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Accurate estimation of cell-type composition
from gene expression data

Daphne Tsoucas'?, Rui Dong'4, Haide Chen3, Qian Zhu"?, Guoji Guo® & Guo-Cheng Yuan® 2

The rapid development of single-cell transcriptomic technologies has helped uncover the
cellular heterogeneity within cell populations. However, bulk RNA-seq continues to be the
main workhorse for quantifying gene expression levels due to technical simplicity and low
cost. To most effectively extract information from bulk data given the new knowledge gained
from single-cell methods, we have developed a novel algorithm to estimate the cell-type
composition of bulk data from a single-cell RNA-seqg-derived cell-type signature. Comparison
with existing methods using various real RNA-seq data sets indicates that our new approach
is more accurate and comprehensive than previous methods, especially for the estimation of
rare cell types. More importantly, our method can detect cell-type composition changes in
response to external perturbations, thereby providing a valuable, cost-effective method for
dissecting the cell-type-specific effects of drug treatments or condition changes. As such, our
method is applicable to a wide range of biological and clinical investigations.
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ene expression profiling is widely used in biology and

medicine for the systematic characterization of cellular or

disease states. Identifying gene expression changes across
conditions can help generate hypotheses as to underlying biolo-
gical mechanisms. However, one common problem is that each
sample has considerable cellular heterogeneity that bulk RNA-seq
methods are not able to capture. As the overall signature gener-
ated from these methods only measures the average behavior, it is
often the case that changes in gene expression only reflect
changes in cell-type composition, rather than fundamental
changes in cell states!. To alleviate such problems, a series of
computational methods have been developed with the common
goal of estimating the cell-type composition within a tissue
sample from bulk RNA-seq data®3. These methods, often referred
to as deconvolution methods, provide an important means to
distinguishing between changes in cell-type composition and
changes in cell-state. Various estimation approaches have been
used, including least squares regression?, constrained least
squares regression®, quadratic programming®-8, and v-support
vector regression®.

However, existing methods have a number of important lim-
itations. Most importantly, the underlying cell-type signatures
must be known in advance. Most studies assume that such sig-
natures can be identified from the bulk transcriptomic profiling of
purified cell types. The success of cell-type purification relies
heavily on the knowledge of specific markers as well as the ability
to isolate cells from surrounding tissues. Moreover, it is now
known that even the ‘purified’ cells may still contain significant
cellular heterogeneity!©.

Recent single-cell transcriptomic methods! 12 have provided a
powerful approach to systematically characterizing cellular het-
erogeneity, thereby enabling the identification of new cell types/
states and the reconstruction of developmental trajectories.
Applications of single-cell methods in medicine have led to novel
insights into disease progression and drug response!3-15. Single-
cell data provide an alternative approach to deriving cell-type
signatures. In fact, a few recent studies!®!” have extended
deconvolution methods by estimating cell-type signatures from
single-cell data, where cell types are inferred by clustering. While
these methods are useful, a number of significant challenges
remain. In particular, their estimates tend to be biased against cell
types that either (1) make up a small proportion of the total bulk
cell population, or (2) are characterized by lowly expressed genes.
To remove these biases, we develop a cell-type-sensitive method
for the estimation of the underlying cell fractions, using a novel
weighted least squares approach.

Results

A weighted least squares approach to deconvolution. We aimed
to build a method that can accurately and comprehensively
estimate the relative abundance of both common and rare cell
types within a bulk sample. Much like recent studies'®17, we use
single-cell RNA-seq data to extract cell-type-specific gene
expression signatures. Simply, the cell types are identified by
clustering analysis. For each cell type, marker genes are identified
by differential expression analysis, after which gene expression
levels for each of these genes are averaged across all cells asso-
ciated with the cell type. This results in a gene by cell-type sig-
nature matrix, which is denoted by S (see Methods section for
details).

In order to accurately and comprehensively estimate the cell-
type composition, we made a number of significant modifications
to the standard ordinary least squares (OLS) approach, which
underlies most existing methods*8. In this approach, the
deconvolution problem is represented as a system of linear

equations: Sx = t, where S is an n x k gene signature matrix (n =
number of genes, k = number of cell types), t is an n x 1 vector
representing the bulk RNA-seq data, and x is a kx 1 vector
containing the cell-type numbers. Since typically n >> k, this is an
over-determined equation with no exact solution. In the OLS
approach, the solution x minimizes the total squared absolute
error. This leads to two undesirable consequences. First, the
estimation error for rare cell types is typically large since such a
term has little impact on the total estimation error. Second, not all
informative genes are effectively taken into account. The
contribution of a gene can be minimal if its mean expression
level is low, even if it is highly differentially expressed between
different cell types.

To illustrate these effects, we carried out a highly idealized
simulation. We generated a single-cell data set consisting of three
cell types, each characterized by two differentially expressed
marker genes. A portion of the data was used to create the
signature matrix, while a non-overlapping portion was used to
create the bulk data by averaging gene expression values across
the cells. First, to see how the OLS formulation affects rare cell-
type estimation, we varied the abundance of one cell type from
0.02% to 33.3% (see Methods section for details). When the
abundance is very low, the relative percent error (RPE) of

X,

5
k a
Zj:] 5
1

1
>

Zj:l ki
is very high (Fig. la), supporting our intuition that the OLS
framework is not appropriate for estimating the prevalence of
rare cell types. In addition, we varied the mean gene expression
level of the two highly differentially expressed genes (fold
change = 10) pertaining to one cell type such that the ratio of
mean expression level between genes in this cell type vs. the other
two cell types ranges from 0.001 to 0.2. As expected, the
deconvolution accuracy is significantly affected by the mean
expression level of these genes (Fig. 1b).

To mitigate these issues, we designed a weighted least
squares approach to properly adjust the contribution of

estimation, defined as RPE = * 100 for cell type 1

each gene. Accordingly, the weighted error term
becomes: Err = Y"1 w;(t; — (Sx)i)z. Our mathematical deriva-
tion indicates that setting w; = @ optimally reduces the biases

(see Methods section for details). To test this idea empirically,
we applied this weighted approach to analyze the aforemen-
tioned simulated data. It is clear that both biases are
significantly reduced (Fig. 1). Of note, we make the commonly
used simplifying assumption that the total amount of RNA is
approximately equal in each cell. If this is not true, the
estimated contribution of each cell type may deviate from the
actual cell abundance.

When applying our weighted least squares method in all real
applications, we make a few adjustments required to make the
weighting formulation tractable in all situations. Given that the
weights are a function of the solution, we use an iterative method
in which weights are initialized according to the solution from the
unweighted method, then subsequently updated by the weighted
least squares solution until convergence (see Methods section for
details). Of note, while there is no theoretical guarantee that the
converged solution reaches the global minimum, we find that in
practice different initializations often end up at the same result, as
demonstrated by our analysis of an intestinal stem-cell (ISC) data
set described later (Supplementary Fig. 1). Next, given that cell-
type proportions must be non-negative, the weighted least
squares solution is constrained such that x;>0, for all j cell
types. Finally, a dampening constant is introduced to prevent
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Fig. 1 A simple simulation shows the advantages of a weighted least
squares method. a A plot of relative percent error in estimation using both
unweighted and weighted least squares approaches, for each of three cell
types across various proportions of cell type 1, the rare cell type. Because of
the increased influence of rare-cell-type-specific marker genes in the
weighted sum of squares error, the weighted least squares method
performs better in the estimation of rare cell types than the unweighted
method. b A plot of relative percent error in estimation using both
unweighted and weighted least squares approaches, for each of three cell
types across various ratios of mean gene expression level between marker
genes of cell type 1 and marker genes of cell types 2 and 3. Because of the
increased influence of lowly expressed marker genes in the weighted sum
of squares error, the weighted least squares method performs better in the
estimation of all cell types than the unweighted method

infinite weights resulting from low cell-type proportions and/or
low marker gene expression, which will lead to unstable solutions
driven by only one or a few genes (see Methods section for
details). Because of this last step, we subsequently refer to our
method as dampened weighted least squares (DWLS).

Benchmarking of DWLS on simulated PBMC data. To evaluate
the performance of our DWLS method, we first considered a
benchmark data set introduced by Schelker et al.l’, who were
among the first to consider the application of a single-cell derived
gene expression signature to the problem of deconvolution. This
data set is a compilation of 27 single-cell data sets from immune
and cancer cell populations, derived from human donor periph-
eral blood mononuclear cells (PBMCs), tumor-derived melanoma
patient samples, and ovarian cancer ascites samples. Since no bulk
data was provided, we created 27 simulated bulk data sets by
averaging expression values for each gene across all cells obtained
from each donor, assuming that the bulk data is equivalent to the
pooled data from individual cells. A similar assumption was made
previously!”. In addition, the cell-type-specific gene expression
matrix was estimated by clustering the combined 27 single-cell

data sets. Marker genes were then chosen to match the genes used
in the immune-cell-specific signature from CIBERSORT?, and
expression values for each marker gene were averaged within each
cell type.

We applied v-support vector regression (v-SVR), quadratic
programming (QP) and DWLS to the deconvolution of these
27 simulated bulk data sets. To quantify the overall performance
of each method, we use two metrics. The first is a modified
relative percent error metric, which quantifies the difference in
true and estimated cell-type proportions, normalized by the mean
of true and estimated cell-type proportions (see Methods section
for details). Averaged across all cell types, the modified relative
percent error is lowest for DWLS, at 53.3%, second lowest for v-
SVR, at 57.0%, and highest for QP, at 62.9%. The second is a
more standard metric of absolute error between estimated and
true cell-type proportions, in which we can see that absolute
errors across cell types are again on average lowest for DWLS
(Supplementary Table 1).

We further compared the accuracy of different methods on a
per-cell-type basis (Fig. 2a). While v-SVR performs well for the
largest cell subpopulation, DWLS performs better over a wide
range of cell types, especially the rarest cell groups. In particular,
DWLS preserves a good balance between rare and common cell-
type estimation. A similar trend can be seen from the standpoint
of absolute error (Supplementary Table 1).

We took a closer look at the two rarest cell types across the
27 samples: dendritic and endothelial cells. Dendritic cells
contribute to a maximum of 4.89% of the total cells in
any given sample, with an average 0.999% prevalence across
samples. Endothelial cells contribute to a maximum of
6.99% of the total cells in any given sample, with an
average 0.831% prevalence across samples. For both cell
types, DWLS is able to maintain high estimation accuracy
(Pacndritic.owrs = 0-93; Pendothetia pwis = 0-81),  outperforming
V-SVR (Paendritic svk = 0-91; Pendothetial svr = 0-54), and QP
(pdendritic,QP = 0'66’ pendothelial,QP = 0'44) (Flg 2b) OveraIL
these analyses indicate that DWLS exhibits greater accuracy
in estimating rare cell types than existing methods.

DWLS extends to real bulk data characterized by the MCA.
Recently, Han et al. have characterized 43 healthy mouse tissues
at single-cell resolution to create the Mouse Cell Atlas!'8. Based on
a combined single-cell data set of 61k cells, they have identified 52
distinct cell types spread across all tissues. Here we selected four
represented tissues—kidney, lung, liver, and small intestine—and
generated two bulk RNA-seq data sets per tissue. Obtaining both
bulk and single-cell data from the same tissue provides an
opportunity to rigorously evaluate the accuracy of our deconvo-
lution method, where we assume cell-type composition in bulk
and single-cell data sets to be approximately equal. We use the
entire single-cell data set to provide a comprehensive gene
expression signature.

We calculate estimates using various deconvolution methods:
DWLS, v-SVR, and QP. Overall, we find a high replicability of
our results within each pair of tissues, each of which come from
separate mice. DWLS estimates for each pair have correlations
between 0.84 and 0.99, showing that cell-type composition
differences between mice are small.

Here, DWLS again performs favorably over other methods,
which we demonstrate in two ways. We first look at a
representative example, the deconvolution of bulk kidney data
(Fig. 3a, b). We plot deconvolution estimates against the
predicted true cell-type composition, and find that DWLS
estimates are most highly correlated to the predicted true
proportion (pkidmy,Dv\,LS = 0.89), with v-SVR and QP performing
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Fig. 2 Results from the deconvolution of 27 simulated bulk data sets. a The mean relative percent error in estimation for each cell type across 27 simulated
data sets from donor, melanoma, and ovarian cancer patient immune and tumor cells, plotted against the average true proportion of the cell type, for each
method (dampened weighted least squares (DWLS), quadratic programming (QP), and v-support vector regression (v-SVR). The fitted lines represent the
trend in estimation accuracy as a function of cell-type proportion. b A subset of the deconvolution cell-type proportion estimates, plotted against the true
cell-type proportions. Here, only the rarest cell types, dendritic and endothelial cells, are shown. Correlation values between true and estimated proportions
are used to quantify estimation accuracy. The 45° line in each plot represents the optimal estimate. The top row shows all estimates, while the bottom row

shows a zoomed-in version focused on only the rarest cell types

less favorably (pigney.svr = 0-87; Piidney,qp = 0.092) (Fig. 3a).

DWLS is the only method able to correctly predict the presence of
all four kidney cell types. QP misses three out of these four groups
entirely, while v-SVR misses one (Fig. 3b). v-SVR also
significantly overestimates the presence of other rarer cell types
(Fig. 3b), which should make up around 6% of the total kidney
cell population, but are estimated by v-SVR to make up 43%
instead.

Second, we look more generally at the estimates of all eight
tissue samples analyzed. DWLS remains the most accurate
method, with an average correlation of 0.78 for DWLS,
compared with average correlations of 0.21 and 0.59 for QP
and v-SVR, respectively (Fig. 3c). QP once again fails to detect
biologically relevant cell types across the eight bulk samples.
This can be quantified by a sensitivity metric, defined as the
fraction of all true cell types that are detected by the
deconvolution method. Across the eight bulk samples, QP
deconvolution results are characterized by a low sensitivity
(Fig. 3c). v-SVR once again erroneously predicts the presence of
cell types that are known to be biologically irrelevant to the
given tissue. This is measured using a specificity metric, defined
as the fraction of all false cell types that are correctly undetected
by the deconvolution method. Across the eight bulk samples, v-
SVR deconvolution results are characterized by a low specificity

(Fig. 3¢). Overall, DWLS strikes the best balance between these
two metrics by being able to both detect correct cell types and
ignore false cell types (Fig. 3c).

DWLS captures ISC composition changes across conditions.
One of the most important applications of deconvolution meth-
ods is in the identification of cell-type composition variations
across conditions. To test the utility of our deconvolution
method, we turned to a public data set where mouse ISC com-
partments are perturbed by drug treatments. In particular, Yan
et al.!% explored the effects of R-spondin ligand (RSPO1-4)
inhibition and gain-of-function on intestinal stem-cell regenera-
tion and differentiation through bulk gene expression profiling.
Since bulk RNA-seq analysis alone does not provide information
regarding cell-type composition, they followed up with single-cell
RNA-seq analysis and observed dramatic changes of cell-type
composition in four distinct cell-type compartments: non-cycling
ISC, cycling ISC, transit amplifying (TA), and differentiated cells.
Here we use this data set to test whether our deconvolution
method can reveal such changes based on bulk RNA-seq
data alone.

We applied DWLS to estimate the cell-type composition
changes due to these drug treatments, using the single-cell data
only to estimate the cell-type-specific gene expression signature
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Fig. 3 Deconvolution of eight normal mouse bulk data sets characterized by the MCA. a Results from the deconvolution of each bulk data set using a
signature constructed from the mouse cell atlas (MCA), using three deconvolution methods: dampened weighted least squares (DWLS), quadratic
programming (QP), and v-support vector regression (v-SVR). Estimates are plotted against an approximate true cell-type proportion as defined by the
MCA data. Correlation values between true and estimated proportions are used to quantify estimation accuracy for each method. The 45° line in each plot
represents the optimal estimate. The top row shows all estimates, while the bottom row shows a zoomed-in version focused on only the rarest cell types.
b Another view of the kidney deconvolution estimates under each deconvolution method via a heatmap, where each box corresponds to a cell-type
proportion estimate, and a darker color corresponds a higher estimated proportion. Colors are shown on a log scale. ¢ A summary of deconvolution results
across all eight bulk samples, quantified by (1) correlation between true and estimated cell-type proportions for each tissue (left panel), (2) sensitivity of
each deconvolution method (middle panel), and (3) specificity of each deconvolution method (right panel). The center line of the boxplot corresponds to
the median value, while bounds of the boxplot correspond to the 25th and 75th percentiles. The upper whisker bound corresponds to the smaller of the
maximum value and the 75th percentile plus 1.5 interquartile ranges; the lower corresponds to the larger of the smallest value and the 25th percentile

minus 1.5 interquartile ranges

matrix (Fig. 4). We found that treatment with Ad-LGR5-ECD
almost entirely removed the intestinal stem-cell population (on
average, from 53.3 to 1.76%), while increasing the proportion of
transit amplifying cells by 2.07-fold (25.5 to 52.8%) on average
and differentiated cell types by 2.15-fold (21.1 to 45.4%) on
average. On the other hand, treatment with Ad-RSPO1
completely removed the transit amplifying cell population, while
increasing the size of the intestinal stem-cell population by an
average 1.50-fold (53.3 to 79.8%). These observations are highly
consistent with the single-cell RNA-seq data, which were used to
deduce the biological functions of these treatments. That is, Ad-
LGR5-ECD treatment drives differentiation, while Ad-RSPO1-
treatment promotes stem-cell renewal. Here, we were able to
draw the same conclusions without the need to generate single-
cell RNA-seq data from every condition.

In comparison, inconsistencies arose when estimation was
performed using QP and v-SVR approaches. Specifically, neither
method was consistently able to detect any cycling intestinal stem
cells, whose proportion was estimated to be 29% in the control
condition and 44% in the Ad-RSPO1 condition based on the
single-cell RNA-seq data, and on average 31.8% and 31.4%
according to the DWLS estimates. v-SVR also predicted an
increase in differentiated cell types due to Ad-RSPO1 treatment

(7.64 to 45.2%), which is inconsistent with the results of the other
estimation methods, the single-cell RNA-seq data, and the
underlying biological mechanisms!?.

Model robustness evaluation. To test the robustness of these
results, we repeated the above ISC analysis while varying a
number of model parameters, including normalization procedure,
criteria for signature gene identification, and dampening magni-
tude, as described below.

First, single-cell RNA-seq data sets usually contain many
dropouts due to amplification bias or other technical artifacts. To
evaluate the effect of dropouts on deconvolution, we simulated
single-cell RNA-seq data using Splatter?0, varying the dropout
rate from 16% to 41% (see Methods section for details). For
comparison, we also applied QP and v-SVR to the same data sets.
The accuracy of DWLS remains high across dropout rates
(Supplementary Fig. 2). Importantly, DWLS is more robust than
the other two methods, with the greatest difference between
methods seen at high dropout rates.

Second, technical differences between single-cell and bulk
RNA-seq data may induce significant biases on cell-type
composition estimation. A number of methods have been

| (2019)10:2975 | https://doi.org/10.1038/541467-019-10802-z | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Noncycling ISC ~ Cycling ISC TA Differentiated
0.8
4 - -
04 - ﬁ ’ = é DWLS
- o :
1=+ — E =
0.0 - ——— == =
] ===
_ 08+ = ==
o
‘g b QP
S 04 -
o h
* =
0.0 o] o a0 O
0.8 - -
1.4 P<|.a
i SVR
0.4 = -« ﬁ e
-
0.0 — == = —w— e %E

Control LOF GOF  Control LOF GOF Control LOF GOF  Control LOF GOF

Fig. 4 Deconvolution estimates of bulk mouse ISC data across various
conditions. The control condition corresponds to Lgr5-eGFP+ intestine
cells 1.5 days post treatment with Ad-Fc, the loss of function (LOF)
condition corresponds to Lgr5-eGFP+ intestine cells 1.5 days post
treatment with Ad-LGR5-ECD, and the gain of function (GOF) condition
corresponds to Lgr5-eGFP+ intestine cells 1.5 days post treatment with Ad-
RSPO1. Each point corresponds to the deconvolution estimate of a cell type
for a single bulk data set, for the dampened weighted least squares
(DWLS), quadratic programming (QP), and v-support vector regression (v-
SVR) deconvolution methods. Cell types include cycling and non-cycling
intestinal stem cells (ISCs), transit amplifying (TA) cells, and various
differentiated cell types. The center line of the boxplot corresponds to the
median value, while bounds of the boxplot correspond to the 25th and 75th
percentiles. The upper whisker bound corresponds to the smaller of the
maximum value and the 75th percentile plus 1.5 interquartile ranges; the
lower corresponds to the larger of the smallest value and the 25th
percentile minus 1.5 interquartile ranges

developed to normalize single-cell RNA-seq data?l:2223, To
evaluate the effect of using different normalization methods on
deconvolution, we used Splatter to simulate scRNA-seq data sets
while introducing library size variation. We normalized the data
using three different methods: Scran?!, Seurat?2, and SCnorm?3,
and applied DWLS to analyze the normalized data (see Methods
section for details). For comparison, we also used QP and v-SVR
to analyze the same data sets. We noticed significant differences
across the different normalization methods, with SCnorm most
faithfully preserving cell-type composition (Supplementary
Fig. 3a, b, c¢). Of note, while SCnorm normalizes UMI counts
directly, both Scran and Seurat log-transfrom the data after
normalization. To test if the performance difference between
normalization methods is due to log-transformation, we reana-
lyzed the data by applying Scran and Seurat without log-
transformation. In both cases, the performance is much improved
(Supplementary Fig. 3a, b, c).

While all three deconvolution methods perform well in all
normalization methods without log-transformation, the perfor-
mance of DWLS is slightly better in this case. To further evaluate
the effect of normalization in real data analysis, we reanalyzed the
ISC data set described above after normalization. In this case, the
DWLS results are robust with respect to different normalization
methods, whereas QP and v-SVR are much more sensitive
(Supplementary Fig. 3d, e, f). Importantly, only DWLS recapi-
tulates the correct trend due to treatment. Again, the difference
between normalization methods is mainly due to log-
transformation (Supplementary Fig. 3g).

Third, we evaluated the robustness of DWLS to the selection of
signature genes. To this end, we used a more stringent cutoff (log
(fold change)>1 and p-value <0.001, FDR adjusted, defined
using the hurdle model in the MAST R package) to select
differentially expressed genes. As a result, the number of
differentially expressed genes was reduced from 1032 to 775.
Using this more stringent gene signature, we re-estimated cell-
type composition using DWLS. We found the results were similar
to before (Supplementary Fig. 4). Furthermore, we compared the
signature genes obtained from two different differential gene
detection methods: Voom?* and edgeR?°. In both cases, we found
that the results were similar to before, in part due to the strong
overlap of the detected gene signature from different methods
(Supplementary Fig. 4).

Discussion

Cellular heterogeneity must be taken into account when com-
paring gene expression data from bulk samples. As large efforts
are under way to thoroughly characterize cell types of different
organisms through single-cell analyses26, we are facing a new
opportunity to systematically quantify cell-type composition
using the detected cell-type signatures. We envision that such
deconvolution methods will be routinely used to precisely
determine gene expression pattern changes in development and
disease. Toward this goal, we have developed a new and more
accurate computational method for deconvolution.

Using the mouse cell atlas data set as an example, we have
demonstrated that the tissue of origin of a bulk sample can be
accurately predicted from deconvolution given a comprehensive
signature of all cell types in an organism. In the meantime, we
also recognize the danger of detecting irrelevant cell types, which
is especially acute when many irrelevant cell types are included in
the signature. Cell types from different tissues may share similar
functions and therefore may be difficult to differentiate due to
high collinearity. To minimize this risk, we advise that after a
general deconvolution with a broad signature, irrelevant cell
types be removed from the signature matrix to build a more
specific signature matrix from only the most appropriate single-
cell data sets. Such a multi-step approach may result in both
more specific cell-type designations and more accurate estimates,
although further investigation is needed to validate this
approach.

At the other end of the spectrum, deconvolution accuracy is
always dependent on the completeness of the cell-type signature,
and incomplete cell-type information will compromise estimates
of all cell types in the signature. Care must always be taken to
create the most appropriate signature matrix given the extent of
information known about the sample. Overall, the flexibility
of 'signature matrix definitions made possible by large quantities
of single-cell data has promising implications.

Another challenge in deconvolution is the accurate estimation
of rare cell types. In part, this is because detecting rare cell types
from a large population in single-cell data is a challenging task,
and precise signatures are difficult to build>’-30. In addition, the
estimation of rare cell proportions by deconvolution is notor-
iously difficult due to the increased stochasticity of small sample
sizes?. While our method presents an improvement over previous
methods in rare cell-type detection, we hope to further improve
rare cell-type detection accuracy in future work.

Methods

Implementation. The DWLS method is implemented in a Cran R package called
DWLS. Both source codes and instructions are available at https://bitbucket.org/
yuanlab/dwls.
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Creation of the signature matrix. The cell-type signature matrix is constructed
using a representative single-cell data set, such that all cell types expected in the
bulk data are also represented in the single-cell data (the converse need not be
true). The single-cell data is first clustered to reveal its constituent cell types.
The optimal clustering method is dependent on the data set, but generally, a
rare-cell-type-sensitive clustering method is preferred2’-30. Further inspection
of differentially expressed genes between each of these clusters is important, as
this will confirm whether the detected clusters consist of biologically relevant
cell types. Upon characterization of the cell types, differential expression ana-
lysis is performed to identify marker genes for each cell type. We define marker
genes as genes with an FDR adjusted p-value of <0.01 (defined using the hurdle
model in the MAST R package), and a log2 mean fold change >0.5. For very
large single-cell data sets like the Mouse Cell Atlas, p-values are instead
determined using the Seurat R package under the bimod likelihood ratio test for
single-cell gene expression’!, due to the faster runtime. To create the final
signature matrix S, we create many candidate matrices (151 in total), which
include between 50 and 200 marker genes from each cell type. The expression
values of these chosen genes are averaged across each cell type, so that each
resulting candidate matrix is an n x k matrix, where n is the number of genes
and k is the number of cell types. The final signature matrix S is chosen as the
candidate matrix with the lowest condition number, in a manner similar to
CIBERSORT?.

Mathematical details of our weighted least squares approach. To be more
precise, we rewrite the deconvolution problem as $x = t, where § is the signature
matrix derived above, X is the estimated cell-type number, and t is the bulk data.
Most notably, § is used to denote that the single-cell-derived signature is only an
estimate of the true cell-type signature, S, which is unknown. Similarly, X is the
solution to Sk = t, which will almost always differ from the true cell-type number,
x, which is only known in the case of simulated bulk data. Suppose we have k cell
types and # signature genes. Let t = (t,¢t,... f,,)’, X = (X,%,... %)’, and

Su e Suk

S=1|: - : | . This system of equations can be solved in various ways.

Snl Snk
In the traditional setting, we obtain an estimate, X, of the true cell type x by
minimizing the squared error:

n k 2
% = argmin Err(t, $, %) = argmin Z (ti - Z §U5C1> (1)
x x i=1 j=1

Define X; = ::—’)?l, for j=2, ... k. Then,
1

i=1

2
n k
2 ~ a X~
Err = Z(ti —Sux — Z&j;ﬁ’ﬁ)
=
n

A a2 . K x 3,
=2 (t = 8u%14;)", whereg; = (1 + Z;%ﬁ
=

i=1

M=

A k x; S,
(Suxid; — Silklfh)za whereg; = <1 + Z;ﬁ;f)
=
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To proceed, we make an assumption that the cross terms are orthogonal to each
other, i.e.,

n

Z((Silxlqi - Silxl‘?i) (SilxI[Zi - Sil’zl[li)) =0 (3)

i=1
This is equivalent to assuming that the estimation error for cell-type signatures is
independent of the estimation error for cell-type composition. While this
assumption cannot be rigorously tested in real data, an approximate test of this
assumption is possible through bootstrapping methods. With this assumption, Eq.
(2) can be further reduced to

n n
PR & A~ a2
Err = Z(Snxﬂi = Suxq) + Z(Snxl%‘ - 8u%14;) (4)
=1 =1
The first term is driven by a difference between the true and estimated signatures,
which cannot be controlled for. We concern ourselves with the second term, which
can be rewritten as:

n ) n k 2 (X — % ) 2
PN - 3 1=

Seat a3 (o) (B52) o
i=1 i=1 \ j=1 1

We can see that this error term corresponds to the relative error of estimation for
cell type 1, multiplied by a function of S and x such that genes with high expression
and genes pertaining to prevalent cell types will have a larger impact on the error
term. Because we would like all cell types to be estimated with equal accuracy, we
would like the error term to be a function of the relative error of estimation only.

To mitigate this problem, we use a weighted least squares approach to solve the
equation, which is represented as the following optimization:

n k 2
min Z w; (t,- - Z S,-jij) (6)
i=1 =1

The weights are chosen as to remove the extra term in Eq. (6). If we let:

" (ZI':I Sff"j)z eES @)

=

we are now minimizing:

i=1
oY & )2 (et L N (mm)) ()
N’;(S‘;y ($.x) ( ) :;< ) :n(xx‘x ) 7

such that the total error is now a function of the relative error in cell-type number
for cell type 1. Without loss of generality, we can similarly show this relationship
for any cell type j € {1, ... , k}, such that

Err = f: w; (ti —
(®)

2
X — %
Err=n w Vje{1,...,k} )
J

Compared with the ordinary least squares approach, the relative error is reduced.

Additional adjustments to improve performance. Using the framework derived
above, we would like to formulate the estimation of cell-type proportion as a
1

weighted least squares problem with weights w; = —. Several modifications are
PGS

required to make this a viable approach:

(1) The weights are a function of x, the true cell-type number, which is
unknown. We can approximate this with our estimated cell-type number, X,
but since this also the variable being solved for, iteration is required to reach
a solution. Let:

Convergence is reached when Hi{(” — 5((171)|| < 0.01.

(2)  The weights are unbounded from above and may approach infinity in the
case of very rare cell types (X & 0) and/or lowly expressing genes (gij ~ 0 for
all cell types). This will lead to a solution driven by only a few genes. To
rectify this, a dampening constant d is introduced, which defines the
maximum value any weight can take on. For ease of use, we first linearly
scale the weights such that the minimum weight takes on a value of 1:
wi=—"i~ je{l,...n}. The resulting optimization is equivalent. The

i min(w;) *

dampened weights w; are then defined as:
- { wi,ifwi<d }
w; = .
d, otherwise

Cross-validation is used to select d, as follows. The possible values for d
are defined as d = 2%, whereq € {0, 1,2, ... max(noninﬁnitelogZ(wf)) }
Then, 100 subsets of signature genes of half the size of the full signature gene
set are randomly selected. For each subset, the cell-type proportion is
estimated using weighted least squares on the dampened weights, for each
possible value of d. The variance of the estimates over the 100 subsets for
each choice of d is calculated, and the d that leads to the lowest variance is
selected. Alternatively, the cross-validation criterion may be changed to
minimize the coefficient of variation instead of the variance. In practice, we
find the results are often similar (Supplementary Fig. 5).

(3)  As specified above, X need not be positive. However, cell-type numbers are
inherently non-negative. To set a constraint on %, such that %, > 0V}, we
solve the constrained dampened weighted least squares problem via
quadratic programming, using the function solve. QP in the R package
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quadprog. The new minimization problem is then:

n k 2
min 2 Vi =) 8%

=1

Jointly implementing all of these alterations, we reach the final deconvolu-
tion process:

(13)

2
k ~
t— ZS,ﬂ@) . where ") = damp <(SXIT)Z> , and damp(w;)

_ ) mmGy ifmin(’w/) <d
d, otherwise
(14)

n

X 2
% = argmin Z Wf” (t, - Z ijij) , where 12/,“) = damp
=1

%320 7

1

Convergence is reached when Hﬁm — (-0 || <0.01.

Simulation details. Counts for the simulated single-cell data set are generated
using a Poisson distribution, for a total of six genes and three cell types. In the first
simulation, two genes are upregulated in each cell type, where A =50 for an
upregulated gene and A =5 otherwise. Fifty cells from each cell type are used to
create a signature matrix, where the six genes are averaged over each cell type to
create a reference gene expression profile. Between 10,001 and 15,000 cells are used
to simulate bulk data, by summing up gene expression values across cell types.
Specifically, 5000 bulk data sets are created by combining 5000 cells from cell types
2 and 3, and between 1 and 5000 cells from cell type 1. Overall, this creates bulk
data sets with a rare cell-type proportion spanning between 0.1% and 33.3%. Bulk
data simulation is repeated 10 times for each rare cell-type proportion, and all
metrics reported are based on an average of these 10 samples.

In the second simulation, two genes are again upregulated in each cell type, but
the mean expression level of the marker genes corresponding to the first cell type is
lower, such that A ranges from 0.05 to 10 for an upregulated gene and from 0.005 to
1 otherwise. Fifty cells from each cell type are again used to create a signature
matrix, where gene expression levels are scaled for each choice of A, for a total of
200 signature matrices. To simulate the bulk data, 5000 cells from each cell type are
aggregated so that each cell type is present in equal proportion. Bulk data
simulation is repeated 10 times for each choice of A, and all metrics reported are
based on an average of these 10 samples.

Estimation using other deconvolution methods. Nu-support vector regression
was performed using the svm function in the e1071 package in R. Parameters were
set to nu = 0.5, type = “nu-regression”, kernel = “linear”, cost = 1, and all others to
the default values. Bulk data and signature matrices were scaled to [—1, 1]. These
parameter and scaling choices match those specified in Schelker et al.!” in their
MATLAB code, accessed through https://figshare.com/s/865¢694ad06d5857db4b.
As in Newman et al.%, model coefficients are extracted from the svm model using
t(model$coefs) %*% model$SV, and any negative coefficients are set to zero. The
coefficients are then scaled by the sum of the coefficients, such that the scaled
coefficients will sum to one.

Quadratic programming is implemented using the solve.QP function in the
quadprog package in R. Default parameters are used, and the constraints are
specified such that all coefficients must be greater than or equal to zero.

MCA Bulk RNA-seq data pipeline. Six- to ten-week-old male C57BL/6] mice were
purchased from the Shanghai Laboratory Animal Center (SLAC). From each
mouse, four non-sexual tissues (liver, small intestine, lung, and kidney) were
excised. The excised tissues were immediately washed in PBS. After washing, each
tissue was ground into powder with liquid N2. RNA extraction was performed
using Trizol. We used mRNA Capture Beads (VAHTS mRNA-seq v2 Library Prep
Kit for Illumina, Vazyme) to extract mRNA from total RNA. A PrimeScript Double
Strand ¢cDNA Synthesis Kit (TaKaRa) was used to synthesize double-stranded
cDNA from purified polyadenylated mRNA templates according to the manu-
facturer’s protocol. We used TruePrep DNA Library Prep Kit V2 for Illumina
(Vazyme) to prepare cDNA libraries for Illumina sequencing (VeritasGenetics). All
experiments performed in this study were approved by the Animal Ethics Com-
mittee of Zhejiang University. All experiments conform to the relevant regulatory
standards at Zhejiang University Laboratory Animal Center.

Bulk sequencing reads containing multiplexed data were filtered using the
bbduk function of the bbmap tool to select reads containing the appropriate sample
index. STAR 2.5.3a32 with default parameters was used to map filtered reads to the

Ensembl release 75 mouse reference genome. Aligned reads were normalized by
library size to fragments per kilobase of transcript per million mapped reads
(FPKM) using the fpkm function in the DESeq2 package in R.

Mouse cell atlas single-cell data. The mouse cell atlas (MCA) single-cell datal® and
annotations were accessed through https://figshare.com/s/865e694ad06d5857db4b.
The single-cell data is quantified as UMI counts. The signature matrix was built using
the 61k cell subset consisting of randomly sampled cells from 43 tissues. Cell types
were defined by collapsing the 98 clusters identified by Han et al. into 52 unique cell

types.

Intestinal stem-cell bulk and single-cell data. Intestinal stem-cell (ISC) single-
cell and bulk RNA-seq data sets from Yan et al.!? were accessed through the Gene
Expression Omnibus (GEO) repository under accession numbers GSE92865 and
GSE92377, respectively. The single-cell data is quantified as UMI counts. All Lgr5-
eGFP+ and Lgr5-eGFP— cells were used in the construction of the signature
matrix. The single-cell data cell-type labels shown in Yan et al. Figure 5al? were
obtained from the authors upon request, and these were used to generate the
signature matrix. The bulk data is quantified in terms of FPKM values.

Schelker et al. simulation details. Source code and data from the Schelker et al.l”
simulation analysis was accessed through https://figshare.com/s/711d3fb2bd3288c8483a.
The single-cell RNA-seq data used in Schelker et al.l7 includes tumor cells from 19
melanoma patients, PBMCs from four healthy subjects, and ascite samples from four
ovarian cancer patients. A signature matrix was built using all cells, using the clusters
found by DBSCAN in Schelker et all7, and using the genes from the CIBERSORT
immune-cell signature’. Twenty-seven patient-specific simulated bulk data sets were
built by summing up gene expression values of signature genes across all cell types, for
each patient.

Modified relative percent error calculation. Modified relative percent error
measures the absolute difference between estimated and true cell-type proportions,
normalized by the mean of the estimated and true cell-type proportions. A pseudo
count of 0.005 is added so that for very small cell-type proportions, relative error
does not become unreasonably high. It is defined as:

0, ifx; =0andX; =0

MRPE =

* 100, otherwise

where x; and X; are the true and estimated cell-type numbers, respectively, for cell
type 1.

Model robustness evaluation. All evaluation analyses were carried out for the ISC
data sets. To generate single-cell data with dropout effects, the splatSimulate
function from the Splatter R package was used with parameters group.prob = ¢
(0.25, 0.25, 0.25, 0.25), nGenes = 10,000, batchCells = 1000, and method =
“groups”20, with various dropout.shape values (dropout.shape = —2000, —2, —1.3,
—0.8, —0.6, and —0.3). Each group was simulated five times with different seeds
(seed =1, 2, 3, 4, and 5). Bulk gene expression data was simulated by aggregating
all single cells. For comparison, DWLS, QP, and v-SVR were applied to analyze the
same data sets.

To evaluate the effects of normalization on deconvolution, we first used the
splatSimulate function from the Splatter R package to generate three simulated data
sets (group.prob = ¢(0.90,0.10), nGenes = 10,000, batchCells = 1000, method =
“groups”) corresponding to three different cell-type composition scenarios. Bulk
data were simulated as the sum of the individual single-cell data. For each
simulated data set, the raw data were normalized using three different
normalization methods: Seurat?2, Scran?!, and SCnorm?23, respectively, with the
following settings: Seurat (normalization.method = “LogNormalize”, scale.factor =
100000), Scran (centre_size_factors = TRUE) and SCnorm (K = 1, conditions =
rep(c(1), each = 1000)). For each normalized data set, we applied DWLS, QP, and
v-SVR to deconvolve cell-type composition as described in the previous section.
Furthermore, we also evaluated the performance using the ISC data set as a
representative example of real data, using the same analysis procedure with
settings: Seurat (normalization.method = “LogNormalize”, scale.factor = 100000),
Scran (centre_size_factors = TRUE), and SCnorm (conditions = rep(c(1), each =
12494)). Both Seurat and Scran log-transform the data after normalization. To test
if the log-transformation step significantly affects deconvolution accuracy, we
analyzed the data with or without log-transformation. The latter was derived by
converting the log-transformed data back to the original scale.

To evaluate the influence of the signature gene selection, approximately half of
the signature genes were randomly selected 10 times in the ISC data set for further
analysis. A more stringent cutoff of log(fold change) > 1 and p-value <0.001 (FDR
adjusted, defined using the hurdle model in the MAST R package for ISC data, and
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the bimod likelihood ratio test in the Seurat R package for MCA) was used for
signature gene selection in ISC and MCA data sets.

Furthermore, we compared our results using two alternative differential gene
detection methods: Voom?* and edgeR?>. For Voom, genes with log(fold
change) > 1 and p-value <0.001 (FDR adjusted, empirical Bayes moderation
method in the limma R package) were selected. For edgeR (FDR adjusted, Fisher’s
exact test in the edgeR R package), highly significant (top 100, top 200, top 300, top
400, and top 500) differential genes were selected. In each case, the selection of
differentially expressed genes was followed by DWLS.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

MCA Bulk RNA-seq data have been deposited to the Gene Expression Omnibus (GEO)
database with accession code GSE124419. All other relevant data is available upon
request.

Code availability
Source code is freely accessible to the public at: https://bitbucket.org/yuanlab/dwls/src/
default/
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