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Abstract: The nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also called Nfe2l2) and its
cytoplasmic repressor, Kelch-like ECH-associated protein 1 (KEAP1), are major regulators of redox
homeostasis controlling a multiple of genes for detoxification and cytoprotective enzymes. The
NRF2/KEAP1 pathway is a fundamental signaling cascade responsible for the resistance of metabolic,
oxidative stress, inflammation, and anticancer effects. Interestingly, a recent accumulation of evidence
has indicated that NRF2 exhibits an aberrant activation in cancer. Evidence has shown that the
NRF2/KEAP1 signaling pathway is associated with the proliferation of cancer cells and tumerigenesis
through metabolic reprogramming. In this review, we provide an overview of the regulatory
molecular mechanism of the NRF2/KEAP1 pathway against metabolic reprogramming in cancer,
suggesting that the regulation of NRF2/KEAP1 axis might approach as a novel therapeutic strategy
for cancers.
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1. Introduction

Metabolic reprogramming is one of the characteristics of cancer [1,2]. Cancer metabolism
plays an important role in tumorigenesis, which is strongly associated with pathways that
regulate cell proliferation, stress response, genome stability, toxic responses, and bioen-
ergetics [3]. These metabolic modifications not only increase key metabolic pathways
such as glycolysis, pentose phosphate pathway (PPP), and glutaminolysis but also interact
with multiple oncogenic signaling pathways such as phosphoinositide 3-kinase/protein
kinase B- (PI3K/AKT), Ras-, p53-, Myc-, and reactive oxygen species (ROS)-related path-
ways [4–9]. One of the master regulators of cellular antioxidant response signaling, the
nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like-ECH-associated protein 1
(KEAP1) pathway affects several aspects of metabolic reprogramming. The NRF2/KEAP1
axis controls both the basal and stress-inducible expression and function of key metabolic
components belonging to metabolic reactions such as glutathione biosynthesis and recy-
cling, thioredoxin reductase, and thioredoxin signaling [10]. In addition, NRF2 controls
key metabolic enzymes associated with the inhibition of adipogenesis, facilitation of flux
through PPP, nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, and
increased purine biosynthesis [11–20]. It is noteworthy that the NRF2/KEAP1 signaling
pathway has previously been shown to play a critical role in tumorigenesis and the cor-
relation between redox and metabolism in cancer [12]. In this review, we summarize the
components of the NRF2/KEAP1 pathway and the regulation of metabolic reprogramming
by NRF2/KEAP1 axis. Furthermore, we discuss the potential strategies and therapeutic
significance of NRF2/KEAP1 signaling pathway in cancer metabolism.

Int. J. Mol. Sci. 2021, 22, 4376. https://doi.org/10.3390/ijms22094376 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9933-2897
https://orcid.org/0000-0002-8523-0440
https://doi.org/10.3390/ijms22094376
https://doi.org/10.3390/ijms22094376
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094376
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094376?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4376 2 of 16

2. The Structure and Functions of NRF2/KEAP1
2.1. NRF2

The NRF2 signaling pathway has a critical role in regulating cellular and tissue
homeostasis and protecting cells against the management of oxidative and electrophilic
stress [21–23]. NRF2 is encoded by the gene Nfe2l2 and belongs to a member of the
Cap’n’collar (CNC) basic leucine zipper (bZIP) transcription factor family. It entails mem-
bers having a conserved 43 amino acid homology region called the CNC, which contributes
to the DNA-binding specificity of this family located at the N-terminal DNA-binding
domain [24,25]. NRF2 is a modular protein and it consists of seven functional domains,
known as the NRF2 ECH homology (Neh) domains Neh1–Neh7 [22,26–28]. As depicted in
Figure 1A, the Neh1 domain contains a CNC-bZIP DNA-binding motif that allows NRF2
to dimerize with small Maf proteins and other transcription factors [25,27]. The Neh1
domain has also been reported to interact with UbcM2, an ubiquitin-conjugating enzyme,
to regulate the stability of NRF2 [29]. The Neh2 domain is located in the N-terminus of
NRF2, and it negatively controls the NRF2 through its DLG and ETGE motifs [30,31]. The
two binding sites in Neh2, called DLG and ETGE motifs, help for NRF2 stability, and seven
lysine residues are responsible for ubiquitin conjugation [30,32]. Importantly, the DLG
and ETGE motifs bind with KEAP1, which is a substrate adaptor protein for the Cullin 3
(Cul3)-dependent E3 ubiquitin ligase complex that suppresses NRF2 by promoting its sub-
sequent proteasomal degradation and ubiquitination [33–35]. The C-terminal Neh3 domain
of NRF2 interacts with coactivators to facilitate the transactivation of NRF2 target genes.
The Neh3 domain recruits chromo-ATPase/helicase DNA-binding protein family member
CDH6, which functions as an NRF2 transcriptional coactivator [36]. The Neh4 and Neh5
domains are also important for the transactivation of NRF2 target genes and interact with
cAMP response element-binding protein (CREB)-binding protein (CBP) and/or receptor-
associated coactivator (RAC) [37,38]. The Neh6 domain negatively regulates NRF2 through
DSGIS and DSAPGS motifs, β-transducin repeat-containing protein (β-TrCP). β-TrCP is
a substrate adaptor for the S-phase kinase-associated protein 1 (SKP1)–Cul1–RING-box
protein (Rbx1)/Roc1 ubiquitin ligase complex. DSGIS motif is phosphorylated by glycogen
synthase kinase (GSK)-3β and increases the ability of β-TrCP to ubiquitinate NRF2 and
promotes its rapid conversion [39–41]. The seventh Neh domain is known as Neh7 that
mediates the repression of NRF2 interacting with the retinoic X receptor alpha (RXRα) and
represses NRF2 target gene transcription [42].
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Figure 1. Domain structures of nuclear factor erythroid 2-related factor 2 (NRF2) and Kelch-like-ECH-associated protein 1
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as transactivation domains. The Neh6 domain contains the β-TrCP1 adaptor protein, which mediates proteasomal degra-
dation. The c-terminal domain, Neh1, contains a CNC-bZIP, and it is responsible for heterodimerization with small MAF
proteins (sMAFs). (B) KEAP1 consists of five domains that include the amino terminal region (NTR), a broad complex,
tramtrack, bric-a-brac (BTB) domain, an intervening region (IVR), six Kelch domains, and the C-terminal region (CTR). The
BTB domain is associated with CUL3-E3-ligase binding and the formation of keap1 homodimerization. The IVR contains
several important cysteine residues that are responsible for modulating KEAP1-NRF2 activity. The Kelch/DGR domain is
associated with NRF2 and P62, which is required for ETGE motifs. β-TrCP, β-transducin repeat-containing protein; CNC,
cap‘n’collar; bZip, basic region leucine zipper; sMAFs, musculoaponeurotic fibrosarcoma protein; Cul3, Cullin 3.

2.2. KEAP1

KEAP1, a substrate adaptor for a Cul3-containing E3 ubiquitin ligase, interacts with
NRF2 and controls the stability of NRF2. KEAP1 possesses five domains (Figure 1B),
including N-terminal region (NTR), the Broad complex Tramtrack and Bric-à-Brac (BTB)
domain, the intervening region (IVR), the Kelch domain/double glycine repeat (DGR), and
the C-terminal region (CTR) [43]. The BTB domain binds with Cul3 and mediates KEAP1
homodimerization that is critical for ubiquitination and the proteasomal degradation of
NRF2 [44,45]. Additionally, the BTB domain consists of cysteine residue Cys151 that is
associated with oxidative stress level [46]. The IVR domain contains reactive cysteine
residues such as Cys257, Cys273, Cys288, and Cys297 that have been proposed to promote
KEAP1-dependent NRF2 ubiquitination [47]. The Kelch/DGR domain includes six Kelch
repeats that interact with the binding of KEAP1 to the ETGE or DLG motifs located within
the Neh2 domain of NRF2 [48–50]. Three functional domains of KEAP1 play critical roles
in mediating NRF2 repression and ubiquitination.

2.3. Regulation of the Stability of NRF2/KEAP1 Complex

KEAP1 is one of the major regulators of intracellular levels of NRF2. Under basal
conditions, NRF2 is repressed by proteasomal degradation mediated by KEAP1. NRF2
is primarily localized in a cytosol and binds with KEAP1 as a dimer via the KEAP1
Kelch domain and ETGE/DLG motifs of NRF2 (Figure 1B), and it promotes NRF2 ubiq-
uitination, leading to a subsequent proteolysis. Therefore, KEAP1 tightly regulates the
expression of NRF2 to a low level in order to avoid the unnecessary expression of its target
genes [30,51,52]. However, KEAP1 is exposed by ROS, electrophiles, or another stressor at
major cysteine residues, leading to conformational change in the KEAP1/Cul3/RBX/NRF2
complex and loss of NRF2 ubiquitination [47,49]. As a consequence, NRF2 dissociates
from KEAP1 and translocates into the nucleus, where it heterodimerizes with small Maf
proteins (sMAFs) and subsequently binds to the antioxidant responsive elements (AREs)
located in the promoter of NRF2 target genes (Figure 2) [28,51–53]. An additional signaling
pathway for the KEAP1-independent regulation of non-canonical NRF2 stability has been
revealed. The β-TrCP–SKP1–RBX1–CUL1 E3 ubiquitin ligase complex regulates NRF2
for proteasomal degradation upon GSK-3β-dependent phosphorylation within the Neh6
domain of NRF2 [40].
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Figure 2. Regulation of NRF2 molecular mechanisms. Under basal conditions, NRF2 binds to its suppressor KEAP1 in the
cytosol and interacts with the Cul3-RBX1 E3 ubiquitin ligase that constantly leads to NRF2 ubiquitination and proteasomal
degradation. Under stressed conditions, conformational changes in KEAP1 and dissociation of NRF2 occur. Stabilized
NRF2 translocates into the nucleus and forms a dimer with sMAFs proteins. The complex binds to antioxidant responsive
elements sequences, promoting the transcription of target genes. RBX1, RING-box protein. Adapted from Jaramillo and
Zhang [54].

2.4. Functions of NRF2 as a Transcription Factor

NRF2 coordinately regulates coding for detoxification or metabolic enzymes, antiox-
idants, NADPH regeneration enzymes, and multi drug-metabolizing enzymes. NRF2
controls the redox status of glutathione (GSH) homeostasis by directly regulating two
subunits of the glutamate–cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits
involved in glutathione biosynthesis [55,56]. Moreover, several ROS-detoxifying enzymes
such as glutathione peroxidase 2 (GPX2), glutathione S-transferases (GSTA1,2,3,5, GSTM
1–3, and GSTP1) [57,58], but also a GSH-based antioxidant system, thioredoxin 1 [55],
thioredoxin reductase 1 [59–61], and thioredoxin-inhibitor are transcriptionally regulated
by NRF2 [62–64]. Furthermore, NRF2 plays an important role in xenobiotics and drug
detoxification by controlling the expression of drug-metabolizing enzymes while requiring
NADPH as a cofactor. The expression of NADPH-generating enzymes such as glucose-6-
phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (PGD), isocitrate
dehydrogenase 1 (IDH1), and malic enzyme 1 (ME1) are also regulated by NRF2 [18,20,65].
Together, NRF2 activity ensures the expression of enzymes against xenobiotics and ox-
idative stress as well as catalyzing reductive reactions. Evidence has shown that NRF2
regulates more than 200 genes involved in cellular processes, cytoprotection, metabolism,
and gene transcription, as listed in Table 1.
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Table 1. A list of genes regulated by NRF2.

General Biochemical
Function Gene Symbol Name Refs

Biotransformation and
detoxification (Phase I, II, III)

ABCB6 ATP-binding cassette, subfamily B (MDR/Tap) member 6 [59]
ABCC1 ATP-binding cassette, subfamily C (CFTR/MRP) [59]
ADH7 Alcohol dehydrogenase class 4 mu/ sigma chain [59]
CBR1 Carbonyl reductase 1 [60]

CYP1B1 Cytochrome P450 [59]
EPHX1 Epoxide hydrolase 1, microsomal [59,60]

UGT1A1 UDP Glucuronosyltransferase 1 [60]

Anti-oxidant

GCLC Glutamate–cysteine ligase, catalytic subunit [66]
GCLM Glutamate–cysteine ligase, modifier subunit [66]
GPX1 Glutathione peroxidase 1 [60]
GSR1 Glutathione reductase 1 [60]

PRDX1 Peroxiredoxin 1 [59]
SRXN1 Sulfiredoxin 1 [59]
TXN1 Thioredoxin [59]

Carbohydrate metabolism and
NADPH generation

G6PD Glucose-6-phosphate dehydrogenase [61,62,67]
HDK1 Hexokinase domain containing 1 [60]
IDH1 NADP-dependent isocitrate dehydrogenase [59]
ME1 Malic enzyme 1 [66]
PGD 6-phosphogluconate dehydrogenase [66]

TALDO1 Transaldolase [60]
TKT Transketolase isoform 1 [60]

Lipid metabolism
ACOT7 Acetyl-CoA thioesterase 7 [19]
ACOX1 Acetyl-CoA oxidase 1 [19]
SCD2 Stearoyl-CoA desaturase-2 [19]

Heme and iron metabolism

BLVRA Biliverdin reductase A [60]
BLVRB Biliverdin reductase B [60]
FTH1 Ferritin, heavy polypeptide [60]
FTL1 Ferritin, light polypeptide [60]

HMOX1 Heme oxygenase 1 [60]

Proteasomal degradation

ATF4 Activating transcription factor-4 [68]
PSMA1 Proteasome subunit alpha type-1 [68]
PSMB5 Proteasome subunit beta type-5 [68]

SQSTM1 Sequestosome 1 (p62) [65]

Autophagy
ATG5 Autophagy protein 5 [59]
ATG7 Autophagy protein 7 [59]
LC3B Microtubule-associated protein 1A/1B-light chain 3B [67]

Apoptosis BCL2 B-cell lymphoma 2 [69]

3. NRF2 /KEAP1 Axis-Mediated Metabolic Reprogramming in Cancer

One of the classical pathways against metabolic reprogramming is the Warburg effect
or aerobic glycolysis [70]. In normal cells, glycolysis is a physiological response to hypoxia.
However, unlike normal cells, cancer cells constitutively increase glucose uptake and ca-
tabolize glucose into lactate regardless of oxygen availability [5,71]. Accelerating glycolytic
flux allows producing ATP as well as fulfilling the metabolic demands of proliferating
cells [70,71]. These metabolic properties of the cancer cells increase the synthesis of DNA
and lipid [72]. Despite the aberrant activation of the cancers, it appears to involve a general
induction against several pathways that support key functions such as redox balance,
anabolic, and catabolic [73]. The NRF2/KEAP1 signaling pathway has been reported as a
transcription factor that activates the antioxidant genes. However, more evidence reveals
that the NRF2/KEAP1 signaling pathway is correlated with metabolic reprogramming
in various cancer cells through several mechanisms [11,74]. It is becoming clear that the



Int. J. Mol. Sci. 2021, 22, 4376 6 of 16

NRF2/KEAP1 pathway plays an important role in exerting the metabolic reprogramming
of cancer cells through a transcriptional program inducing the proliferation of cancer cells
and malignant progression. In addition, NRF2 supports intermediate metabolism through
glutaminolysis [75], thereby generating an imbalance in metabolic processes such as the
biosynthesis of amino acids [20] and nucleotides [17]. This section provides information on
the role of the NRF2/KEAP1 axis in the regulation of the cancer metabolism against the
cancer redox homeostasis and metabolic mechanisms.

3.1. The Role of NRF2/KEAP1 in Cellular Metabolism
3.1.1. PI3K/AKT Signaling Pathway

NRF2 plays a critical role in the proliferation of cancer cells via metabolic reprogram-
ming. When growth factors are stimulated in normal cells, PI3K signaling activation and
its downstream AKT and mammalian rapamycin target (mTOR) promote programming
including increased activity glycolytic flux as well as fatty acid synthesis [76]. However,
in the oncogenic pathway, the PI3K/AKT pathway serves as a major proliferative signal
by interacting with the NRF2 signaling. The PI3K signaling pathway has been reported to
control the regulation of NRF2 signaling independently of KEAP1 [77–79]. When insulin-
like growth factor (IGF) receptor is activated, PI3K catalyzes the phosphorylation of the
lipid phosphatidylinositol 4,5-bisphophate (PIP2) to produce phosphatidylinositol 3,4,5-
triphosphate (PIP3). The generation of PIP3 is important for the AKT activity, which
mediates downstream signaling events including the inhibition of the GSK-3β [80,81].
GSK-3β is a key mediator that is inhibited by AKT-mediated phosphorylation [82], and
NRF2 is phosphorylated by GSK-3β, enabling its recognition by β-TrCP that in turn
marks NRF2 for ubiquitination regardless of the mediated by engaging the KEAP1/CUL3
complex [39,41,83]. When the GSK-3β is inactivated by phosphorylation, resulting in
NRF2 accumulation through inhibition of KEAP1-independent degradation and increased
abundance in NRF2, it promotes the activation of metabolic genes as well as anabolic
metabolism, especially in the presence of active PI3K–AKT signaling [17]. Evidence shows
that the PI3K pathway contributes to the activation of NRF2 in several contexts. The PI3K is
antagonized by the tumor suppressor phosphatase and tensin homolog (PTEN) [84]. When
the concentration of PTEN is low, AKT is activated, while GSK-3β is inhibited. Inhibition
of GSK-3β has been reported to reduce NRF2 phosphorylation; subsequently, NRF2 es-
capes KEAP1-independent and β-TrCP-CUL1-dependent degradation in the nucleus. Thus,
deletion of PTEN has been observed to increase the nuclear accumulation of NRF2 and
the expression of NRF2 target gene [17]. Similarly, deletion of KEAP1 and PTEN leads to
significantly increased NRF2 level in liver cells [85] and contributes to the tumorigenic po-
tent on PTEN-deleted prostate cancer cells [86]. Additionally, inhibition of the PI3K/AKT
pathway markedly reduces endogenous NRF2 protein and enzymes in KEAP1-mutant
lung cancer cells and KEAP1-deficient mouse embryonic fibroblasts (MEFs) [40]. Taken
together, activation of the PI3K/AKT signaling pathway increases the nuclear translocation
of NRF2, independent of KEAP1, and allows NRF2 to promote metabolic reprogramming
and increase cell proliferation.

3.1.2. p62

Previous studies have demonstrated that NRF2 and p62/Sequestosome 1 protein
(p62/SQSTM) can regulate the activity of NRF2 [83,87,88]. p62/SQSTM1 is a scaffold
protein that regulates selective cytoplasmic aggregators of ubiquitinated proteins and or-
ganelles for degradation through the autophagy pathway. p62 contains an STGE motif that
is similar to the NRF2 ETGE motif; it directly interacts with the Kelch domain of KEAP1
and the accumulation of p62 triggers serine phosphorylation of an STGE motif [83,88].
This phosphorylation enhances p62/KEAP1 interaction, aggregation, and autophagic
degradation, which results in the stabilization of NRF2. However, this adaptive response
can become pathological under circumstances of impaired autophagy, thereby trigger-
ing the accumulation of cytoplasmic protein inclusions in a p62- and NRF2-dependent
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manner [89–91]. The phosphorylation of p62 at S349 activates NRF2 and directly targets
not only glucose metabolism to the glucuronate pathway but also glutamine metabolism
to glutathione synthesis [92]. This is relevant, given that the amplification of the p62
gene and aberrant accumulation of phosphorylated p62 protein have been implicated in
the acceleration of cancer development. In hepatocellular carcinoma cells, these changes
confer the resistance against anti-cancer drugs and trigger cell proliferation. Furthermore,
phosphorylated p62 has been reported to accumulate in tumor regions positive for hepatitis
C virus [93].

3.1.3. AMP-Activated Protein Kinase

AMP-activated protein kinase (AMPK) is a master regulator of metabolism and energy
homeostasis in normal cells. In times of energy deprivation, the levels of ATP are decreased,
and NRF2 deficiency may lead to AMPK activation. AMPK activation has been known
to lead to the upregulation of glucose, fatty acid uptake, activation of autophagy, and an
increase in ATP levels [89]. Several studies report that the AMPK promotes the activation
of NRF2 [94], and a recent study revealed that the AMPK phosphorylates on serine 588
of NRF2 [95]. The activation of AMPK regulates the phosphorylation and inhibition of
GSK-3β [90], which promotes the degradation of NRF2 through β-TRCP/CUL1 pathway.
Therefore, AMPK regulates the nuclear localization and stabilization of NRF2.

3.1.4. Crosstalk between Mitochondrial Metabolism

Mitochondria are major organelles responsible for ATP synthesis and cellular pro-
cesses. In addition, it controls tricarboxylic acid (TCA) cycle, calcium, and ROS homeostasis,
fatty acids, and amino acids metabolism. It is noteworthy that the mitochondrial dysfunc-
tion is caused by metabolic rewiring [91]. The NRF2-dependent interactions in metabolism
and homeostasis affect mitochondrial function. Recently, it has been shown that NRF2
is activated by aberrant accumulation of the TCA cycle. In the absence of NRF2, glucose
oxidation and the flowing of substrate into the TCA cycle are diminished [91]. In contrast,
the constitutive activation of NRF2 has been observed to induce the glucose oxidation
and flowing of substrate into the TCA cycle [96]. ATP levels were also observed to be
decreased in NRF2-deficient MEFs, and on the contrary, the constitutive activation of NRF2
increased the levels of ATP [97]. Similarly, the silencing of NRF2 caused the decrease of
ATP production and oxygen consumption in human colon cancer cells [98]. In particu-
lar, inactivation of fumarate hydratase (FH) triggers the accumulation of the TCA cycle
intermediates, fumarate and succinate, which lead to an interruption in KEAP1/NRF2
binding [99,100]. Fumarate has been reported to interact with cysteine residues within the
KEAP1 protein upon the activation of NRF2 [99,100]. Furthermore, a loss of FH locus has
been shown to lead to an aggressive form of renal cancer in hereditary leiomyomatosis and
renal cell carcinoma patients [100–103]. Collectively, these findings suggest that the NRF2
interacts dependently with the axis of cancer metabolism and mitochondrial function. In
addition, KEAP1 was found to be associated with mitochondrial interfaces. Interestingly, it
has been revealed that KEAP1 exists in close proximity to the mitochondria and interacts
with the mitochondrial outer membrane histidine phosphatase, PGAM5 [104–106]. The
depletion of PGAM5 or NRF2 causes an inhibition of mitochondrial retrograde trafficking,
due to activation of the KEAP1–cullin-3 E3 ubiquitin complex and rescued degradation of
Miro2, which is a mitochondrial GTPase that links mitochondria to microtubules [104,105].
Furthermore, the PGAM5–KEAP1 complex induces oxeiptosis, a caspase-independent
cell death program, under high ROS generated [107]. Whereas, under the unstressed
conditions, KEAP1 is important role for the maintenance of mitochondrial homeostasis
with p62 and Rbx1 through mitochondrial ubiquitination in liver disease [108].
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3.2. Modulation of Metabolic Processes by NRF2/KEAP1 Signaling
3.2.1. Pentose Phosphate Pathway

Glucose is an important source of cellular energy. It enters the cells through glucose
transporters, and its metabolites serve as substrates for biosynthetic processes. More-
over, glucose provides other metabolic intermediates for biosynthetic pathways, such as
PPP. The pentose phosphate pathway (also called the phosphogluconate pathway and
the hexose monophosphate shunt) consists of the oxidative branch and the non-oxidative
branch [109]. All the branches need the ribose-5-phosphate and NADPH for the changing
demands of the cells. In the oxidative phase of PPP, the G6PD and PGD catalyze the
reaction. Entry into the oxidative arm is catalyzed by G6PD, and G6PD has been known to
be controlled by NRF2 [17]. It determines the flux of glucose through PPP and biosynthetic
reactions. In another branch, the non-oxidative branch of PPP, NRF2 positively regulates
the expression of transaldolase 1 (TALDO1) and transketolase (TKT) [17,19]. NRF2 plays a
crucial role in promoting the proliferation of cancer cells and metabolism process in lung
cancer cells, including the direct transcriptional regulation of PPP-related enzymes such
as G6PD, PGD, TKT, and TALDO1, which are responsible for NADPH regeneration [17].
The G6PD, PGD, TKT, and TALDO1 support glucose flux and generate purines, which are
building blocks of DNA and RNA, which help to accelerate proliferation in cancer cells.
The ribose-5-phosphate is a major product of the PPP, and it is essential for the biosynthesis
of nucleotides. The ribose-5-phosphate contributes the sugar group to nucleotides and
ultimately forms the sugar backbone in DNA. The ribose-5-phosphate is metabolized
to phosphoribosyl–pyrophosphate, which is a common precursor for both purine and
pyrimidine nucleotides. Mitsuishi et al. has reported that NRF2 enhances the expression of
purine base synthesis by the indirect regulation of phosphoribosyl–pyrophosphate amido-
transferase, which catalyzes the rate-limiting step in the de novo purine biosynthesis, and
methylenetetrahydrofolate dehydrogenase 2, which is a nuclear-encoded mitochondrial
bifunctional enzyme with methylenetetrahydrofolate dehydrogenase and methenyltetrahy-
drofolate cyclohydrolase activities, thus initiating the creation of the purine ring [17].
Indeed, the biosynthesis of purine has been shown to be affected by the activity of NRF2,
and it has been observed to flow continuously through the PPP. Moreover, carbon flux is
increased in KEAP1-knockout MEFs and decreased in their NRF2-knockout counterparts.

3.2.2. Amino Acid Metabolism

Accumulating evidence shows that NRF2 regulates the intracellular pool of amino
acids by coordinating several molecular pathways such as biosynthesis, absorption, prolif-
eration, cancer metabolic reprogramming, and redox balance. NRF2 influences not only
metabolism but also intracellular concentrations of the cysteine/glutamate transporter
system. Several studies have focused on the interaction between NRF2 and xCT, which
is a transmembrane antiporter coded by the SLC7A11 gene, which is increased in several
cancers and has been known to mediate the extrusion of glutamate and support the re-
dox homeostasis [110–112]. NRF2 was found to increase not only the expression of the
SLC7A11 but also the activity of xCT in breast cancer cells [110]. In contrast, silenced NRF2
suppressed both xCT and glutamate export in breast cancer cells [112]. Moreover, the
correlation of NRF2 and SLC7A11 has been revealed from the result in almost 950 cancer
cell lines [113,114]. Indeed, glucose starvation induced the overexpression of SLC7A11 and
subsequent upregulation of glucose dependence for cell survival through the NRF2- and
activating transcription factor 4 (ATF4)-dependent transcription in renal cancer cells [110].
ATF4 is a transcription factor that plays an important role in amino acid deprivation,
metabolic stress, and ER stress. ATF4 targeted by NRF2 has been known to induce the
expression of xCT promoter [115]. In a separate study, NRF2 controlled the transcription of
key enzymes through ATF4 activation, which is involved in serine/glycine biosynthesis in
non-small-cell lung carcinoma cells [116]. Indeed, this study shows that the activation of
NRF2 and ATF4 is associated with the poorer prognosis in the lung cancer patients [116].
Moreover, it is revealed that the KRAS-dependent regulation of the ATF4 mechanism
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via PI3K/AKT signaling pathway required the activation of NRF2, suggesting that the
activation of these axis mechanisms is related to the expression of amino acid transporters
such as SLC1A5, SLC38A2, SLC7A5, SLC7A1, and SLC7A11 genes [117]. In agreement with
this, NRF2 can transcriptionally promote the expression of ATF4 and the coding for amino
acid transporters (AATs) involved in the import of proline, tryptophan, alanine, glycine,
and glutamine in the colon cancer cells [118]. Furthermore, it is worthy that the inhibition
of AATs may trigger the apoptosis in autophagy-deficient colorectal cancer cells but not
wild-type colorectal cancer cells upon glutamine withdrawal [118].

In additionally, KEAP1 is involved in cysteine/glutamate metabolism. When metabolic
and redox response pathways are activated, KEAP1 requires significant energy as well
as metabolic substrates such as carbon and sulfur, leading to depletion of the TCA cy-
cle intermediates [111,119–122]. Moreover, the loss of the functional mutant-KEAP1 in-
creased the dependence on glutamine in human KRAS-driven lung adenoma cell lines.
KEAP1-mutant cells reduced the intracellular glutamate pool by increasing glutamate
consumption for GSH synthesis and exporting glutamate via anti-porter xCT in exchange
for cysteine [75,118]. These studies indicate that the NRF2/KEAP1 signaling pathway
could regulate amino acid metabolism in malignant tumors.

3.2.3. Lipid Metabolism

As for lipid metabolism, NRF2 positively regulates catabolic metabolism that is in-
volved in the degradation of phospholipids and triglycerides, and enzymes involved in
fatty acids oxidation. NRF2 has been reported to control the efficiency of fatty acids oxi-
dation by regulating the expression of the carnitine palmitoyltransferase isoforms (CPT1
and CPT2) within mitochondria and two peroxisomal enzymes, acyl-CoA oxidase 1 and 2
(ACOX1 and ACOX2), which are related in lipids beta-oxidation [16]. In KEAP1-wild-type
and/or -knockout MEFs, the acceleration of fatty acid synthesis not only increased ATP
production but also stimulated respiration [16]. Moreover, the absence of NRF2 has been
reported to significantly decrease the efficiency of fatty acids oxidation [16]. Conversely,
NRF2 has been shown to suppress the anabolic processes associated with lipid biosynthesis,
fatty acid desaturation, and fatty acid transport [12,123]. These findings suggest that NRF2
may negatively regulate lipid biosynthesis and reduce the consumption of NADPH in
cancer cells. In the murine models, hepatic mRNA levels of ATP-citrate lyase, acetyl-CoA
carboxylase 1, fatty acid synthase, stearoyl CoA desaturase 1, and fatty acid elongase were
downregulated by the activation of NRF2 and contrary suppressed in NRF2-knockout
mice [16,19]. NRF2 transcriptionally regulates fatty acids oxidation-related genes and
activates the degradation of damaged lipids, thereby reducing the form of NADPH in
cancer cells. Taken together, these studies demonstrate that the NRF2/KEAP1 signaling
pathway can regulate lipid metabolism such as lipid biosynthesis and fatty acid oxidation,
respectively.

3.2.4. Iron Metabolism

NRF2 is well known to play a key role in iron homeostasis. NRF2 controls the in-
tracellular levels of the HO-1 enzyme and the storage of iron through the regulation of
ferritin. Notably, NRF2 regulates the synthesis of heme, which is metabolized from heme to
iron and biliverdin. NRF2 controls the expression of biliverdin reductase that metabolizes
biliverdin to bilirubin and ferrochelatase, which is excreted as waste [19,124]. On the other
side, heme biosynthesis needs the amino acid glycine through the NRF2–ATF4 serine
biosynthesis pathway [20]. Accelerated iron synthesis during cancer development can in-
duce carcinogenesis, cancer progression, and metastasis formation. The intracellular levels
of the iron exporter ferroportin have been reported to be markedly downregulated in breast
cancer cells, which is associated with accelerated cancer progression [125]. Furthermore,
NRF2 has been reported to transcriptionally regulate proteins involved in iron and heme
metabolism such as ferritin, ferrochlatase, heme-responsive gene 1, ferroportin, etc. [126].
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This evidence suggests that NRF2 might play an important role in the cytoprotection and
metabolic regulation through iron metabolism.

4. Conclusions

The NRF2/KEAP1 axis plays a major role in the cellular regulation of redox homeosta-
sis, mitochondrial physiology, autophagy, proteostasis, immune system, and metabolism.
The NRF2/KEAP1 complex is mediated by activating stimulation, interaction with other
transcription factors, activators or repressors, and crosstalk with other signaling pathways.
At the center of a complex regulatory network, the NRF2/KEAP1 pathway is emerging as
a critical regulator of metabolism in cancer cells as its interactions with the metabolism-
related pathway including the PI3K/AKT/mTOR pathway, p62 pathway, AMPK, and TCA
cycle have been revealed. In addition, the NRF2/KEAP1 axis contributes to the several
metabolic processes in cancers and the production of metabolites that promote cell prolifer-
ation and survival. In particular, the constitutive overexpression of NRF2 accelerates the
proliferation of cancer cells, which is the result of the reprogramming of intracellular an-
abolic and catabolic metabolism. Understanding more integrated NRF2/KEAP1-mediated
cancer metabolism may facilitate the discovery of new anti-cancer treatment strategies
through cancer metabolic reprogramming.
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AATs Amino acid transporters
ACOX Acyl-CoA oxidase
AKT Protein kinase B
AMPK AMP-activated protein kinase
ARE Antioxidant responsive element
ATF4 Activating transcription factor 4
BTB Broad complex, tramtrack, bric-a-brac
bZIP Basic leucine zipper
CBP CREB-binding protein
CNC Cap‘n’collar
CPT Carnitine palmitoyltransferase isoforms
CREB cAMP response element binding protein
CTR C-terminal region
Cul3 Cullin 3
DGR Double glycine repeat
FH Fumarate hydratase
G6PD Glucose-6- phosphate dehydrogenase
GCL Glutamate–cysteine ligase
GPX Glutathione peroxidase
GSH Glutathione
GSK Glycogen synthase kinase
GST Glutathione S-transferases
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IGF Insulin-like growth factor
IVR intervening region
KEAP1 Kelch-like-ECH-associated protein 1
MEF Mouse embryonic fibroblast
NADPH Nicotinamide adenine dinucleotide phosphate
NRF2 Nuclear factor erythroid 2-related factor 2
NTR Amino terminal region
p62/SQSTM p62/Sequestosome 1 protein
PGD Phosphogluconate dehydrogenase
PI3K Phosphoinositide 3-kinase
PIP2 Lipid phosphatidylinositol 4,5-bisphophate
PIP3 Phosphatidylinositol 3,4,5-triphosphate
PPP Pentose phosphate pathway
PTEN Phosphatase and tensin homolog
RAC Receptor-associated coactivator
RBX1 RING-box protein
ROS Reactive oxygen species
RXRα Retinoic X receptor alpha
SKP1 S-phase kinase-associated protein 1
sMAF Small musculoaponeurotic fibrosarcoma protein
TALDO1 Transaldolase 1
TCA Tricarboxylic acid
TKT Transketolase
β-TrCP β-transducin repeat-containing protein
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