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A B S T R A C T

Objective: The objective of this review was to provide an overview of the diverse methods described, tested, or
implemented for monitoring performance of clinical artificial intelligence (AI) systems, while also summarizing the
arguments given for or against these methods.

Introduction: The integration of AI in clinical decision-making is steadily growing. Performances of AI systems
evolve over time, necessitating ongoing performance monitoring. However, the evidence on specific monitoring
methods is sparse and heterogeneous. Thus, an overview of the evidence on this topic is warranted to guide further
research on clinical AI monitoring.

Inclusion criteria: We included publications detailing metrics or statistical processes employed in systematic,
continuous, or repeated initiatives aimed at evaluating or predicting the clinical performance of AI models with
direct implications for patient management in health care. No limitations on language or publication date were
enforced.

Methods: We performed systematic database searches in MEDLINE (Ovid), Embase (Ovid), Scopus, and ProQuest
Dissertations and Theses Global, supplemented by backward and forward citation searches and gray literature
searches. Two or more independent reviewers conducted title and abstract screening, full-text evaluation, and data
extraction using a tool developed by the authors. During extraction, the methods identified were divided into
subcategories. The results are presented narratively and summarized in tables and graphs.

Results: Thirty-nine sources of evidence were included in the review, with the most abundant source types being
opinion papers/narrative reviews (33%) and simulation studies (33%). One guideline on the topic was identified,
offering limited guidance on specific metrics and statistical methods. The number of sources included increased
year by year, with almost 4 times as many sources included in 2023 compared with 2019. The most commonly
reported performance metrics were traditional metrics from the medical literature, including area under the
receiver operating characteristics curve (AUROC), sensitivity, specificity, and predictive values, although few
arguments were given supporting these choices. Some studies reported on metrics and statistical processing
specifically designed to monitor clinical AI.
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Conclusion: This review provides a summary of the methods described for monitoring AI in health care. It reveals
a relative scarcity of evidence and guidance for specific practical implementation of performance monitoring of
clinical AI. This underscores the imperative for further research, discussion, and guidance regarding the specifics of
implementing monitoring for clinical AI. The steady increase in the number of relevant sources published per year
suggests that this area of research is gaining increased focus, and the amount of evidence and guidance available
will likely increase significantly over the coming years.

Review registration: Open Science Framework https://osf.io/afkrn
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Introduction

T he quantity of artificial intelligence (AI) appli-
cations for clinical use is rapidly increasing.

Presently, the US Food and Drug Administration
(FDA) lists 692 AI-enabled medical devices mar-
keted in the US,1 while many more are described in
the scientific literature, including more than 100
models for prediction of sepsis,2 more than 10
models for identifying hip fractures in x-ray images,3

and an abundance of other applications.
In many cases, AI has demonstrated superiority

over its human counterparts. Noteworthy examples
include chatGPT outperforming more than 99% of
medical journal readers in diagnosing complex clin-
ical cases,4 and AI systems surpassing human readers
in breast cancer screening, with the potential to sub-
stantially reduce the workload for this task.5 Thus,
AI solutions hold transformative potential for the
health care system, potentially yielding better patient
outcomes and enhanced health care efficiency.

AI models typically undergo validation before
clinical implementation to ensure adequate perform-
ance. However, AI model performance may change
during the course of deployment as a result of
changes to the environment in which the model
operates.6–8 Acceptable performance at validation,
therefore, does not guarantee sustained adequacy,
and it may become necessary to retrain, recalibrate,
or decommission the model9 to ensure safe opera-
tion. Timely intervention must be based on timely
detection of declining performance. This can be
achieved through continuous monitoring of the per-
formance of AI models during deployment.6

However, selecting an appropriate method for
monitoring clinical AI is a non-trivial task.6,7 In par-
ticular, direct monitoring of clinical performance can

be a challenge when access to ground truth data is
limited due to ethical concerns, resource scarcity, or
delays between the AI model application and the
time of the event it predicts.6 Further, models with
the potential to affect the outcomes they predict can
complicate performance evaluation evenwhen ground
truth data are readily available, causing apparent
performance loss even when operating at a stable
performance level.10

Other AI monitoring methods avoid some of these
complications with obtaining ground truth data by
monitoring features that are not dependent on know-
ing the ground truth. Examples include monitoring the
distribution of the model’s input variables,6 monitor-
ing the distribution of the model’s output,6 and mon-
itoring feature importance within the model.7 Changes
detected through these indirect monitoring methods
signify that changes to the model’s environment have
occurred, and that there is a risk that changes in model
performance have also occurred. Thesemethods, how-
ever, entail their own challenges, since the relation to
actual model performance is highly unpredictable.6 It
can, therefore, be hard to determine whether a change
to the model environment is critical and whether it
necessitates intervention.

Additionally, AI models predictions are no better
than the ground truth data on which the models are
trained. In some cases, this ground truth is far from
an actual gold standard. It may sometimes be prefer-
able to monitor downstream consequences of model
operation (patient outcomes) rather than the model’s
ability to correctly predict a sometimes dubious
ground truth.

As outlined previously, both the options and the
obstacles for implementing monitoring of clinical AI
are many. Choice of strategy will include ethical,
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economical, statistical, and practical considerations,
and many questions inevitably emerge. How many
patients will we need to misclassify before we can
statistically detect a performance drop? How certain
do we need to be of the performance while the model
is operating? Howmany resources can we reasonably
spend on monitoring our models? While the impor-
tance of ongoing real-world performance monitoring
of medical AI is emphasized by the FDA,11 the Eur-
opean Parliament Research Service,12 and multiple
other public agencies,13–15 these official sources offer
little to no guidance regarding which specific moni-
toring methods should be applied, leaving health care
institutions to answer these questions themselves.
Scientific sources addressing performance monitoring
of clinical AI are also sparse and heterogeneous.6,16–18

Thus, to address this gap and to guide both imple-
mentation and further research on monitoring of
clinical AI, there is a need for an overview of the
currently known methods. Due to the heterogeneity
of the known sources of evidence, a scoping review
approach was deemed most appropriate for this
task. Preliminary searches revealed no completed or
ongoing reviews on this topic in MEDLINE, the
Cochrane Database of Systematic Reviews, or JBI
Evidence Synthesis.

The objectives of this scoping review were to
identify which methods for monitoring the perform-
ance of clinical AI have been described, tested, or
implemented, and to summarize the arguments given
for or against these methods.

Review questions

i) Which methods for monitoring performance of
AI models have been described, tested, or im-
plemented specifically for clinical use?

ii) Which rationales for choosing specific monitor-
ing strategies for clinical AI have been described?

Inclusion criteria
Participants
Methods and models described for use on any cate-
gory of human patients were eligible for inclusion in
the review.

Concept
Performance monitoring methods were defined
broadly as any systematic, continuous, or repeated
effort to evaluate clinical performance (eg, discrimi-

nation, calibration, accuracy, fairness) of models or
to detect risk of deterioration of performance or
evaluate downstream consequences or other proxy
indicators of model performance. Patient-specific
quality assurance, with no intent to evaluate the
model performance (eg, output shown to physician
who then chooses to use it or not), was not consid-
ered monitoring of AI performance.

Rationaleswere defined as the arguments given for
or against choosing a particular monitoring method
or outlines of which consideration should guide
choice of monitoring methods. This did not in-
clude arguments for why it might be important (or
unimportant) to monitor AI in health care in general.
Any type of argument from any perspective was in-
cluded (eg, ethical, practical, cultural, organizational).

Context
AI models for clinical use were defined as algorithms
with the possibility of directly influencing patient
management (eg, algorithms for diagnosis, treat-
ment, prognosis, or triage), but not algorithms that
primarily affect the overall health care efficiency (eg,
algorithms for efficient staffing, waiting time predic-
tion). Methods described for use in health care in
more general terms such as for “clinical use” were
also eligible for inclusion.

Methods and models described for use in any part
of the health care system were eligible for inclusion.
Direct-to-consumer services, where the consumer
uses AI without a health care professional as an
intermediary, were not eligible. Examples of direct-
to-consumer services include health apps for smart-
phones or smart watches and self-tests online.

Types of sources
This scoping review considered all study design
types, including randomized and non-randomized
controlled trials, interrupted time series studies,
prospective and retrospective cohort studies, case-
control studies, case reports, qualitative studies, sys-
tematic reviews, opinion and perspective papers, and
guidelines. Studies using fully or partially simulated
data were also considered for inclusion.

Methods

The project was registered on Open Science Frame-
work (https://osf.io/afkrn) and was conducted ac-
cording to the published protocol,19 following the
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JBI methodology for scoping reviews.20,21 It is re-
ported according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses exten-
sion for Scoping Reviews (PRISMA-ScR).22

Deviations from the a priori protocol
In the course of the review, it became evident that
additional specifications of the concepts of method
and artificial intelligence were necessary to ensure
consistent source inclusion and data extraction. A
performance monitoring method, in essence, consists
of many smaller parts; for example, the frequency of
evaluation (eg, monthly), the data sources, the met-
rics used (eg, sensitivity), the statistical processing
(eg, χ2 test), and the definition of acceptable per-
formance level. Although not explicitly defined in
the protocol, the intention of the review was to
summarize monitoring methods in terms of metrics
and statistical processing, and as a result, sources not
specifying metrics or statistical processing were ex-
cluded from the review.

The term AI is not universally well-defined. For
this review, AI was defined as machine learning–
derived models, and therefore did not include models
based on direct implementation of expert knowledge.

During the forward citation search, it became app-
arent that some of the included sources were highly
cited in areas unrelated to health care; for instance, 1
included paper23 had in excess of 2000 citations,
including sources in biology, economics, and electri-
cal engineering. Tomanage the workload, all forward
citation search results were filtered through the same
health care filter as was used in the initial searches.

Some identified sources were not formatted as
titles and abstracts, such as videos, web tools, and
web pages, and as a result, were unable to be up-
loaded into Covidence (Veritas Health Innovation,
Melbourne, Australia). This included sources identi-
fied through the webpage searches of the gray liter-
ature search and parts of the citation search results.
These sources were screened by 1 reviewer only
(ESA) and, if deemed relevant for inclusion, dis-
cussed with an additional reviewer before final inclu-
sion and extraction.

Search strategy
The search strategy aimed to capture both published
and unpublished sources. An initial limited search of
MEDLINE and Embase was undertaken to identify

articles on the topic. The text words contained in the
titles and abstracts of relevant articles, and the index
terms used to describe the articles were used to
develop a full search strategy for Embase (Ovid),
MEDLINE (Ovid), Scopus, and ProQuest Disserta-
tions and Theses Global (Appendix I). As the Scopus
and ProQuest databases are not health care–specific
databases, a search block limiting the searches to the
health care domain was added in each of these 2
searches. The searches were initially conducted on
September 5, 2023, and updated on November 12,
2023.

Gray literature searches for unpublished studies
included abstracts, conference proceedings, and pre-
prints from preprint servers (medRXiv, bioRXiv,
arXiv, ChemRxiv, SSRN) indexed in Embase and
Scopus. These sources were included through the
respective Embase and Scopus searches. Additionally,
ISO standards, including standards under develop-
ment, webpages of the EuropeanUnion and European
parliament, as well as the FDA and the National
Institute for Health and Care Excellence (NICE) were
explored. Queries used for theses searches are speci-
fied in Appendix II.

On November 21–22, 2023, the reference lists
(backward citation search) and citations (forward
citation search) of included sources of evidence were
identified primarily through Scopus and, when nec-
essary, Web of Science. Unfortunately, 1 source24

could not be located in either database and thus
could not undergo forward citation search.

No restrictions were imposed on publication date
or geographic location, and sources in any language
were considered for inclusion. Included sources in
languages other than English or the Nordic languages
were translated. Studies published in Chinese were
translated by a Chinese-speaking coauthor (DMCA),
while studies in other languages (Russian and Ger-
man) were translated using chatGPT (OpenAI, San
Francisco, USA) and subsequently verified by indivi-
duals proficient in the respective languages.

Study selection
Following the search, all identified citations were
collected and uploaded into EndNote v.X9 (Clari-
vate Analytics, PA, USA) and duplicates were re-
moved. Titles and abstracts were then imported to
Covidence and screened by 2 independent reviewers
for assessment against the inclusion criteria for the
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review. ESA screened all sources and LHF, JBBK,
and RSH each screened a randomly assigned portion
of the sources. Sources not provided as title and
abstract (eg, videos, web applications) were screened
by 1 reviewer (ESA). Potentially relevant sources were
retrieved in full and imported into Covidence. The
full text of selected citations was assessed against the
inclusion criteria by 2 independent reviewers. ESA
assessed all sources, and LHF and JBBK assessed a
randomly assigned portion of the sources. Reasons
for exclusion of sources of evidence at full-text screen-
ing that did not meet the inclusion criteria were
recorded. Any disagreements between the reviewers
at each stage of the selection process were resolved
through discussion or with an additional reviewer.
The results of the search and the study inclusion
process are presented in a Preferred Reporting Items
for Systematic Reviews andMeta-Analyses (PRISMA)
flow diagram.25

Data extraction
Data extraction was carried out by ESA and JBBK
independently, using a data extraction tool developed
by the reviewers for this purpose. The data extraction
was performed in Covidence and included specific
details about the type of sources, including study
design, country of origin, and funding sources, as
well as key findings relevant to the review questions.

A draft extraction form was pilot tested on known
relevant literature6,26 by all members of the data ex-
traction team, and was modified as necessary both
before and during data extraction. The modifications
consisted of dropping questions relating to dilemmas
encountered in monitoring clinical AI, as this review
question was ultimately dropped entirely from the
review. The final extraction form can be found in
Appendix III. Any disagreements between the re-
viewers during extraction were resolved through dis-
cussion. For sources that described clinical tests or
implementation of monitoring clinical AI but lacked
details or had insufficient information regarding
metrics and statistical methods, the research team
attempted to contact the authors via email twice to
request additional details. In cases where no response
was received and the original source lacked the re-
quired details, the studies were excluded.

Data analysis and presentation
Characteristics of sources of evidence are presented
in tabular format, with selected characteristics sum-

marized across sources through summary statistics.
In the data extraction phase, the monitoring methods
identified in the review were categorized by type of
method. These methods were divided into methods
intended to measure performance (eg, diagnostic
accuracy measures, measures of clinical outcome)
and methods intended to detect the risk of changing
performance without measuring the performance
itself (eg, measures of changes to input variable,
changes to importance of each input variable). Each
broad category underwent further subdivision into
more specific categories as specified in the protocol.19

During extraction, additional categories were added
as needed when a method did not fit any of the
predefined categories. The addition of categories
was performed individually by each member of the
extraction team (ESA, JBBK) during extraction, and
the final definition of the category discussed between
ESA and JBBK afterwards. The categories of methods
described by each included source are summarized in
tabular format, while details regarding each specific
method as well as summary statistics (number of
sources reporting each method or method type) are
narratively described. Additionally, the arguments
provided for the selection of monitoring methods
are narratively outlined in conjunction with the
description of each individual method.

Results
Study/source of evidence inclusion
The searches identified 20,664 sources, of which 7335
were duplicates, leaving 13,329 potential sources. A
total of 39 sources ultimately met the inclusion crite-
ria. The source selection and inclusion process is
outlined in Figure 1. Of the included sources, 23%
(9 sources) were identified through the citation search.
During the full-text screening stage, the predominant
reasons for exclusion were that the source included no
monitoring of AI or that the source merely mentioned
monitoring of clinical AI without providing technical
details (metric or statistical method). The authors of 4
papers were contacted for additional details.27–30 One
author replied,30 while the remaining requests yielded
no replies, resulting in the exclusion of 2 sources28,29

due to no details regarding metrics or statistical pro-
cessing being available. The author of the fourth
paper27 did not respond to our request for more
information, and this study is included but limited to
the information in the existing study. A list of sorces
excluded at full-text stage, with reasons for exclusion,
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is available in supplemental digital content: http://
links.lww.com/SRX/A67.

Characteristics of included sources
Characteristics of the included sources are provided
in Appendix IV, and summary statistics are given in
Figure 2. Overall, no relevant sources from before
2019 were identified, and the number of included
sources generally increased year by year. The ma-
jority of sources were either narrative reviews,

opinion papers, or simulation studies. Most of the
included studies had monitoring of clinical AI as
their research target. The dominant country of origin
was the USA, and of the sources reporting funding,
most reported public funding.

Review findings
Of the 39 included sources,6,14,15,18,23,24,27,30–61 21 sour-
ces described direct performance monitoring meth-
ods only, while 5 sources solely described methods

Figure 1: Search results and source selection and inclusion process25
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for detecting risk of changing performance; 11 sources
described both method types. Of the 39 sources
describing methods for monitoring clinical AI, 9
sources indicated that the method(s) had been clinically
tested or implemented. In the sources, few arguments
were given for specific choice of monitoring method.

Direct performance monitoring methods
Types of direct performance monitoring methods
described in the included sources are summarized
in Table 1,6,14,15,18,23,24,27,30–61 and each method is
described in further detail, including arguments re-
garding its use, in the sections below. Arguments are
emphasized using the following symbol (*) in the
text. For a brief explanation of metrics and statistical
methods mentioned, see Appendix V.

Accuracy
Accuracy measures were the most abundantly
described metrics for monitoring the performance
of clinical AI, appearing in 27 sources.Most dominant
were diagnostic sensitivity and specificity18,27,32,38,48,49,
56,59,60 and positive and negative predictive values
(PPV and NPV), with PPV often referred to as preci-
sion in AI literature.14,15,18,38,43,60 Wong et al.60 argued

that predictive values are useful for assessing the bal-
ance between clinical relevance and over-alerting (*).
In 1 case, PPV normalized to prevalence (referred to as
lift) was described,53 with the argument that PPV is
highly dependent on prevalence, and thus needs to be
normalized to this in cases where the prevalence
of the target condition may be changing (*). Other
frequently describedmetrics included error rates24,36,46,
48,54 or its opposite (agreement rates, diagnostic
accuracy),14,32,37,38,55,59 the Brier score,45,57 including
its unidimensional version Mean Squared Error,6,23,38

and confusion matrices.32,59 One source proposed
the use of the drift detection method or the early drift
detection method,54 which monitor changes in error
rates and time between errors, respectively. One
source reported monitoring Kappa scores32 and
another described monitoring the number needed to
treat,40 while 2 studies quantified the error sizes asso-
ciated with each output in terms of difference in num-
ber of lymph nodes46 and Gamma passing rates.61 In
medical image segmentation, Dice index (equivalent
to F1-score)44 and surface Dice index41 were de-
scribed. De Kerf et al.41 presented the metric local Dice
index, which preferentially measures agreement in the
most important regions. De Kerf et al.41 argue that

Figure 2: Summary statistics of characteristics of 39 sources of evidence included in the scoping review
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the metric local Dice index better captures clinically
relevant differences compared with the ordinary Dice
index, which gives equal weight to disagreement in
clinically less relevant areas (*).

Discrimination
Eleven sources described measures of discrimination.
In all cases, area under the receiver operating char-

acteristics curve (AUROC) was mentioned,6,14,27,32,
38,42,43,47,51,53,57 while 3 sources also mentioned area
under the precision-recall curve (AUPRC).38,47,57

Calibration
Six sources described monitoring of calibration mea-
sures. Two sources described using the observed-
to-expected ratio (average calibration),40,53 while

Table 1: Types of performance properties measured in clinical artificial intelligence models in the
included sources

First author, year Accuracy Discrimination Calibration Proxy outcomes Fairness

Allen,18 2021 ●

American College of Radiology,32

Allen 2019,33 Allen 202234
● ●

Andreychenko,24 2022 ●

Bedoya,27 2022 ● ● ●

Chetverikov,36 2023 X

Claessens,37 2022 X X

Corbin,38 2023 X X X X

Davis,39 2020 X

Davis,40 2022 X X

De Kerf,41 2023 ● ●

Di Martino,42 2023 X

Duckworth,43 2021 X X

Elguindi,44 2022 ●

Feng,6 2022 X X X

George,45 2023 X

Juluru,46 2021 ●

Levy,47 2022 X X

Lundberg,23 2020 X

Magrabi,48 2019 X

Mahadevaiah,49 2020 X

Nakatsugawa,51 2019 X

Pruski,52 2023 X

Rahmani,53 2023 X X X

Rotalinti,54 2023 X

Sahiner,55 2023 X

Schelb,56 2021 X

Schinkel,57 2023 X X

Smeden,15 2023 X X

Wang,59 2019 X X

Wong,60 2023 ●

Yang,61 2021 ●

Zinchenko,14 2022 X X

X, method described; ●, method clinically tested or implemented.
Shadow implementations and retrospective simulated implementations are not considered as clinical test or implementation. In the table, 3 sources have been merged, as
2 of the sources33,34 refer back to the third source32 for details.
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5 sources described using measures based on calibra-
tion curves, either for visual inspection38 or evaluated
through average distance of the calibration curve
from the ideal calibration curve.39,47,52,53 Rahmani
et al.53 noted that average calibration is considered a
“weak calibration value,” but that stronger calibra-
tion measures are more computationally expensive
(*). For statistical processing of the calibration met-
rics, using exponentially weighted moving averages
(EWMA), risk-adjusted EWMA, or a method based
on so-called adaptive windowing (ADWIN) was sug-
gested.39 ADWIN is a sliding window technique,
where the window size is not fixed, but determined
based on the rate of change of data within the win-
dow. Specifically, regarding the ADWIN-based
method, Davis et al.39 underlined the advantages of
the method in that it can support different metrics,
handle streaming data (as opposed to analyzing in
batch), and inform which data might be suitable for
use when updating the AI model (*).

Proxy or downstream outcomes
Four sources included a description of the monitoring
of proxy or downstream outcomes. Wang et al.59

described monitoring the number of critical, time-
sensitive cases an AI discovers per day as an indicator
of the clinical contribution of the model. De Kerf
et al.41 described having monitored an image segmen-
tation model by monitoring the downstream changes
in radiation dose calculations and to what extent the
final model outcome achieved predetermined clinical
goals. Claessens et al.37 suggested monitoring results
of the Turing test, which tests whether humans are
capable of distinguishing results from an AI model
from results generated by a human. To address the
challenges in evaluating models where the ground
truth is delayed relative to the time of prediction,
Feng et al.6 suggested using 5-day mortality as a
proxy indicator of performance for a hypothetical
30-day mortality prediction model (*).

Fairness
Fairness metrics were reported by 3 sources. Bedoya
et al.27 suggested monitoring sensitivity in diverse
subgroups, while Corbin et al.38 suggested tracking
a variety of metrics (accuracy, sensitivity, specificity,
precision, and AUROC) over patient subgroups,
and Smeden et al.15 suggested monitoring PPV per
subgroup.

Performance in general
For performance metrics in general (not further spec-
ified), Davis et al.39 suggested the use of EWMA or
risk-adjusted EWMA, while Sahiner et al.55 sug-
gested ADWIN-based techniques.

Methods for detecting risk of performance change
Types of methods for predicting or detecting risk of
changing performance are summarized in Table 2,
and each method is described in further detail,
including arguments regarding its use, in the fol-
lowing sections. Arguments are emphasized with
the symbol (*) in the text. For a brief explanation
of metrics and statistical methods mentioned, see
Appendix V.

Input monitoring
The most often described methods for monitoring
the risk of performance change involved input mon-
itoring methods. Several authors6,57 discussed the uti-
lization of statistical process control charts for mon-
itoring the input variables. Both Schinkel et al.57 and
Feng et al.6 described Shewhart control charts, while
Feng et al.6 also listed multiple other statistical pro-
cess control methods including cumulative sum (CU-
SUM) and EWMA control charts for individual input
variables, and multivariate CUSUM and EWMA and
Hotelling’s T2 for monitoring relations between mul-
tiple input variables. Pre-processing steps (including
dimensionality reduction) to avoid excessive false
alarm rates in case of many input variables were
likewise discussed in the paper.6 In addition, distri-
bution distance measures (Wasserstein distance, ker-
nel based measures, and f-divergence) were men-
tioned.6 Rahmani et al.,53 while specifying no parti-
cular methods, argued that relying solely on single
variable input monitoring may be insufficient, as this
will not detect shifts in the joint distribution of input
variables (*).

Bartels et al.30 reported monitoring the fraction of
valid requests made to the model,30 as opposed to
fraction of cases with no prediction due to missing
data (specified in private correspondence by the
authors upon request for details). George et al.45

suggested monitoring all input variables using the
population stability index. Duckworth et al.43

described the graphical representation of levels of
input variables on a weekly basis combined with
Kolmogorov-Smirnov testing or adversarial valida-
tion to test whether the distribution has changed.
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Rotalinti et al.54 described the use of “data slices,”
where certain regions of feature space are defined as
“weak slices” (the model is known to have a higher-
than-average error rate). Monitoring the proportion of
new, unlabeled samples falling within these slices serves
as an alert for potential performance degradation.

Bhaskhar et al.35 designed a “mistrust scoring sys-
tem” named TRUST-LAPSE, where input variables of
a data sample are mapped into latent space and com-
pared with a reference dataset using a combination of
2 different similaritymeasures. Themistrust scores are
then continuously monitored graphically or using a
sliding window and significance testing (eg, probabil-
ity, odds ratio, Kolmogorov-Smirnov, Wilcoxon, and
Mann-Whitney tests) to detect significant changes.

Merkow et al.50 similarly developed a method
named CheXtray for detecting data drifts in x-ray
images. This method embeds input data in latent
space but also uses image metadata andmodel output
data. These data are then compared with reference
data using the Kolmogorov-Smirnov test and χ2
goodness-of-fit test, and a unified metric is calculated

combining the obtained similarity measures into 1
single value. This metric is continuously calculated
using a sliding window and graphically represented.
The authors listed several advantages to the metric,
namely that it is open-source based, does not require
ground truth data, and provides a single value sum-
marizing multiple aspects of the patient data (*). This
combined metric by Merkov et al.50 is the only
method identified in the review that uses monitoring
of metadata that is not part of the AI model itself.

Output monitoring
Six sources report output monitoring. One source31

compared the distribution of risk scores provided by
a cancer prediction model with a reference distribu-
tion, utilizing Pearson correlation for histograms, χ2
goodness-of-fit test, and Wasserstein distance. One
source monitored model firing rates,49 while another
monitored the risk score percentiles per day,27 and yet
another monitored the number of outputs produced
and the average predicted risk per week.45 Bartels
et al.30 monitored the fraction of time where each

Table 2: Types of monitoring for detecting/predicting risk of deteriorating performance in clinical
artificial intelligence models described in the included sources

First author, year
Input
monitoring

Output
monitoring

Feature
importance
monitoring

Target
variable
monitoring

Conditional
probability
monitoring

Intermedi-
ate product
monitoring

Uncertainty
monitoring

Metadata
monitoring

Aguilar,31 2023 X

Bartels,30 2022 X X

Bedoya,27 2022 ●

Bhaskhar,35 2023 X

Di Martino,42

2023
X

Duckworth,43

2021
X X X

Feng,6 2022 X X X

George,45 2023 X X

Lundberg,23 2020 X

Mahadevaiah,49

2020
X

Merkow,50 2023 Xa Xa Xa

Rahmani,53 2023 X X

Rotalinti,54 2023 X X

Sahiner,55 2023 X

Schinkel,57 2023 X X

Stacke,58 2021 X

X, method described; ●, method clinically tested or implemented
aMerkow et al.50 suggested a single metric that combines 3 different types of data.
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possible output was predicted (active sleep, quiet
sleep, awake). Merkow et al.50 integrated output
monitoring as part of the similarity metric described
in the input monitoring section.

Feature importance monitoring
Four sources reported on using feature importance
monitoring. Two sources monitored Shapley values
(SHAP values),42,53 while 1 source used SHAP values
normalized per input case across all features to avoid
drifts in SHAP values due to population drifts.43

Duckworth et al.43 argued that SHAP values have
the advantage of offering guarantees of consistency,
with the local SHAP values adding up to the total
predicted probability outputted by the model (*).
Another source described continuous graphical
monitoring of “SHAP loss values,” which models
each input’s contribution to the error of the output23

rather than to the output itself, thus requiring
knowledge of ground truth.

Target variable monitoring
Four sources monitored the target variable distribu-
tion. Duckworth et al.43 described tracking the target
variable distribution (admission rates) in weekly bins
and testing for significant changes using Kolmo-
gorov-Smirnov or adversarial testing. Feng et al.6

suggested tracking summary statistics such as mean,
variance, or rate of missingness of the target variable
or alternatively tracking the residuals from expected
values in case of known variations (eg, seasonal
variation). The summary statistics would be tracked
using the EWMA, CUSUM, or Shewharts control
charts. Rahmani et al.53 and Schinkel et al.57 also
suggested tracking the target variable distribution
(prevalence of septic patients and blood culture pos-
itivity rates, respectively).

Conditional probability monitoring
Two sources described monitoring the conditional
probability between input and target variables. Rota-
linti et al.54 proposed retraining amodel repetitively as
new data become available, calculating the Euclidean
distance between the new and the original weight
vectors and comparing the difference to a reference
distribution based on 100 models on random sub-
samples of the original dataset. Feng et al.6 further
specified how changes inmodel weights upon refitting
may be evaluated through the Shiryaev-Roberts pro-
cedure or the generalized likelihood ratio test.

Intermediate product monitoring
Stacke et al.58 described having developed a so-called
“representation shift metric,” which measures the
distribution shift in high-level features (intermediate
products of the model) within the model using Was-
serstein distance, Kullback-Leibler divergence, or
Kolmogorov-Smirnov statistic. The authors state
that the metric robustly detects possible performance
drops without requiring labeled data (*).

Uncertainty monitoring
Sahiner et al.55 suggested using ADWIN to detect
changes in uncertainty measures, although they did
not specify any particular uncertainty measure.

Discussion

In this scoping review, we provide an overview of
specific methods, in terms of metrics and statistical
processing, for monitoring the performance of clinical
AI. Additionally, we present the rationales behind
choosing these methods. We find that monitoring
clinical AI has gained increasing attention over the
past 5 years; however, the existing evidence remains
limited, predominantly comprised of narrative re-
views and simulations rather than clinical trials and
implementation studies. Of the monitoring methods
described, there is a clear emphasis on monitoring
well-known clinical performance metrics, with little
argumentation provided for this choice. However,
various other methods have also been described, in-
cluding metrics and methods specifically designed for
monitoring AI in health care.

Sparsity of evidence
Several observations from this review highlight a
relative lack of evidence in this research domain.
Notably, the most frequently reported metrics were
traditional clinical performance metrics such as
AUROC, PPV, NPV, sensitivity, and specificity—
methods that rely on access to unbiased ground truth
data, which, as outlined in the introduction, is often
not readily available. The limited amount of justifi-
cation given in the included sources for selecting these
particular metrics suggests a reliance on tradition
rather than deliberations or evidence on the most
suitable metric for the specific task.

Some sources reported metrics or statistical meth-
ods specifically tailored for monitoring AI in health
care,39,41 including measures for detecting risk of
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deteriorating performance.50,58 However, these meth-
ods were reported only once each and, therefore,
lacked external validation. Moreover, most of these
methods had not undergone testing or implementa-
tion in clinical practice.

In general, there was a relative abundance of opin-
ion papers (33%) and simulation studies (33%) and a
relatively low number of (shadow) implementation
studies (24%) among the included sources. Again,
this suggests a research field in its early developmen-
tal stages.

A particular area in which little evidence was un-
covered was the ongoing monitoring of AI model fair-
ness, with only 3 studies addressing this aspect and
just 1 source reported having implemented a fairness
monitoring method. This underscores the need for
focus on this area in future research and implementa-
tion efforts. Overall, these observations point towards
a relative sparsity of evidence and immaturity of the
research field.

Little practical guidance
In this review, only 1 official guideline dealing with
specific methods for monitoring clinical AI was iden-
tified,15 and this guideline provided only limited
advice regarding specific metrics or statistical meth-
ods. It seemed to assume unencumbered access to
ground truth data, thus not addressing situations
where this might not be the case. In conjunction with
the overall scarcity of evidence in general, there is
thus little guidance available regarding practical
implementation of performance monitoring for clin-
ical AI. This leaves health care institutions to deter-
mine monitoring strategy for themselves, with the
potential for implementation of widely varying sys-
tems at different institutions.

As outlined in the introduction, the choice of
monitoring strategy should encompass a variety of
considerations, balancing both the practical and the
ethical aspects affected by the choice. There is not
only a need for additional research that rigorously
tests, explains, and compares monitoring methods
across diverse clinical contexts, but also a need for
more holistic guidance on how, in practice, to bal-
ance competing considerations when choosing a
monitoring strategy. This guidance should prefera-
bly come from trusted entities, such as governing
bodies, but seems for now to be lacking.

This scoping review found an continual increase
of sources dealing with monitoring of clinical AI
since 2019. In addition, an abundance of sources
mentioning performance monitoring of clinical AI
without providing any methodological details was
identified. Given this increasing interest from re-
searchers and adding the requirements for real-
world performance monitoring issued by governing
bodies worldwide,11,13–15 it is clear that this is an
emerging field of study. As such, the current scarcity
of evidence and guidance on this topic is likely to
improve in the coming years.

Strengths and limitations
Although the search strategy for this review was
intended to be comprehensive, including both for-
ward and backward citation searches, sources in all
languages and geographic locations, and including
any type of sources, there are indications that the
search may have been less than optimal. Specifically,
9 out of 39 sources were identified through the cita-
tion searches, indicating potential limitations in the
initial search strategy. The dynamic nature of the field
and the lack of a standardized nomenclaturemay have
contributed to this challenge. Additionally, the inclu-
sion of studies focusing only on monitoring clinical AI
might have overlooked relevant evidence from studies
addressing validation or implementation without ex-
plicit mention of monitoring in titles or abstracts. The
review was intended to include all types of evidence,
yet the search strategy favored scientific articles and
governmental documents.

Conclusion

Monitoring performance of clinical AI is an emerging
field of study that will likely gain increased relevance
as AI takes on a larger role in health care. This review
provides a comprehensive summary of methods des-
cribed for monitoring the performance of AI in health
care, revealing a scarcity of evidence, argumentation,
and guidance for specific practical implementation.
There is a need for further research, discussion, and
guidance regarding the specifics of implementing per-
formance monitoring for clinical AI.
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Appendix I: Search strategy

The searches were conducted on September 5, 2023 (Embase, MEDLINE, Scopus) and November 12, 2023
(ProQuest) and updated November 21, 2023. Animal studies filters for MEDLINE and Embase fromMcGill
University Health Centre Libraries were used, and modified for Scopus (https://www.muhclibraries.ca/
training-and-guides/excluding-animal-studies/).

Embase (Ovid)

Search
Records
retrieved

#1 ((machine learning or artificial intelligence or AI or neural net* or deep learning or decision tree* or computational intelligence or
machine intelligence or “naïve bayes” or naive bayes or nearest neighbo* or random forrest* or support vector machine* or
Xgboost or adaboost or gradient boosting or stepwise regression or regression model or prediction model or prognostic model or
diagnostic model or classif* model or baye* model or heuristic model or Markov model or feature detection model or algorit*)
adj3
(monitor* or surveil* or updat* or temporal quality or quality assurance or quality assessment or quality management or quality

control or stability)).mp.

6085

#2 (animal or animals or canine* or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or

murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*).ti,kw,dq,jx. not
(human* or patient*).mp.

2,575,625

#3 (exp animal/ or exp juvenile animal/ or adult animal/ or animal cell/ or animal tissue/ or nonhuman/ or animal experiment/ or

animal model/) not human/

8,254,361

#4 limit 1 to (conference abstract or conference paper or “conference review”) 1364

#5 4 not 2 1356

#6 1 not 4 4721

#7 6 not (2 or 3) 4430

#8 5 or 7 5786

MEDLINE (Ovid)

Search
Records
retrieved

#1 ((machine learning or artificial intelligence or AI or neural net* or deep learning or decision tree* or computational intelligence or
machine intelligence or “naïve bayes” or naive bayes or nearest neighbo* or random forrest* or support vector machine* or
Xgboost or adaboost or gradient boosting or stepwise regression or regression model or prediction model or prognostic model or
diagnostic model or classif* model or baye* model or heuristic model or Markov model or feature detection model or algorit*)
adj3
(monitor* or surveil* or temporal quality or updat* or quality assurance or quality assessment or quality management or quality

control or stability)).mp.

4769

#2 (Animals/ or Models, Animal/ or Disease Models, Animal/) not Humans/ 5,135,647

#3 ((animal or animals or canine* or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or
murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or
patient*)).ti,kf,jw.

2,570,548

#4 2 or 3 5,620,682

#5 1 not 4 4541
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Scopus

Search
Records
retrieved

#1 TITLE-ABS-KEY ( ( “machine learning” OR “artificial intelligence” OR ai OR “neural net*“ OR “deep learning” OR “decision tree*“ OR
“computational intelligence” OR “machine intelligence” OR “naive bayes” OR “nearest neighbo*“ OR “random forrest*“ OR
“support vector machine*“ OR xgboost OR adaboost OR “gradient boosting” OR “stepwise regression” OR “regression model” OR
“prediction model” OR “prognostic model” OR “diagnostic model” OR “classif* model” OR “baye* model” OR “heuristic model” OR
“markov model” OR “feature detection model” OR algorit* )
W/3
( monitor* OR surveil* OR “temporal quality” OR updat* OR “quality assurance” OR “quality assessment” OR “quality
management” OR “quality control” OR stability ) )

61,211

#2 TITLE-ABS-KEY( patient OR healthcare OR clinical OR medicine )
OR SUBJAREA ( medi OR nurs OR dent )

32,985,621

#3 TITLE-ABS-KEY (( animal OR animals OR canine* OR dog OR dogs OR feline
OR hamster* OR lamb OR lambs OR mice OR monkey OR monkeys
OR mouse OR murine OR pig OR pigs OR piglet* OR porcine OR primate*
OR rabbit* OR rats OR rat OR rodent* OR sheep* OR veterinar* )

AND NOT ( human* OR patient* ))

5,985,621

#4 1 AND 2 AND NOT 3 6637

ProQuest Dissertations and Theses Global

Search
Results
retrieved

#1 noft( ( “machine learning” OR “artificial intelligence” OR ai OR (“neural net” OR “neural nets” OR “neural network” OR “neural
networks”) OR “deep learning”OR (“decision tree”OR “decision trees”) OR “computational intelligence”OR “machine intelligence”OR
“naive bayes” OR (“nearest neighbor” OR “nearest neighboring” OR “nearest neighbors” OR “nearest neighbour” OR “nearest
neighbouring” OR “nearest neighbours”) OR “random forrest*“ OR “support vector machine*“ OR xgboost OR adaboost OR “gradient
boosting” OR “stepwise regression” OR “regression model” OR “prediction model” OR “prognostic model” OR “diagnostic model” OR
“classif* model” OR “baye* model” OR “heuristic model” OR “markov model” OR “feature detection model” OR algorit* )
N/3
( monitor* OR surveil* OR “temporal quality” OR updat* OR “quality assurance” OR “quality assessment” OR “quality management”
OR “quality control” OR stability ) )

4176

#2 noft(healthcare) or if(healthcare) 39,182

#3 [S1] AND [S2] 35
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Appendix II: Gray literature search queries

European Union
Date of search: 01.11.2023
Searched via https://european-union.europa.eu/index_en
Search terms: “artificial intelligence” AND healthcare AND monitor AND performance
Search settings: source: Europa, date: all, language: English, file formats: all
Hits: 585
Full text screened: 21

European parliament (think tank)
Searched via https://www.europarl.europa.eu/thinktank/en/research/advanced-search
Date of search: 02.11.2023
Search terms: Does not work with AND. Search term therefore: “artificial intelligence in healthcare”
Hits: 7
Full text screened: 4

ISO standards
Date of search: 30.10.2023
Search terms: machine learning monitoring healthcare
Search settings: retracted items excluded
Hits: 174
Full text screened: 6

U.S. Food and Drug Administration
Date of search: 27.10.2023
Search terms: artificial intelligence monitoring medical
Hits: 185
Full text screened: 23

The National Institute for Health and Care Excellence
Search #1
Date of search: 26.10.2023
Search terms: monitor quality artificial
Hits: 21
Full text screened: 21

Search #2
Date of search: 26.10.2023
Search terms: artificial intelligence quality assurance
Hits: 13
Full text screened: 6

Search #3
Date of search: 26.10.2023
Search terms: artificial intelligence quality control
Hits: 14
Full text screened: 3
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Appendix III: Data extraction instrument

Item Example Explanation/elaboration

Part 1: Basic information

Study ID Davis 2019 (Automatically filled in by Covidence)

Title Validation and monitoring of a decision tree
model for predicting risk of nose bleeding within
24 hours

(Automatically filled in by Covidence)

Country of origin (checkboxes, including free-
text option)

Canada Select all relevant options, based on author
affiliations

Is monitoring clinical AI the primary aim of the
study? (multiple choice: yes, no)

Yes

Study design/article type (multiple choice,
including free text “other” option)

Opinion paper

Part 2: Monitoring methods

Methods for monitoring clinical AI described
(free text)

Method 1: Multivariate exponentially weighted
moving average (no specific type)

Method 2: Phase portraits (feature importance)
Method 3: AUC of ROC, every 100 samples
(discrimination)

If multiple methods, please number; describe
metric, statistical processing, and interval as

available; categorize each method by type in
parentheses

Does the article describe actual implementation
of the method in a clinical setting? (multiple
choice: yes, no)

No Implementation implies that the results can
potentially affect patients. Shadow
implementation is not considered
implementation.

Does the article describe clinical testing of the
method? (multiple choice: yes, no)

Yes Clinical testing implies that the results can
potentially affect patients. Shadow
implementation is not considered clinical
testing.

Part 3: Rationales

Rationales for monitoring choice 1: General: 1-year interval yield enough data for
statistical significance.
2: General: consequences of misclassification
limited; therefore, 1-year interval is acceptable.
3: General: Chosen 1 of each of input variable
monitoring, feature importance monitoring, and

direct performance monitoring, to have diverse
monitoring portfolio.
4: Regarding input variable monitoring: easily
accessible data.

If multiple, please number.
Describe what the argument is related to (eg, a
specific type of monitoring or “general”) and
state the argument.
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(Continued )

Item Example Explanation/elaboration

Part 4: Funding and conflict of interests

Funding sources (free text) National Institutes of Health (NIH)

Funding type (check boxes: public, private, no
funding)

Public Check 1 or more options

Possible conflicts of interest (free text) As stated in the conflicts of interest statement of
the article. If no COI statement: “not reported”

Notes (free text) Any observation or note that does not fit above
can be entered here

AI, artificial intelligence
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Appendix IV: Characteristics of included studies

First author, year Country of origin
Artificial intelligence
monitoring part of aim

Study design/source
type Funding type

Potential conflicts of
interests

Aguilar,31 2023 France Yes Simulation on patient

cohort

Private (for profit) Yes

Allen,33 2019 USA Yes Opinion paper/

narrative review

Not reported Not reported

Allen,18 2021 USA Yes Opinion paper/
narrative review

Not reported Yes

Allen,34 2022 USA Yes Opinion paper/
narrative review

None No

American College of
Radiology,32 n.d.

USA Yes Web application Private (non-profit) Not reported

Andreychenko,24 2022 Russia Yes Implementation study Not reported Not reported

Bartels,30 2022 The Netherlands Yes Opinion paper/
narrative review

Not reported Not reported

Bedoya,27 2022 USA Yes Opinion paper/
narrative review

Not reported No

Bhaskhar,35 2023 USA Yes Simulation on patient

cohort

Not reported Not reported

Chetverikov,36 2023 Russia Yes Sample size calculations Public No

Claessens,37 2022 USA; The Netherlands;
Belgium

Yes Opinion paper/
narrative review

Private (non-profit) No

Corbin,38 2023 USA Yes Shadow
implementation (study
also includes a
simulation on a patient

cohort)

Public; private (non-
profit)

Yes

Davis,39 2020 USA Yes Simulation on patient
cohort

Public No

Davis,40 2022 USA Yes Simulation on patient
cohort

Public; private (non-
profit)

No

DeKerf,41 2023 Belgium Yes Implementation study Not reported No

DiMartino,42 2023 Italy No Systematic review Public No

Duckworth,43 2021 UK Yes Simulation on patient
cohort

Public No

Elguindi,44 2022 USA Yes Implementation study Not reported Not reported

Feng,6 2022 USA Yes Opinion paper/
narrative review

Private (non-profit) Yes

George,45 2023 USA Yes Shadow
implementation

Private (for profit) Yes

Juluru,46 2021 USA No Implementation study Public Yes
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(Continued )

First author, year Country of origin
Artificial intelligence
monitoring part of aim

Study design/source
type Funding type

Potential conflicts of
interests

Levy,47 2022 USA Yes Simulation on patient
cohort

Public; private (non-
profit)

No

Lundberg,23 2020 USA Yes Simulation on patient
cohort

Public; private (non-
profit)

No

Magrabi,48 2019 Australia; The
Netherlands; Austria;
Denmark; Finland; UK;
Japan

Yes Opinion paper/
narrative review

Not reported Not reported

Mahadevaiah,49 2020 Canada; The
Netherlands; India

Yes Opinion paper/
narrative review

Public No

Merkow,50 2023 USA Yes Simulation on patient
cohort

Private (non-profit) Not reported

Nakatsugawa,51 2019 USA; Japan No Simulation on patient
cohort

Private (for profit) No

Pruski,52 2023 UK Yes Opinion paper/
narrative review

Public No

Rahmani,53 2023 USA Yes Simulation on patient

cohort

Public Yes

Rotalinti,54 2023 UK Yes Simulation on synthetic
data

Public Not reported

Sahiner,55 2023 USA Yes Opinion paper/
narrative review

Not reported No

Schelb,56 2021 China; Germany Yes Simulation on patient
cohort

Public Yes

Schinkel,57 2023 The Netherlands Yes Shadow
implementation

None No

Smeden,15 2023 The Netherlands Yes Guideline Public Not reported

Stacke,58 2021 Sweden Yes Simulation on patient
cohort

Public Yes

Wang,59 2019 China Yes Opinion paper/

narrative review

Public No

Wong,60 2023 USA No Implementation study None No

Yang,61 2021 USA; China Yes Implementation study Public No

Zinchenko,14 2022 Russia Yes Opinion paper/
narrative review

Public No

SCOPING REVIEW E. S. Andersen et al.

JBI Evidence Synthesis Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on Behalf of JBI. 2444



Appendix V: Explanation of metrics and statistical methods identified in the review

Name Explanation

Adaptive windowing; sliding window

technique (ADWIN)

The window size is determined by rate of change within the window.

Adversarial validation Tests if 2 datasets come from indistinguishable distributions. A model is trained to predict if a given sample is from
one or the other dataset. If the model obtains an AUROC > 0.5, signifying that it can, in fact, distinguish data from

the 2 sets, this suggests that the datasets are not from the same distribution.

Agreement rates (diagnostic accuracy) Number of correct predictions relative to total number of results

AUPRC Area under the precision-recall curve (precision = PPV, recall = sensitivity)

AUROC Area under the receiver operating characteristics curve. ROC = sensitivity plotted against 1-specificity. The
probability that given a set of a random positive and a random negative sample, the positive sample will have the
highest predicted probability of being positive.

Brier score Mean squared error for probabilistic functions

Calibration curve Plot of actual probability vs predicted probability

χ2 goodness-of-fit test Non-parametric test, determining if a sample is likely to come from a specific distribution

Confusion matrix 2×2 matrix of true positives, true negatives, false positives, and false negatives. Can be used for calculating specific
metric such as PPV, specificity, etc.

Cumulative sum (CUSUM) Metric that cumulates the difference between the observed values and the expected process average over time,
thus drifting if the deviations observed are systematically above (or below) the average, even if the deviations are
small (also exists in multivariate version).

Data slices/weak slices Certain regions of feature space are defined as “weak slices” where a model is known to have a higher-than-
average error rate.

Dice index Measures the overlap/similarity of 2 samples. 2x common elements/elements in set 1 + elements in set 2. Often
used in image segmentation

Drift detection method Monitoring changes in error rates, detecting significant changes using parametric method

Drift detection method, early As drift detection method, but monitoring time between errors

Error rates Number of errors relative to total number of results

Euclidean distance Length of a line segment between 2 points in space

Exponentially weighted moving average
(EWMA)

Metric (that can be used in a control chart) that tracks the moving average of all previous samples, giving more
weight to the latest samples (also exists in multivariate version).

f-divergence A metric of difference between probability distributions

Generalized likelihood ratio test Test for significant difference in the goodness of fit of a model and a similar model, with constraints imposed

Hotelling’s T Multivariate version of student’s t

Kappa score Agreement rate that accounts for chance of agreement happening by chance. K= 0 if agreement is no larger than
would be expected by chance

Kernel based measures Methods where a kernel function is utilized

Kolmogorov-Smirnov test Non-parametric test statistic, testing if 2 samples came from the same distribution or if a sample came from a given

distribution

Kullback-Leibler divergence A measure of difference between probability distributions; based on difference in entropy

Lift PPV normalized to prevalence
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(Continued )

Name Explanation

Mann-Whitney test Non-parametric test comparing independent samples

Negative predictive value (NPV) Chance of being a true negative if the test is negative. True negatives/(true negatives + false negatives).

Number needed to treat Number of patients needed to treat to prevent 1 patient from having an undesired outcome

Observed-to-expected ratio Observed event rate/expected (predicted) event rate

Odds ratio Ratio of odds between 2 exposure groups

Pearson correlation Measure of linear correlation between 2 variables

Population stability index (PSI) A metric of difference between probability distributions

Positive predictive value (precision, PPV) Chance of being a true positive if the test is positive. True positives/(true positives + false positives).

Sensitivity Ability to detect positives. True positives/(true positives+ false negatives).

SHAP loss values Importance of a given variable for the final error of the model

SHAP values Importance of a given variable for the final output of the model. Calculated by comparing model prediction with or
without knowledge of the variable.

Shewhart control chart Graphical representation of SPC. New observations are plotted on the chart as they become available. The chart
includes control limits defined statistically.

Shiryaev-Roberts procedure A change point detection method tuned to reduce false alarm rate

Specificity Ability to detect negatives. True negatives/(true negatives + false positives).

Statistical process control (SPC) Using statistical methods for monitoring quality of production. Includes a variety of methods including control
charts.

Surface Dice index As Dice score, but takes into account only the surface, but not the volume inside the surface

Turing test Test the ability of a machine to mimic a human. A human evaluator tries to determine if an output was generated
by a machine or another human.

Wasserstein distance A metric of distance between 2 probability distributions. Measures the minimum cost of changing from one
distribution to the other; “earth mover’s distance.”

Wilcoxon test Wilcoxon signed-rank test. Non-parametric test for comparing paired samples.
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