zai(t)), (17)

where zai is an input vector of the actor network including ξi of
agent i, ϕai(zai) denotes the activation function, and ŵai is the
weight matrix.

Algorithm 1: Optimal Walking Assistance Control Algorithm.

1: Initialization

2: Initialize the values of critic weight ŵci(0) and actor weight
ŵai(0);

3: Set the learning rates of the critic network and actor network
to be ρai and ρci;

4: Choose a sufficiently small computation precision ǫ;
5: Let Qii, Pii and Sij be positive definite weighting matrices;
6: repeat

7: Calculate the actor network to estimate the control strategy
ûi ← (17);

8: Calculate the critic network to estimate the cost function
V̂i ← (13);

9: According to the available system data qi and qr , compute
the error ξi ← (5);

10: Calculate the objective function Eci;
11: Update the weights in the critic NNs using ŵci(t)← (16);
12: Calculate the objective function Eai;
13: Update the weights in the actor NNs using ŵai(t)← (20);

14: until ‖ŵ
′

ci − ŵci‖ ≤ ǫ (ŵci and ŵ
′

ci denote the weight of the
current time and previous time);

Then, in order to obtain the desired approximation optimal
controller to minimize the cost function V̂i, the error function of
the actor network is defined as

eai(t) = V̂i(ξi(t))− Uobj, (18)

where Uobj is the ultimate objective function. From perspective
of the RL, the value of the Uobj is selected according to different
purposes of applications.

The squared residual error function to be minimized in the
actor network is given by

Eai(t) =
1

2
‖eci(t)‖

2 =
1

2
e
2
ai(t). (19)

Similarly, with the aid of the gradient descent rule, the following
updating rule for the actor network is obtained

˙̂wai(t) =− ̺ai
∂Eai(t)

∂eai(t)

∂eai(t)

∂V̂i(t)

∂V̂i(t)

∂zci(t)

∂zci(t)

∂ ûi(t)

∂ ûi(t)

∂ŵai(t)

=− ̺aiϕai(zai)ŵ
⊤
ci∇ϕci(zci)ξiϕ

⊤
ci (zci)ŵci,

(20)

where ξi = ∂zci/∂ ûi, ∇ϕci(zci) = ∂ϕci(zci)/∂zci and ̺ai is a
learning rate of the actor NN for agent i.

The procedure of the data-driven adaptive control strategy
is presented in Algorithm 1. It should be noted that only the
measured system data, i.e., ξi and ui are required in the design of
the DDOC algorithm. Thus, this method is a data-driven/model-
free approach, which improves the potential application of the
proposed control method in real systems.

It is noted that in the neural network based approximated
structure, some common forms of the activation functions are
polynomial functions, tanh functions, sigmoid functions, and so

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2020 | Volume 14 | Article 37

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Peng et al. Exoskeleton Assistance Control for Hemiplegia

on. Further, we found that the appropriate selection of activation
function is very important, which leads to the different size of the
NN weight parameters. In this paper, the selection of activation
function has the same dimension as the input data. These settings
can reduce a huge computation burden for implementation.

5. NUMERICAL SIMULATION

In this section, a 2-DOF manipulator system in simulation
scenario is first carried out to validate the effectiveness of the
proposed data-driven control strategy.

5.1. Dynamic Model of 2-DOF System
For simulation, the simulation environment is set up in
Simulink-Matlab. The dynamics of the two followers are the
same as Equation (1), where the system matrices are given as

follows: Hi =

[

mi1 +mi2 + 2mi3 cos(qi2) mi2 +mi3 cos(qi2)
mi2 +mi3 cos(qi2) mi2

]

,

Ci =

[

−mi3q̇i2 sin(qi2) −mi3(q̇i1)+ qi2 sin(qi2)
−mi3q̇i1 0

]

, and the Gi =
[

mi4g cos(qi1)+mi5g cos(qi1 + qi2)
mi5g cos(qi1 + qi2)

]

, τi = [τi1, τi2]
⊤, mip (p =

1, 2, 3, 4, 5) are themasses. Note that, in simulation case, the given
dynamic system can be used to product system data needed in
DDOC algorithm.

The leader system (desired trajectories) is expressed by

qr =

[

q1r
q2r

]

=

[

0.5cos(t)+ 0.2sin(3t)
0.3cos(3t)− 0.5sin(2t)

]

. (21)

We select the structure of the AC/NN as 3-layers back
propagation (BP) NN (Goh, 1995). The initial values of critic NN
weights and actor NN weights are set to be zero, and setting the
value of the computation precision as ǫ = 10−5. The weight
learning rates of the actor network and the critic network are
chosen as ρai = 0.03, ρci = 0.06. The activation functions
ϕai and ϕci are selected as the hyperbolic tangent functions, i.e.,
tanh(x) = (ex − e−x)/(ex + e−x).

5.2. Simulation Results and Analysis
As shown in Figure 2, we can see that after 2 s learning
process, the critic NN weights and the actor NN weights
are convergent, and thus the optimal weights parameters are
obtained. Therefore, the approximate optimal controller can be
obtained in Equation (17). On the basis of the optimal controller,
the trajectory of joint angles q1 = (q11, q12)

⊤ of follower 1
achieves a good tracking performance to the leader at 3 s < t < 6
s, which is illustrated in Figure 3.

In order to further verify the performance of adaption against
uncertainty, we add some disturbance signal (white noise) to
the system at t ∈ [6, 7] s. In Figure 2, the AC/NN weights
are retrained for learning again adaptively until converge from
t = 6 s to t = 8 s, and thus the optimal controller has been
modified correspondingly. With the help of the modified optimal
controller, from Figure 3, it is seen that joint angle trajectories of
two links of follower 1 are synchronized with the leader again
quickly after t = 8 s. These simulation results illustrate the

FIGURE 2 | Convergence of the AC/NN weights on 2-DOF simulation

platform. (A) Actor network. (B) Critic network.

better control performance of the proposed DDOC algorithm,
which has ability to respond to disturbances online in the system
operation. It is proved that our proposed control method has
good robustness against uncertainties.

6. EXPERIMENTS ON A REAL LLE SYSTEM

In this section, to further verify the control performance
of the proposed data-driven control strategy, walking
assistance experiments on an actual LLE system
are performed.

6.1. Experimental Setup
To demonstrate the effectiveness and adaptability of the proposed
control strategy, a practical LLE system, called AIDER, which is
shown in Figure 4, is designed for walking assistance case to help
hemiplegia. A distributed control system is embedded in AIDER
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FIGURE 3 | The trajectories tracking performance of joint angle of follower 1

on 2-DOF simulation platform. (A) Link 1. (B) Link 2.

which consists of a main controller and four node controllers.
The main controller is placed on the backpack to compute
the control algorithm. Node controllers are fixed near by the
corresponding active joints position of LLE robot which aims to
receive sensor data and execute control commands according to
the main controller.

During the experiments on the AIDER system, three healthy
subjects (1, 2, 3) with different heights (165, 176, 180 cm) are
selected to participate this experiment and operate the wearable
LLE robot. All wearers are simulated as hemiplegic patients, and
the right legs of the subjects are simulated as the affected leg. In
the walking assistance task for all wearers, each wearer is asked to
walk for 50 s via the AIDER system. All the pilot’s walking speed is
varying from 0.1 to 0.4m/s. Further, the AIDER is equipped with
accelerometer and the wearable sensory system for measuring
system data.

FIGURE 4 | The LLE system called AIDER for hemiplegic patient. 1. The

subject/wearer; 2. Smart shoes with plantar pressure sensors inside; 3. The

load backpack with embedded computer, IMU and power unit; 4. Active joints

with node controllers (hip joints and knee joints).

For the implementation of the proposed data-driven control
strategy on the AIDER system. Note that the proposed data-
driven control strategy DDOC has a learning process using the
online system data at the beginning, which aims to adapt different
subjects. After the learning stage, the optimal control policies can
be obtained, and then walking assistance can be realized for the
LLE system with pilots. We choose the AC/NN as 3-layer Back
propagation (BP) NNs structure (Goh, 1995), that is, input layer,
hidden layer and output layer. The initial values of weights ŵci

and ŵai of the critic and actor are all set to be zero, and the
activation functions ϕai and ϕci are chosen as hyperbolic tangent
functions tanh(x) = (ex − e−x)/(ex + e−x). The learning rates
are the same as in the simulation, that is ρai = 0.03, ρci = 0.06.

6.2. Experimental Results and Discussions
For participant 1, from Figures 5A,B, we can see that, after about
5 s training, the weights of AC/NN are bounded convergent,
i.e., uniformly ultimately bounded because of the disturbances
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FIGURE 5 | The trajectories of the AC/NN weights for AIDER with subject 1 in

the experiment: (A) Actor weights. (B) Critic weights.

and uncertainties always exist in LLE system. The tracking
performance of the hip joint and knee joint for the LLE system
with wearer 1 is depicted in Figures 6A,B, which states that with
the help of the learned optimal control policies, the hip joint
and knee joint of two limbs of the exoskeleton (follower 1, 2)
can achieve synchronization with the desired (leader’s) motion
trajectories. Moreover, it is noted that there are different walking
motion patterns in the procedure of walking, which means
our proposed method has capability of adapting different gait
patterns. It should be pointed out that the affected side of wearer
with exoskeleton’s side (follower 2) has a half gait cycle delay
to the side which has walking ability (leader), which is marked
with blue dashed line as shown in Figure 6. In summary, the
experimental results illustrate the effectiveness of the proposed
DDOC approach for walking assistance of the exoskeleton with
different pilots.

FIGURE 6 | The tracking control performance performance of the proposed

DDOC strategy on AIDER with subject 1 in the experiment: (A) Hip joint’s

angle. (B) Knee joint’s angle.

7. CONCLUSIONS

In this paper, a DDOC control strategy has been proposed for a
lower exoskeleton system to assist hemiplegic patient walking. A
LFMAS structure has been established to model the interaction
relation among LLE system and hemiplegic individual. The
walking assistance problem has been transformed to an optimal
control problem. The PI algorithm has been introduced to obtain
optimal assistance controller. On the basis of the PI algorithm,
in order to adapt different patients, the AC/NN framework has
been presented for the implementation of the proposed approach
in an online-learning manner. It highlights that the controller
design only relays on the measured system data, rather than the
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accurate system model. Finally, we have successfully validated
the proposed method on two situations: 2-DOF manipulator
in simulation environment and walking assistance experiment
on a real LLE system called AIDER. Experimental results have
confirmed the effectiveness of the proposed control method. In
the future, we will focus on more practical control issues, and
consider the RL-based controller designs for exoskeleton system
with actuator faults and input time-delay.
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