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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative

disease that leads to cognitive impairment and memory loss. Currently, the

pathogenesis and underlying causative genes of AD remain unclear, and

there exists no e�ective treatment for this disease. This study explored

AD-related diagnostic and therapeutic biomarkers from the perspective of

immune infiltration by analyzing public data from the NCBI Gene Expression

Omnibus database.

Method: In this study, weighted gene co-expression network analysis

(WGCNA) was conducted to identify modules and hub genes contributing

to AD development. A protein–protein interaction network was constructed

when the genes in the modules were enriched and examined by Gene

Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.

Furthermore, a gene network was established using topological WGCNA, from

which five hub genes were selected. Logistic regression analysis and receiver

operating characteristic curve analysis were performed to explore the clinical

value of genes in AD diagnosis. The genes in the core module intersected

with the hub genes, and four intersection genes (ATP2A2, ATP6V1D, CAP2, and

SYNJ1) were selected. These four geneswere enriched by gene set enrichment

analysis (GSEA). Finally, an immune infiltration analysis was performed.

Results: The GO/KEGG analysis suggested that genes in the core module

played a role in the di�erentiation and growth of neural cells and in the

transmission of neurotransmitters. The GSEA of core genes showed that these

four genes were mainly enriched in immune/infection pathways (e.g., cholera

infection and Helicobacter pylori infection pathways) and other metabolic

pathways. An investigation of immune infiltration characteristics revealed that

activated mast cells, regulatory T cells, plasma cells, neutrophils, T follicular

helper cells, CD8T cells, resting memory CD4T cells, and M1 macrophages
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were the core immune cells contributing to AD progression. qRT-PCR analysis

showed that the ATP6V1D is upregulated in AD.

Conclusion: The results of enrichment and immuno-osmotic analyses

indicated that immune pathways and immune cells played an important role in

the occurrence and development of AD. The selected key genes were used as

biomarkers related to the pathogenesis of AD to further explore the pathways

and cells, which provided new perspectives on therapeutic targets in AD.

KEYWORDS

genetic biomarkers, weight gene co-expression network analysis, Alzheimer’s disease,

immune infiltration, di�erential genes

Introduction

Dementia, a progressive degenerative disease common in

older adults, is characterized by a cognitive decline that is

severe enough to interfere with daily functioning. Currently,

47 million patients suffer from dementia worldwide, and

this number is expected to double by 2050. To date, there

exists no cure for any of the causes of dementia (1). The

clinical course and medical history remain the main basis

for the current diagnosis of dementia. Alzheimer’s disease

(AD) is the most common cause of dementia. Previously,

amyloid (A) aggregates and tau neurofibrillary tangles (NFTs)

were the two main pathological features of AD, and were

considered as the gold standard for the diagnosis of AD (2).

In recent years, the clinical and research application of AD

biomarkers has gone through a long process, and people have

conducted more sufficient research on Alzheimer’s disease and

adjusted the diagnosis of Alzheimer’s disease. At present, the

clinical diagnostic criteria for AD mainly include the IWG-

2 criteria developed by the International Working Group

(IWG), the NIA-AA criteria formulated by the National Institute

on Aging and Alzheimer’s Association (NIA-AA), and the

“Guidelines for the Diagnosis and Treatment of Alzheimer’s

Disease in China (2020 version)” released by the Professional

Committee on Alzheimer’s Disease and Related Diseases of the

Chinese Geriatric Health Care Association (Alzheimer’s Disease

Chinese, ADC). According to the 2011 recommendations of the

National Institute on Aging and the Alzheimer’s Association

on diagnostic guidelines for Alzheimer’s disease: Preclinical

stages, mild cognitive impairment, and dementia, Alzheimer’s

disease (AD) is defined by its underlying pathological process

and can be recorded by autopsy or biomarkers in vivo. In

this research framework, the diagnosis is not based on the

clinical consequences of the disease (i. e., symptoms/signs),

which shifts the definition of AD in living people from a

syndrome to a biological structure, focusing on the diagnosis

of AD with biomarkers in living people. Cerebrospinal fluid

biomarkers, such as Aβ42, T-tau, and P-tau, are recognized as

central biomarkers for AD. In addition, the development of new

molecules in other pathophysiological pathways that can be used

as biomarkers for the diagnosis of AD hasmade great progress in

the last decade. Neuroimaging technology has developed rapidly

over the past few decades, with amyloid positron emission

tomography (PET) and fluoro-18-2-deoxyglucose PET acting as

molecular imaging biomarkers, playing an important auxiliary

role in the diagnosis of AD. Amyloid PET radiological tracers

can detect the early pathological changes in AD and can visualize

and follow up on the pathophysiological changes in patients

with AD. Recent studies have proposed a diagnostic algorithm

to comprehensively analyze the optimal time points, amyloid

proteins of PET biomarkers, tau, and genetic markers for the

early diagnosis of AD, enabling a comprehensive study of the

pathogenesis of the disease (3). In 2021, the guideline was further

revised, and the diagnosis of AD included more biomarkers,

such as the plasma a β 42/A β 40, P - tau217, P - tau181, and NFL

levels and cerebrospinal fluid a β 42/A β 42/A β 40. P - tau181,

P - tau217, t - tau, and NFL levels, which can be used for the

early diagnosis of AD-derivedMCI and the evaluation of disease

progression. The diagnosis of AD through neuroimaging is also

more perfect. NIA-AA diagnostic criteria (2011, 2018) and iwg-

2 (2014) are adopted to pay attention to the application of

AD-related biomarkers in the diagnosis of AD-derived MCI (4).

Research in the field of AD has rapidly progressed over

the past few decades. Recent research suggests that the risk of

AD is partly driven by genetic factors. In 2019, a large-scale

genome-wide association meta-analysis identified 25 genome-

wide loci, some of which were identified as familial proxies for

AD or dementia and were involved in tau binding, amyloid

precursor metabolism, immunity, and lipid metabolism (5).

Apolipoprotein E4 (APOE4) has been reported to influence AD,

in part through its immunoregulatory functions. Additionally,

APOE4 variants are the largest genetic risk factors for AD. This

function of APOE may be related to the triggering receptor

expressed on myeloid cells 2 (TREM2), which is expressed

by the microglia in the central nervous system (CNS) (6).

TREM2 not only affects the microglial function in amyloid
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and tau pathologies but also participates in inflammatory

responses and metabolism, acting alone or in combination

with other molecules (e.g., APOE) (7). Relevant literature has

reported on TREM2 and PLCγ2, as well as the potential role of

protein kinase C (PKC) and PKC regulators as new therapies

for neuroinflammation and neurodegenerative diseases in

promoting the activation of repair/regeneration microglia

subtypes (8). Neuroinflammation-induced neurodegeneration

and immune cell infiltration are the two hallmarks of AD (9).

As is well-known, neuroinflammation is the main factor

for AD progression. Immune cell infiltration is a type of

neuroinflammation that causes extensive damage to the neurons

in the CNS via the interaction between various immune system

cells and CNS neurons. AD has pro-inflammatory properties

that can activate peripheral leukocytes and transfer them to

the center, damaging the CNS (10). In early AD, activated

neutrophils accumulate in the blood, migrate to the CNS,

promote local inflammation, and cause progressive damage to

the blood–brain barrier (BBB). The BBB integrity is impaired,

and fibrinogen penetration through the leaky BBB causes

various abnormalities, including persistent fibrin aggregation

and coagulation, microglia-mediated production of reactive

oxygen species, and neurons and synapses. The vitality of

the contact connection is reduced (11). Related studies have

shown that T cells play an important role in promoting AD

development. After the onset of AD, T cells infiltrate the CNS

and secrete pro-inflammatory mediators, such as CD8T cells

(12); additionally, they may directly act on the neurons that

regulate synaptic function, leading to dysfunction. T cells can

cooperate with other cells to cause AD formation. On the

other hand, activated B cells, which have been extensively

studied over recent years, gradually accumulate and infiltrate

into the brain parenchyma after the onset of AD, resulting

in Aβ protein deposition (13). Neutrophils also play a role in

AD progression; by using microPET to detect tracer uptake

at different stages of AD, a previous study revealed that the

neutrophil activity was increased in the brain and heart of

AD models and that infiltrating neutrophils could induce

the microglia via CAP37 release (14). Immune cells and

their induced inflammatory responses can have detrimental

effects on the immune microenvironment of the CNS, thereby

exacerbating AD progression (8). Nevertheless, the mechanisms

of action of these immune cells in AD have not been thoroughly

investigated (15). Therefore, a systematic approach is urgently

needed to explore the correlation between immune-infiltrating

cells and AD in more detail.

Alzheimer’s disease (AD) is a neurodegenerative brain

disease characterized by extracellular amyloid plaques and

neurofibrillary tangles in the brain, which affect different

areas of the brain based on the different progression of

AD disease (16). Lesions early in AD progression originate

from the entorhinal cortex (EC) and the hippocampus (HIP)

(17), and as AD evolves, neurofibrillary tangles develop from

layer II of the entorhinal cortex (EC-II) to the limbic and

associated cortices (18). The hippocampus is one of the

involved regions, and its atrophy is a widely used biomarker

in the diagnosis of AD (19). The hippocampus is a brain

region critical for learning and memory, and is particularly

vulnerable to damage in the early stages of Alzheimer’s disease

(AD). Emerging evidence suggests that alterations in adult

hippocampal neurogenesis represent early key events during

AD. From a functional perspective, hippocampal neurogenesis

plays an important role in structural plasticity and network

maintenance (20). At present research, hippocampal tissue

is the best sample source for studying the mechanism of

learning and memory function in Alzheimer’s disease (AD)

patients and healthy controls (21). Many mechanisms are

related to lesions in the hippocampal region after AD lesions.

For example, the accumulation of mAPP and A causes

abnormal mitochondrial, synaptic, and autophagy/mitophagy

abnormalities in hippocampal neurons, leading to neuronal

dysfunction (21). Wang’s team reported that neuronal miR-124

is significantly increased in the hippocampus of TG2576 mice,

and that miR-124/PTPN1 pathway is a key mediator of synaptic

dysfunction and memory loss in AD, thus miR-124 / PTPN1

pathway can be considered as a promising new therapeutic target

for patients with AD (22). Genes encoding the members of

the m6A methyltransferase METTL3 and RBM15B, the m6A

methyltransferase complex (MACOM), are downregulated and

upregulated in the hippocampus, respectively. The aberrant

expression and distribution of METTL3 in AD mind may

represent surface transcription as a mechanism of altered gene

expression patterns associated with disease pathogenesis (23).

The literature has reported that the injection of BM-MSCs at

the hippocampus site in the brain can improve the cognitive

impairment in AD model mice by improving astrocytic

inflammation and synaptogenesis. It has been confirmed that the

exosomal transfer of miR-146a is involved in the correction of

cognitive impairment in AD model mice (24). In conclusion,

with the progression of the disease after AD, the whole brain

region was abnormal, among which the neurogenesis in the

hippocampal region was the most significant. We selected

the hippocampal region for a detailed study and analyzed

the RNA changes in this region to provide a basis for

finding the target gene of AD and further extracellular vesicle

drug therapy.

Weighted gene co-expression network analysis (WGCNA)

is an effective method for demonstrating the correlation

of gene expression using a microarray database (25).

WGCNA is used to identify correlated genes (modules),

analyze the characteristic genes of modules or the hub

genes that determine modules of interest based on the

correlation coefficients between modules and phenotypic

traits, and explore the relationship between modules and

traits. This method is commonly applied to explore genetic

markers and therapeutic targets in various diseases (26).
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WGCNA is widely utilized to study various diseases, such

as diabetes (27) and cancer (28), and is also applied to brain

imaging data analysis (29), and proteomic and metabolomic

analyses (30).

Several previous molecular biology studies have shown

that immune cells and their induced inflammatory responses

can have long-term detrimental effects on the immune

microenvironment of the CNS, thereby exacerbating AD

progression (26). Nonetheless, immune-infiltrating cells

and immune-related genes associated with AD remain

unknown. Therefore, the present study aimed to identify

immune-infiltrating cells and related genes in AD and

to investigate their biological characteristics and involved

pathways in order to provide promising targets for

further studies.

Materials and methods

Data collection and preprocessing

The expression profile datasets of humanAlzheimer’s disease

patients and controls were retrieved from the comprehensive

gene expression database (GEO) for analysis. Select the data

with the type of expression profiling by array for detailed

analysis. The following datasets were selected for analysis

in this study: GSE1297 (22 AD samples and 9 normal

control samples from the hippocampus, Blalock EM et al.,

published 2004), GSE28146 (22 AD samples and 8 normal

control samples from the hippocampus, Blalock EM et al.,

published 2011), and GSE36980 (8 AD samples and 10 normal

control samples from the hippocampus, Nakabeppu Y et al.,

published 2013). Further details are provided in Table 1. The

GSE1297 dataset was selected as the train set to explore the

relevant modules and hub genes, whereas the other datasets

were used as validation sets, from which the GSE28146 was

selected as the validation set 1, and the GSE36980 was

selected as the validation set 2 (31). The GSE1297 dataset

was analyzed using the GPL196 chip analyzer platform (32).

Data on related clinical characteristics, including age, disease

status, postmortem interval, NFTs, Braak stage, Mini-Mental

State Exam (MMSE) score, and sex, were also retrieved. All

analyses were conducted using R software version 4.1.5 (R

Foundation for Statistical Computing, Vienna, Austria). A

flowchart illustrating the study design is shown in Figure 1.

Samples for the test and validation sets were obtained from

the hippocampus.

Code availability

All codes used in this manuscript are available on github

at Comparing main...Duankefei-patch-1-1 · Duankefei/AD-

WGCNA (github.com).

Analysis of di�erentially expressed genes

Differential analysis was carried out on the training set

GSE1297 to screen differential genes. Based on the annotation

platform of each expression profile, the probe was combined

with the gene name to remove the empty probe. The lncRNA

transcript was deleted from the dataset. A total of 4,440

genes were selected for differential expression gene (DEG)

analysis. DEG analysis was conducted using the “limma” R

package, and the expression data of the gene matrix were

transformed using log2. The P-values were adjusted using the

false discovery rate (FDR) method, and genes with abs |log2

fold change| ≥0.5 with a P-value of <0.05 were screened as

DEGs. Upregulated and downregulated DEGs were screened

according to the | log2-fold change | and plotted as volcano

plots using the “ggplot2” R package (Figure 2A). DEGs were

presented as a heatmap using the “pheatmap” R package

(Figure 2B).

Weighted gene co-expression network
analysis

The “WGCNA” R package was used for WGCNA of 4,440

selected genes to explore modules related to clinical features.

All samples were included in the group, and network topology

analysis was performed with a threshold cutoff ranging from

1 to 20. An appropriate soft power threshold was selected

to calculate the adjacency matrix. The power value of the

predicted gene co-expression network was 5 (scale-free R2 =

0.85), indicating a scale-free topology with complete module

characteristics. A dendrogram was generated, and similar

clinical traits of the samples were explored to determine whether

the 31 samples in the GSE1297 dataset were suitable for

network analysis. The connectivity of themodel was calculated, a

connection matrix was constructed, and the number of modules

was adjusted.

The soft power threshold was calculated, the adjacency

matrix was converted into a topological overlap matrix

(TOM), and hierarchical clustering was constructed

according to the TOM phase-difference matrix (1-TOM).

The gene expression and clinical features were analyzed.

Gene significance and modular signature genes (MEs) were

determined, and the relationship between MEs and clinical

features of AD was analyzed using Pearson’s correlation

coefficients. The function for P-values by Student’s t-test

was used to determine the Student’s asymptotic P-value.

Except for the gray module, the most significant P-value

in the AD status column was selected as the key module

(P < 0.05). Genes in the key module were selected for

subsequent analysis.
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TABLE 1 The details of each datasets, sample source, Number of samples.

Datasets Brain region Sample size of control group Sample size of AD group

GSE1297 Hippocampus 9 22

GSE36980 Hippocampus 10 8

GSE28146 Hippocampus 8 22

FIGURE 1

Flowchart of the study. DEGs, di�erential expression genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,

protein-protein interaction; GSEA, Gene Sets Enrichment Analysis.

Functional enrichment analysis and
protein–protein interaction network
analysis of Alzheimer’s
disease-associated module

Each module is a functional unit (sub-network) with a

distinct biological function that we try to find out by building

modules using WGCNA. In order to explore the biological

significance of the selected module (blue module, significantly

correlated with Alzheimer’s disease) genes, Gene Ontology (GO)

annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis were performed using the DAVID

tool (http://david.abcc.ncifcrf.gov/). The GO terms and KEGG

pathways were visualized using the “ggplot” R package.

The PPI plots are a great way to extrapolate the gene

expression of mRNA-based findings to the protein level.

Potential interactions among proteins encoded by these genes

were predicted using the STRING web server (version 11.5;

http://string-db.org). A combined interaction score of >0.5 was

considered to be statistically significant. The minimum required

interaction score was set at the highest confidence level (0.900).

The PPI network was visualized using the Cytoscape software

(version 3.8.2).

Network construction and identification
of the hub genes

The edge node file for Alzheimer’s disease exported

from WGCNA was imported into Cytoscape software, and

a network was constructed based on the edge with a

weight >0.7, for visualization of the module gene–gene
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FIGURE 2

Di�erentially expressed RNAs. (A) A volcano plot showing the expression level of 4440 mRNAs. Green, and red dots represent the top 50

down-regulated and up-regulated mRNAs, respectively. Black dots represent not di�erentially expressed. (B) Heat map clustering of the

di�erentially expressed genes between AD and normal samples. (C) List of the top 10 most significant up and down regulated genes.

connections. Hub genes in Alzheimer’s disease were calculated

using 12 analysis algorithms of the CytoHubba plugin in

Cytoscape, which are MCC, DMNC, MNC, Degree, EPC,

BottleNeck, EcCentricity, Closeness, Radiality, Betweenness,

Stress, Clustering, and Coefficient. The top five genes in the

network were selected and presented as hub genes (Cytoscape
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software version 3.6.2; cytoHubba plug-in). The 12 algorithms

are the internal programs of cytohubba, and the algorithm

sorts the calculated values from large to small according to

the results.

E�cacy evaluation: Predictive model
with hub genes in Alzheimer’s disease
and model validation

A prediction model was constructed by the logistic

regression analysis. A receiver operating characteristic

(ROC) curve was drawn using the “ROCR” R package,

and the area under the curve (AUC) was calculated to

investigate the clinical value of each gene in diagnosing

AD. The “ROCR” R package was used to evaluate and

visualize the ability of hub genes in Alzheimer’s disease in

distinguishing disease states (classifier performance). The

AUC values > 0.7 indicated the significant specificity and

sensitivity of the model. AUC values closer to 1 indicate

a better model or classifier performance. The classifier

performance of two validation datasets (GSE28146 and

GSE36980) was used to corroborate the performance of the

training dataset.

Gene set enrichment analysis

Intersection genes between hub genes and the key modules

were selected for further analysis. Specific signaling pathways

associated with hub genes and potential molecular mechanisms

modulating AD progression were explored. Gene set enrichment

analysis (GSEA) was used to explore if the list of hub genes

in Alzheimer’s disease contained (significantly enriched with)

any GSEA gene sets. GSEA gene sets are functionally related

groups of genes, usually in the same pathway, created based

on curated knowledge present in the GSEA database. GSEA

gene sets that showed an opposite correlation in the two states

(Alzheimer’s disease and Control) were considered significant.

The possible biological functions of key genes were explored

by GSEA (3.0.0 Edition, Broad College, MIT, and University

of California Board of Trustees). The “c2.cp.kegg.v3.0.symbols”

function was used for enrichment analysis, and a consensus

P-value was calculated for each genome using significant

GSEA results. The default weighted enrichment method was

used for enrichment analysis. The random combination is

set to 1,000 times. The high and low expression levels

of the hub gene were enriched and analyzed by GSEA

analysis. Pathways with P-values of <0.05 and FDR <0.25

were screened.

Immune cell infiltration analysis

Different immune cell types in AD brain tissues were

analyzed by calculation using CIBERSORT. Expression data

were combined, and immune cell infiltration was determined

(P < 0.05). The percentage of immune cell types was

calculated and represented as bars. A heatmap of 22 immune

cells was generated using the “pheatmap” R package, and

a correlation heatmap showing the relationship among 22

types of infiltrating immune cells was generated using the

“corrplot” package.

Validation of the expression level of
screened hub-mRNAs in AD by qRT-PCR

Construction of AD cell model: HT22 cells were exposed to

10µM of A β protein for 24 h. Total RNA (Invitrogen, China)

was extracted from the AD model and a normal HT22 cell

line with Trizol reagent according to the manufacturer’s

instructions. Total RNA was extracted from cell lines

using TRIzol reagent (Invitrogen, China) according to the

manufacturer’s protocol. Reverse transcription was conducted

on RNA to produce cDNA using Revert Aid First Strand

cDNA Synthesis Kit (ThermoScientific; United States)

according to the manufacturer’s guidelines. Quantitative

reverse transcription–polymerase chain reaction (qRT–PCR)

was performed using FastStart Universal SYBR Green Master

(ROX) (Roche; United States). GAPDH was used as the internal

control, and the relative expression levels of mRNA were

calculated by the 2–11Ct method. The primer sequences

utilized in this study were as follows: GAPDH-F: AGGTC

ATCACTATTGGCAACGAG, GAPDH-R: TTGGCATAGA

GGTCTTTACGGAT; ATP2A2-F: AAGACAGGCACACTT

ACCACAAACC, ATP2A2-R: GGCACTTCACTGGCTTA

TCATCC; ATP6V1D-F: TGCTGATGGGTGAAGTGATGAG,

ATP6V1D-R: TGCTGAAGTCCCCTGCTGTG; CAP2-F:

CCAACAACCCCAAGAGAATGAAG, CAP2-R: CGATGC

TTTCACTGACTGCCG; and SYNJ1-F: CCCATCGTGTT

CGTATGTCAAG, SYNJ1-R: TATCAGAAGCGTGTTCAG

AGGC.

Statistical analysis

The T-test was used for measurement of the data (expressed

as a mean ± SEM), while the chi-squared test was used

for categorical data (presented as percentages). The logistic

regression algorithm was used to build the predictive model.

All statistical analyses were performed by R software version

4.1.5 (R Foundation for Statistical Computing, Vienna, Austria)

and GraphPad Prism 8. All experiments were done in triplicate.

Significance was defined as P < 0.05 for two-sided tests.
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Results

Identification of DEGs in normal and AD
samples

A total of 4,440 genes were selected after preprocessing, and

756 DEGs were identified between the AD and normal samples.

Of these 756 DEGs, 442 were upregulated, while 314 were

downregulated (top 50 upregulated and top 50 downregulated

genes in | log2FC |) (Figure 2A). A heatmap showing DEG

clustering is presented in Figure 2B. The results indicated that

the AD and control samples could be significantly distinguished

on the basis of DEG characteristics. The top 10 most significant

up- and downregulated genes are listed in Figure 2C.

Identification of gene co-expression
modules

Weighted gene co-expression network analysis was

conducted on the expression data of 4,440 mRNAs in the

GSE1297 dataset. The “picksoft Threshold” function in the

WGCNA software package was used to filter out the power

parameters within the range of 1–20. The soft power threshold

was set at 5 (scale-free R2 = 0.85) to obtain a scale-free

topology network and analyze reliability. The cutoff height

was set at 0.2, and clustering was merged to produce nine

modules (Figure 3A). The TOM and dissTOM = 1 – TOM

were obtained with non-clustering DEGs in the gray module

(Figure 3B). MEs were used as illustrative profiles, and module

correspondence was computed using eigengene correlation.

The interaction relationship between the nine modules was

determined, and a network heatmap was generated (Figure 3C).

The heatmap for module trait correlation showed that the most

significant correlation feature was in the blue module, which

exhibited a significant negative correlation with theMMSE score

(correlation coefficient = −0.52, P = 0.002; Figure 3D). This

finding indicated that the blue module (correlation coefficient

= 0.44, P = 0.01; Figure 3C) was the key module related to the

AD status.

Significant enrichment of genes related
to AD and PPI network analysis of the key
module

The 76 genes identified in the blue module were analyzed

in detail. GO and KEGG enrichment analysis was performed to

explore the pathways involved in the genes in the key module.

The top 20 significantly enriched GO terms were retrieved

from the GO functional annotation (Figure 4A). Functional

enrichment analysis revealed that genes were significantly

enriched in biological process terms (positive regulation of

heart rate, glutamate secretion, regulation of macroautophagy,

neurotransmitter secretion, regulation of insulin secretion, ion

transmembrane transport, and chemical synaptic transmission),

cell component terms (calcineurin complex, myelin sheath,

growth cone, postsynaptic density, neuron projection, neuronal

cell body, cell junction, perinuclear region of cytoplasm,

membrane, and extracellular exosome), and molecular function

terms (calcium-dependent protein binding, calmodulin binding,

and calcium ion binding). The KEGG pathway analysis showed

that the genes were mainly enriched in the synaptic vesicle

cycle, cGMP-PKG signaling pathway, glutamatergic synapse,

pathways of neurodegeneration, multiple diseases, and AD.

The top 20 KEGG pathways were selected for further analysis

(Figure 4B). The Y-axis of Figures 4A,B shows the biological

functional pathways through enrichment analysis, and the X-

axis represents the number of genes enriched by each biological

functional pathway. The GO and KEGG analysis indicated that

the genes in the key module were enriched during neural cell

differentiation and growth, as well as during neurotransmitter

delivery, some of which are involved in the pathogenesis of

neurodegenerative diseases or Parkinson’s disease.

Genes identified in the blue module were selected for further

analysis. A PPI network comprising 76 nodes and 28 edges was

constructed using the STRING tool (https://cn.string-db.org/)

to further determine their associations at the protein level and

visualize the PPI network (Figure 4C; Cytoscape software). The

network status was as follows: average node degree = 0.737 and

expected number of edges= 9.

Identification and e�cacy evaluation of
hub genes

Edge data calculated from WGCNA were entered into the

Cytoscape software, and the weight of network construction was

set at >0.7 (Figure 5). The cytoHubba plug-in of the Cytoscape

software was used to comprehensively analyze the results of 12

algorithms. The following top five genes were selected as the hub

genes: ATP2A2, ATP6V1D, CAP2, SYNJ1, and GHITM.

A prediction model for the logistic regression analysis was

constructed. The regression equation was as follows: Y =

62.353420 + 3.620291 ∗ ATP2A2-16.089225 ∗ ATP6V1D +

2.823338 ∗ CAP2+ 2.035213 ∗ SYNJ1+ 1.501149 ∗ GHITM.

A ROC analysis of the prediction model comprising five

hub genes was performed using the GSE1297 dataset as the

test set, and an AUC value of 0.9192 (Figure 6A) was obtained.

The model was further validated using the verification sets

(GSE28146 and GSE36980), obtaining AUC values of 0.8523

and 0.9375 (Figures 6B,C), respectively. All AUC values in the

test and validation sets were >0.7, indicating that the model

had high sensitivity and specificity. Furthermore, this finding
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FIGURE 3

Modules related to the clinical traits of AD. (A) Cluster dendrogram of genes: Heatmap of co-expressed genes. Di�erent colors shown on X and

Y axes denote di�erent modules. (B) Heat map of co-expressed genes. Di�erent colors on X and Y axes represent di�erent modules. The depth

of yellow color indicates the degree of connection between modules. (C) Dendrogram of Module Eigengenes(MEs) obtained through WGCNA.

(D) Correlation between modules and traits. Red and blue represents high adjacency and low adjacency, respectively. PMI, postmortem interval;

NFT, neurofibrillary tangle; MMSE, mini-mental state examination.

suggested that the five hub genes were potential biomarkers for

detecting AD.

Potential biological functions on GSEA

Considering the intersection of hub genes and blue

module genes, four cross genes were obtained, namely,

ATP6V1D, CAP2, SYNJ1, and ATP2A2. The intersection genes

were further analyzed. Further analysis of the biological

pathways revealed that hub genes were implicated in

immune, inflammatory, and other metabolic processes.

The samples in the GSE1297 dataset were assigned to

high-expression and low-expression groups according

to the expression levels of ATP2A2, ATP6V1D, CAP2,

and SYNJ1. The four hub genes corresponded to 10,

8, 9, and 8 enrichment pathways, respectively, in the

high-expression group.
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FIGURE 4

GO and KEGG analysis for genes co-expressed with mRNAs in Blue modules. (A) Bar plot of the top 20 enriched GO terms. (B) Bubble chart of

the top 20 enriched KEGG pathways. (C) Module analysis of the PPI network.

The GSEA results indicated that cholera infection, oxidative

phosphorylation, citric acid cycle, glutamate metabolism,

ubiquitin-mediated proteolysis, cell signaling, alanine and

aspartate metabolism, RNA polymerase, epithelium, proteome,

pyruvate metabolism, and selenium amino acid metabolism

pathway in Helicobacter pylori infections were significantly

enriched in the high-expression group of hub genes (P

< 0.05) (Figures 7A–E). Immune/infection pathways, such

as cholera and H. pylori infection pathways, were crucial

for the high expression of AD. The number of pathways

associated with low gene expression was significantly reduced,

including the metabolism of cytochrome P450 to exogenous

substances, cytokine–cytokine receptor interactions, porphyrin

and chlorophyll metabolism, mature diabetes in young people,

and cellular communication. A detailed analysis of core gene

enrichment pathways should be conducted in further studies

to explore the pathogenesis of AD, and the specific mechanism

should be verified by in vitro and in vivo studies.

Immune cell infiltration analysis

The CIBERSORT algorithm was used to predict immune

cell infiltration in AD patients and controls. The percentage

of 22 immune cells in each sample was presented using a bar

graph, as shown in Figure 8A. Samples with significant immune

infiltration (P < 0.05) were selected, and a heatmap showing

the percentage of immune cells was generated (Figure 8B).

Correlation analysis of 22 immune cells revealed a positive

correlation between regulatory T-cell infiltration and neutrophil

infiltration (r = 0.87), a positive correlation between plasma

cells and activated mast cells (r = 0.84), a negative correlation

between T follicular helper cells and CD8T cells (r = −0.95),

a negative correlation between resting memory CD4T cells

and M1 macrophages (r = −0.92), and a negative correlation

between CD8T cells and M1 macrophages (r = −0.82)

(Figure 8C). A significant difference in immune cell infiltration

was observed between the brain tissues of AD patients and
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FIGURE 5

Hub genes in Alzheimer’s disease module. Construction of a

network and hub genes. Hub genes highlighted in Cytoscape

module visualization. The network yellow color box represents

hub genes. The lines indicate correlation between genes.

normal brain tissues. These findings indicated that regulatory T

cells, neutrophils, plasma cells, activated mast cells, T follicular

helper cells, CD8T cells, resting memory CD4T cells, and M1

macrophages were potential core immune cells involved in the

promotion of AD progression.

The experiment of hub genes

We next conducted qRT-PCR experiments to detect the

relative expression level of hub genes in the AD model group

and normal HT22 cell group. The data showed that there

were significant differences in the mRNA expression levels of

ATP2A2, ATP6V1D, CAP2, and SYNJ1 between the AD model

group and the normal HT22 cell group (P < 0.05, ATP2A2; P <

0.05, ATP6V1D; P < 0.01, CAP2; P < 0.05, SYNJ1) (Figure 9).

These identified hub genes might function as the potential

diagnostic and prognostic biomarkers.

Discussion

Alzheimer’s disease is influenced by genes, environment, and

aging and is clinically characterized by progressive impairment

in cognitive domains, such as memory and space. Over recent

years, clinical history and disease course, supplemented by

histopathological and neuroimaging results, have become the

new trends in diagnosing AD (33, 34). Current research on

AD has mainly focused on the gene level. Therefore, the search

for genetic biomarkers for AD, in combination with amyloid,

tau, and microglial PET imaging and genetic marker detection,

is important for the comprehensive diagnosis of AD and the

identification of potential therapeutic targets for AD (35).

FIGURE 6

Receiver Operator Characteristics curves for Predictive

modeling with Hub genes in Alzheimer’s disease. (A) Training

dataset GSE1297:AUC = 0.9192. (B) Validation dataset 1

GSE28146: AUC = 0.8523. (C) Validation dataset 2 GSE36980:

AUC =0.9375.
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FIGURE 7

Significant GSEA gene sets in core genes to AD. Results of Gene set enrichment analysis for the four genes (GSEA,

www.broadinstitute.org/gsea/,KEGG pathways). (A) Cholera infection. (B) Glutamate metabolism. (C) Oxidative phosphorylation. (D) Citrate

cycle. (E) Epithelial cell signaling in Helicobacter pylori infection.
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FIGURE 8

Continued
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FIGURE 8

Immune infiltration (immune cell type gene enrichment) in Alzheimer’s disease. (A) The relative percentage of 22 types of immune cells:

Percentage of immune cell types in Alzheimer’s disease and Control. (B) A heat map of 22 types of immune cells: Correlation between 22 types

of immune cells using their expression data in CIBERSORT tool’s database. (C) Distribution and visualization of immune cell infiltration.

Correlation matrix showing the composition of all 22 immune cell subtypes. Horizontal and vertical axes represent immune cell subtypes. High,

low, and unchanged immune cell subtype compositions are shown in red, blue, and white, respectively.

Our study found that hub genes played a role in the

differentiation and growth of neural cells and in the transmission

of neurotransmitters. These hub genes were mainly enriched

in immune/infection pathways (e.g., cholera infection and

Helicobacter pylori infection pathways) and other metabolic

pathways. Besides, activated mast cells, regulatory T cells,

plasma cells, neutrophils, T follicular helper cells, CD8T cells,

resting memory CD4T cells, and M1 macrophages were the

core immune cells contributing to AD progression. The results

indicated that immune pathways and immune cells played an

important role in the occurrence and development of AD. A

growing number of studies have shown the crosstalk between

the immune system, neuroinflammation, and pathogenesis of

AD, and exploring the underlying mechanisms in detail is

very important for the diagnosis of AD (36). Through whole-

genome sequencing and whole-exome sequencing, genome-

wide association studies have detected several genetic loci

associated with AD, including rare immune-related variant

genes, and have reported these genes to be enriched in

immunity, inflammation, immune protein deposition, and

other routes. Many genes associated with AD have been

identified, including the whole genome of TR2 and phagocytic

receptors. Targeted neuroinflammation via CD33 inhibition

and/or TREM2 activation may be of considerable importance

for neurodegeneration in AD (37). As is well-known, amyloid

deposition in the brain is the initiating event in AD (38).
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FIGURE 9

qRT -PCR validation of the hub gene between AD and normal

controls. (A–D) All experiments were carried out three times,

and the data were expressed as mean±SEM (*p < 0.05, **p <

0.01, ns, no significance).

Failure of cell-mediated systemic clearance of amyloid leads

to extracellular amyloid accumulation, neuroinflammation,

oxidative stress, and apoptosis. Altogether, these factors induce

AD progression (36). An increase in the levels of inflammatory

markers and the identification of AD-associated risk genes

associated with innate immune function in AD patients suggest

that neuroinflammation is closely related to the pathogenesis

of AD (39). Furthermore, neuroinflammation in the microglia,

astrocytes, cytokines, chemokines, and complement system also

plays an important role in AD. Nonetheless, a set of AD-

associated risk genes and immune cells related to immune

infiltration has not been screened, and their value in AD

assessment has not been explored.

In the present study, data were mined from gene chips

extracted from hippocampus brain regions through an autopsy

in AD patients and normal individuals. WGCNAwas performed

to explore changes in gene expression between AD patients

and healthy individuals. Compared with other traditional

differential expression analysis methods, WGCNA has many

advantages. For instance, it analyzes co-expression patterns

and reveals functional modules containing related genes. The

final screened genes may be used as detection biomarkers or

therapeutic targets.

In this study, four potential genes (ATP2A2, ATP6V1D,

CAP2, and SYNJ1) were screened using multiple mechanistic

computational methods. By conducting WGCNA to compare

the changes in gene expression between AD patients and healthy

individuals, the key genes in the module could be used as

detection biomarkers or therapeutic targets. We identified nine

co-expression modules by dynamic tree cutting, and the genes

in the module with the most significant P-values were selected

for the GO and KEGG analysis and the PPI network analysis

(key module; P < 0.01). A network was constructed and used to

identify the core genes. Five hub genes were identified, namely,

ATP2A2, ATP6V1D, CAP2, SYNJ1, and GHITM. A logistic

regression model was constructed and applied to perform a

comprehensive evaluation of their ability to predict AD and find

other AD datasets (gene expression datasets in hippocampus

brain regions) in order to validate the diagnostic value of the

model. The intersection genes between the hub genes and blue

module were ATP6V1D, CAP2, SYNJ1, and ATP2A2. GSEA

of the core genes was performed to explore the enriched

pathways associated with these genes. Several pathways, such as

oxidative phosphorylation, citric acid cycle, cholera infection,

and H. pylori infection pathways, are pivotal for the high

expression of AD. Finally, the disease immune infiltration status

(i.e., proportion and correlation of immune cells) was assessed

(33). Lasso regression was conducted on 22 immune cells to

build an immune cell penetration score model. The analysis

confirmed the mutual crosstalk between the hub genes, immune

microenvironment, and pathogenesis of AD.

Through data mining, we showed that the pathogenesis

of AD involved several pathways, the most important

being oxidative phosphorylation, citric acid cycle, and

immune/infection pathways. The brain requires a constant

supply of energy; the majority of such energy is derived
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from ATP produced by oxidative phosphorylation of glucose

in the mitochondria, whereas a small amount of ATP is

produced through aerobic glycolysis in the cytoplasm. The

phosphorylation pathway and abnormal glucose metabolism

complement each other, and abnormal glucose metabolism

is closely related to the pathogenesis of AD. A related study

reported that impaired glucose levels in specific brain areas

preceded the onset of AD symptoms in older patients with

neurodegenerative diseases (40). According to a previous

relevant report, hypoglycemic metabolism in the brain

preceded memory loss and cognitive decline, whereas ketone

metabolism in the brain corrected some defects related to

glucose hypometabolism through glycolysis (41). In this study,

we enriched the citric acid cycle pathway by mining databases,

which supports the findings of previous studies. Previous

studies showed that oxidative stress was involved in the course

of AD and early amnestic mild cognitive impairment (aMCI).

Some of these pathways were altered in the aMCI stage (42).

We also enriched the oxidative stress pathway through data

mining, which is consistent with the results of previous studies.

Immune/infection pathways contribute to the pathophysiology

of AD. Previously, Nikolic et al. had discovered that the

cholera toxin and cholera infection pathways may induce

neurodegeneration (43). During aging and neurodegeneration,

the immune system activates generated pro-inflammatory

mediators (44), possibly leading to a positive feedback loop

between neurons and microglia, resulting in persistently low

levels of inflammation (45). Nevertheless, there are still several

gaps in the study on immune infiltration pathways and the

pathogenesis of AD.

Through bioinformatics analysis and calculation, we

screened significantly different genes between the AD and

normal groups, namely, ATP2A2, ATP6V1D, CAP2, and

SYNJ1 (Figure 1). Mutations in ATP2A2 are thought to cause

dyskeratosis and abnormal intercellular adhesion (46), and

SERCA plays an important role in Ca2+ regulation. Impaired

SERCA activity may lead to various diseases, such as AD,

diabetes, heart failure, and cancer (47). Previous studies have

reported that ATP6V1D is involved in the transport of hydrogen

ions and is a core component of vascular ATPase. Currently,

there is no relevant literature supporting a relationship between

ATP6V1D and AD (48, 49). Adenylate cyclase-associated

protein 2 (CAP2) is involved in the regulation of cellular actin

dynamics, and CAP2/hap43 regulates the transcription of

various genes (50). Previous studies have linked this protein

to tumor progression. However, its expression in AD has not

yet been evaluated (51). Previous studies have confirmed that

SYNJ1 is a lipid phosphatase that is enriched in the brain and

is mainly involved in autophagosome/endosomal trafficking,

synaptic vesicle recycling, and phosphatidylinositol metabolism.

SYNJ1 polymorphism modifies the onset age of AD. Moreover,

SYNJ1 is associated with amyloid-induced toxicity. However,

the distribution and mechanism of SYNJ1 in the brains of

patients are still unclear. Studies have confirmed that SYNJ1 is

upregulated in NFTs, plaque-associated dystrophic axons, and

Hirano bodies. SYNJ1 immunoreactivity in neurons and senile

plaques was elevated in AD patients with one or two APOE ε4

alleles (52). In all types of AD, SYNJ1 contributes to memory

deficits in aging hippocampi (53).

Finally, we compared immune cell infiltration between AD

patients and controls (Figures 8A,B). Correlation analysis of

22 immune cells showed that the number and proportion of

immune cells in the hippocampus of AD patients were more

abundant than those in healthy individuals, suggesting that core

immune cells, such as regulatory T cells, neutrophils, plasma

cells, activated mast cells, T follicular helper cells, CD8T cells,

resting memory CD4T cells, and M1 macrophages, are involved

in promoting AD progression.

Owing to the limited number of samples, confirmation of

these preclinical observations will be necessary for future clinical

studies of novel biomarkers. A previous study on clinically

diagnosed AD identified 25 genome-wide loci, analyzed risk

genes and pathways, and identified some rare variants of

AD (5). Another study reported that neutrophil counts and

neutrophil proportions associated with the lymphocyte ratio

were associated with the clinical symptoms, pathological

features, and imaging characteristics of AD (54). However,

genes related to AD inheritance (such as ATP6V1D and CAP2)

have not been fully explored, and the immune infiltration cells

related to AD are still being explored. This study explored

the crosstalk between genes and immune cells related to

AD, and the analytical results require further clinical and

experimental validation.

However, this study has some limitations. First of all, this

paper selects the hippocampal dataset from the AD dataset in

the GEO database for analysis. The AD dataset in the GEO

database is not as large as the tumor dataset, so it should

be analyzed and verified with as many datasets as possible to

ensure the accuracy of the results. Hippocampal datasets in other

databases are also very limited. Combining the data of GEO

datasets with other databases will lead to problems, such as batch

effect, which is also one of the limitations of this paper. As the

hippocampus is the key brain region related to neurogenesis in

AD, it was selected as the research object without considering

other brain regions related to AD, such as the frontotemporal

lobe. Focusing only on the analysis selection of the hippocampus

may lead to potential deviation of the analysis results (or the

possibility of losing information due to the absence of other

brain regions involved in the analysis). Therefore, in future

research, we will try to combinemultiple brain regions to analyze

the transcriptional characteristics of the hippocampus (55).

Detailed research needs the support of sequencing results, such

as GWSA on larger platforms. Second, in the GEO database, AD

has less clinical information; therefore, there is less information

that can be used for data analysis. Since this study uses data from

public databases, the use of MMSE, MOCA, and other clinical
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information needs to be approved by the author of the uploaded

data, so this part cannot be included. Third, the genes and

immune cells screened in this study were limited to data analysis.

This study only analyzes the correlation between AD and

immune genes. The binding analysis of immune genes and APP

/ PS1 / PS2 requires further molecular biological experiments,

which is also one of the limitations of this study. It is necessary

to verify the results of data analysis through in vivo, in vitro, and

clinical experiments in order to determine whether the screened

genes are different between the diseased and normal groups and

whether the difference is statistically significant.

Conclusion

In this study, the comprehensive evaluation is carried

out through many mechanical analysis methods. WGCNA, in

combination with clinical information, could be applied to

screen for the key module in AD and to analyze the biological

roles of genes in the modules. Hub genes were screened, and

predictive models were constructed. The performance of the

predictive model was verified using test and validation sets.

The intersection of genes between hub genes and genes in the

core module were subjected to GSEA, which revealed a crucial

enrichment pathway for the genes in AD. Finally, the immune

infiltration results indicated that T follicular helper cells, CD8T

cells, plasma cells, activated mast cells, neutrophils, regulatory

T cells, resting memory CD4T cells, and M1 macrophages

were the core immune cells contributing to AD progression.

To date, the relationship between immune-related genes and

immune-infiltrating cells has not been clearly reported, and the

mechanism of their action in the diagnosis of AD needs to

be explored.
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