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Abstract: Ordered and disordered mesoporous structures were synthesized by a self-assembly
method using a mixture of phenolic resin and petroleum-based mesophase pitch as the starting
materials, amphiphilic triblock copolymer F127 as a soft template, hydrochloric acid as a catalyst,
and distilled water as a solvent. Then, mesoporous carbons were obtained via autoclave method at
low temperature (60 ◦C) and then carbonization at a relatively low temperature (600 ◦C), respectively.
X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy
(TEM) analyses revealed that the porous carbons with a mesophase pitch content of approximately
10 wt% showed a highly ordered hexagonal mesostructure with a highly uniform pore size of ca.
5.0 nm. In addition, the mesoporous carbons prepared by self-assembly and low-temperature
autoclave methods exhibited the amorphous or crystalline carbon structures with higher specific
surface area (SSA) of 756 m2/s and pore volume of 0.63 cm3/g, depending on the synthesis method.
As a result, mesoporous carbons having a high SSA were successfully prepared by changing the
mixing ratio of mesophase pitch and phenolic resin. The electrochemical properties of as-obtained
mesoporous carbon materials were investigated. Further, the OMC-meso-10 electrode delivered the
maximum SC of about 241 F/g at an applied current density of 1 A/g, which was higher than those
of the MC-10 (~104 F/g) and OMC-20 (~115 F/g).

Keywords: mesoporous carbons; self-assembly method; mesophase pitch; carbon electrode

1. Introduction

An electric double-layer capacitor (EDLC) or a supercapacitor (SC) as a sustainable and
renewable energy resource has given significant focus due to its excellent power density,
superior cycle life, and rapid discharge/charge rate, etc., which can supplement secondary
batteries [1–4]. Activated carbon (AC) is mainly used as an active material for EDLCs
fabrication due to its large specific surface area and low cost. However, AC has a low
electrical conductivity of 0.1–1 S cm−1, which increases the internal resistance of the EDLCs.
Moreover, AC mainly contains micropore (<2 nm), which restricts access to electrolytes,
because of large ionic sizes of organic electrolytes [5,6].

Ordered mesoporous carbon (OMC) materials show many attractive properties in-
cluding good conductivity, electrochemical properties, tunable pore structure, and high
specific surface area (up to 1100 m2 g−1), and can be therefore considered as a favorable
electrode material for EDLCs [7–10]. OMC has been extensively studied for its potential
usages in sorption, catalysis, supercapacitors, and electrocatalysts. To date, OMCs with
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different mesoporous structures have been effectively synthesized by both hard and soft
template methods. However, the main drawbacks of the hard-template method are that
it requires multiple steps for scaffold preparation and needs to use sacrificial surfactant
templates as scaffolds. The high cost and complex synthesis of OMCs significantly have
brought restrictions on application. In contrast, the soft-template method, in which am-
phiphilic surfactant compounds such as block copolymers are used as soft templates based
on the principle of liquid-crystal templating, can produce OMC in a more flexible man-
ner [11–13]. Recently, mesophase pitches have been applied as carbon sources to prepare
mesoporous carbon (MC) materials. Compared with other carbon precursors, mesophase
pitches can produce high-quality graphitized carbon. Generally, the pitch powders were
mixed with a soft template and phenol resin at a slightly higher temperature than the
softening points. In this case, the pitch particles were self-assembled into the template
to form mesoporous composites. Finally, the mesoporous carbon was derived after the
elimination of the template [14–17].

In this study, OMC and disordered MC were obtained by an organic–organic self-
assembly process using a mixture of phenol resin and petroleum-based mesophase pitch as the
carbon precursors at a low-temperature autoclave (LTA), and subsequently carbonized. The
crystalline structures, textural properties, and electrochemical performances were investigated.

2. Materials and Methods
2.1. Preparation of Mesoporous Carbons

OMCs were synthesized by LTA method. First, 3.20 g of phenolic resin powder
(CB-8081, Kangnam Chemical. Co., Ltd., Seoul, Korea) and 4.8 g of F127 (poly(ethylene
glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate, Sigma-Aldrich, St.
Louis, MO, USA) were added in mixed solvent (80 mL, 1:1 water/ethanol, v/v) and stirred for
60 min to obtain clear solution. Then, 0.387 g of 37% HCl solution and different amounts (0, 10,
20 wt%) of mesophase pitch [17] were added to the above solution. The physical properties
and elemental composition of the mesophase pitch used in this work are presented in Table 1.
After stirring for 1 h, 37% formaldehyde (4.8 g, Sigma-Aldrich, St. Louis, MO, USA) solution
was injected slowly under stirring. It continued to be stirred until a yellowish homogeneous
solution was obtained. Then, it was poured into a Teflon-lined autoclave reactor and kept
in electric oven for 3 days at 60 ◦C. The obtained polymeric monolith was collected by fil-
tration, washed with deionized water, dehydrated in an oven at 60 ◦C, and further retained
at 80 ◦C for 12 h, which led to a color change of the polymeric monolith into salmon pink.
Subsequently, the products were carbonized in a tubular furnace under an inert atmosphere
(N2 flow) by heating the products at a heating rate of 1 ◦C/min up to 600 ◦C and then
maintained further for 6 h. Here, it should be noted that soft template was easily removed by
conventional calcination at 600 ◦C [18,19]. The final products were denoted as OMC-meso-x
(here, x denotes the amount of mesophase pitch used. x = 0, 10, 20 wt%). The type of precursors
and synthesis conditions are presented in Table 2.

Table 1. Physical properties and elemental composition of mesophase pitch.

Samples
Softening

Point
(◦C)

Carbon
Yield
(%)

Elemental Composition (%) C/H
Ratio

Quinoline
Insoluble

(%)C H N S

Mesophase
pitch 227 67.66 94.78 4.752 0.105 0.279 1.67 35.93

For comparison, MC samples were also prepared by an evaporation-induced self-
assembly (EISA) method, except that the uniform yellowish solution was poured into
the molds of various shapes and further retained at ambient temperature for 3 days to
evaporate the ethanol. The other conditions of synthesis were the same as above. The
obtained monolith showed a dark red color and was carbonized at 600 ◦C for 6 h at a



Nanomaterials 2022, 12, 2686 3 of 11

heating rate of 1 ◦C/min. The carbonized products were designated as MC-meso-x, as
above. The schematic of the synthesis preparation was shown in Figure 1.

Table 2. Types of precursors and synthesis conditions of MCs and OMCs 1.

Samples Carbon Source Method

MC-meso-0 Phenolic resin Self-assembly
MC-meso-10 Phenolic resin + Mesophase pitch 10 wt% Self-assembly
OMC-meso-0 Phenolic resin Hydrothermal
OMC-meso-10 Phenolic resin + Mesophase pitch 10 wt% Hydrothermal
OMC-meso-20 Phenolic resin + Mesophase pitch 20 wt% Hydrothermal

1 Structure-directing agent: F127; solvent: ethanol+H2O; synthesis temperature: 60 ◦C; synthesis time: 3 days;
carbonization temperature: 600 ◦C.
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Figure 1. Schematic of the formation mechanism of self-assembled mesoporous carbons.

2.2. Characterization

Powder X-ray diffraction (XRD) analysis was performed under a PANalytical NLD
diffractometer at a scanning rate of 2◦/min. Small-angle X-ray scattering (SAXS) studies
were carried out on an Anton Paar SAXSpace small-angle X-ray scattering equipment.
Raman spectra were recorded with a Raman spectrometer (FEX, Nost, Korea) using a
531 nm line as the excitation source at room temperature. The surface structure of the
MCs was characterized by field-emission scanning electron microscopy (FE-SEM, SU8820,
HITACHI, Japan). Transmission electron microscopy (TEM) was performed on a Jeol JEM
F2010 microscope. The specimens for TEM analysis were performed by ultrasonically
diluting the samples in isopropanol and drop-casting on copper grids covered with a
carbon film. Nitrogen adsorption isotherms were recorded at 77 K using a Micromeritics
ASAP 2020 device (USA). Prior to nitrogen adsorption, the products were vacuum-dried
at 300 ◦C for 6 h. The specific surface areas of the carbon products were derived by the
Brunauer–Emmett–Teller (BET) technique.

The electrochemical studies, including cyclic voltammograms (CVs) and galvanos-
tatic charge-discharge (GCD) tests, were performed using an electrochemical workstation
(Versastat 4) at room temperature under a three-electrode configuration. The MC or
OMC modified electrodes, Hg/HgO (1 M NaOH), and platinum foil (1.5 × 1.5 cm) were
used as working, reference, and counter electrodes, respectively. The CV curves were
recorded in the potential window between −1.0 to 0 V in 6M KOH at different scan rates
of 5–200 mV s−1. The charge–discharge properties of the MC and OMC materials were
verified by the GCD test. The specific capacitance (SC, F g−1) was obtained using the
following equation, [20,21]:

SC = (I × ∆t)/(m× ∆V) (1)
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where I is the applied current density for GCD (A), ∆t is the required time for discharge (s),
m is the active mass (g) of the electrode material (MC and OMC), and ∆V is the active
potential window (V) in GCD profile. The electrochemical impedance measurements were
recorded in the frequency range between 100 kHz to 1 Hz at open-circuit voltage and the
data were presented in Nyquist plots. The EIS graphs were fitted with Randles equivalent
electrical circuit using Zsimpwin software (VersaStudio, PowerSINE, Princeton Applied
Research Co., Oak Ridge, TN, USA).

3. Results and Discussion
Structure and Morphology

Figure 2a displays the small-angle XRD patterns of the MCs and OMCs prepared with
different amounts of mesophase pitch. The SAXS spectra of MC-meso-10 and OMC-meso-
10 exhibited the typical low-angle peaks at 2θ = 0.50◦ and 0.75◦, respectively, indicating
an ordered mesoporous structure [22,23]. In particular, the OMC-meso-10 showed sharp
intensity, implying a more ordered mesopore structure, whereas the OMC-meso-20 showed
rather broad peak due to the weak long-range ordering of its mesopore structure [22–24].
Meanwhile, the wide-angle XRD patterns of the MCs and OMCs (Figure 2b) exhibited broad
diffraction peaks at 2θ = 23.5◦ and 43.2◦, corresponding to the (002) and (101) reflections of
amorphous carbon, respectively, suggesting that the carbons prepared at a low carboniza-
tion temperature of 600 ◦C had lower crystallinity and thus lower graphitization [24–27].
Raman spectra were widely used for studying carbon nanostructures. Raman spectra
determined the degree of graphitization roughly from the ID/IG value. Here, the band at
around 1580 cm−1 was assigned to the G (graphite) band that originates from the stretching
mode of sp2 hybridized orbitals of carbon–carbon bonds. The band at around 1360 cm−1

was assigned to the D (disorder) band, which originated from the breathing mode of sp2

hybridized carbons. Figure 2c presents the Raman spectra of the MCs and OMCs, respec-
tively. Overall, the mesophase pitch increased, the values of ID/IG decreased from 1.05 to
0.91 for the MCs and from 1.04 to 0.84 for the OMCs, respectively, indicating an increased
ordered mesostructure, although the OMC-meso-20 showed slightly increased ID/IG value
(~0.89), compared to the OMC-meso-10 (~0.84), probably due to the interruption by the
excess amount (~20 wt%) of mesophase pitch [28–30]. This result was further confirmed by
the FE-SEM (Figure 3) and TEM (Figure 4) analysis. Figure 3 depicts the FE-SEM images of
the MCs and OMCs prepared with different amounts of mesophase pitch. Obviously, the
OMC-meso-10 exhibited a typical stripe-like and hexagonally arranged mesopore, which
was well consistent with the high-quality hexagonal meso-structure [31,32]. It was further
confirmed by TEM analysis. As shown in Figure 4, the OMC-meso-10 showed an ordered
hexagonal arrangement of mesopores (particularly, a long-range hexagonal arrangement)
with the (001) and (110) directions, which indicates a highly ordered mesostructure [20].
Interestingly, the OMC-meso-20 exhibited worm-like structures with less mesopore pattern-
ing. The result suggested that the incorporation of the mesophase pitch could control the
ordering of the mesoporous structure and microstructure of the MCs and OMCs [33–36].

Further, the pore structure of the obtained mesoporous carbon materials was ana-
lyzed by nitrogen sorption method. Figure 5 displays the nitrogen adsorption–desorption
isotherms (a) of as-obtained materials and the resultant pore-size graphs (b). The detailed
textural characteristics are given in Table 3. The OMCs and MCs exhibited characteristic
type-IV adsorption isotherms with clear hysteresis loops (Figure 5a), which indicates the
presence of well-organized mesoporous patterns with cylindrical canals [37–39]. The pore-
size distributions of the OMCs and MCs were calculated from the adsorption branches by
the Barrett–Joyner–Halenda method. As shown in Figure 5b, the OMCs and MCs exhibited
a narrow peak with a uniform mesopore size from 5.00 nm to 6.44 nm. Further, the OMC
and MC showed larger BET surface areas of 500 and 756 m2/g and total pore volumes of
0.33 and 0.65 cm3/g, respectively [40,41].
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Table 3. Textural and structural properties of MCs and OMCs prepared with different amounts of
mesophase pitch.

Samples SBET
(m2/g)

Vtotal
(cm3/g)

Vmicro
(cm3/g)

Vmeso
(cm3/g)

DBJH
(nm)

MC-meso-0 711 0.54 0.18 0.36 5.66
MC-meso-10 729 0.63 0.18 0.45 6.44
OMC-meso-0 756 0.65 0.18 0.47 6.34
OMC-meso-10 500 0.33 0.14 0.19 5.00
OMC-meso-20 696 0.62 0.18 0.44 6.44

In order to further verify the energy-storage properties of as-prepared mesoporous
carbons (MCs, OMCs), CV and GCD tests were carried out. The MC-modified electrodes
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were initially accessed by the CV method. The CV curves were recorded in the potential
window between −1.0 to 0 V at different scan rates (5–200 mV s−1) in 6 M KOH. Figure 6
shows the CV responses of MC-meso-10 (Figure 6a), OMC-meso-10 (Figure 6b) and OMC-
meso-20 (Figure 6c), respectively. The pseudo-rectangular behavior of CV curves was
observed for all the MC-modified electrodes at different scan rates, confirming the electric
double-layer capacitive (EDLC) nature of as-prepared carbon materials [42,43]. That is, the
charge storage occurs via a double-layer formation between the interface of the electrode
and electrolytes without any faradic process. Further, the similar pseudo-rectangular
CV characteristics were observed even at a high scan rate (200 mV/s) for all the MC-
modified electrodes, suggesting the good rate capability of the carbon materials for high-
performance supercapacitor applications. Figure 6d shows the comparative CV behavior of
MC-meso-10-, OMC-meso-10- and OMC-meso-20-modified electrodes recorded at a scan
rate of 100 mV/s. The comparative CV curves clearly confirmed that the OMC-meso-10-
modified electrode exhibited slightly higher CV integral area when compared to that of
MC-meso-10 and OMC-meso-20. These preliminary CV studies clearly demonstrated that
as-prepared carbon materials were potentially useful for high-performance supercapacitor
applications [44–46]. In order to validate the real supercapacitor performance of as-prepared
porous carbon materials, GCD studies were carried out. Figure 7 shows the GCD curves
of MC-meso-10 (Figure 7a), OMC-meso-10 (Figure 7b), and OMC-meso-20 (Figure 7c)
at different applied current densities from 1 to 10 A/g in 6 M KOH. The GCD curves
nearly exhibited standard ∧-shaped behavior for all the carbon materials, implying that
the charge storage mainly occurred through EDLC process [46–48]. The comparative GCD
curves for all the carbon materials at an applied current density of 1 A/g are displayed in
Figure 7d. It was clearly observed that the OMC-meso-10-modified electrode exhibited
the longer discharge time when compared to MC-meso-10- and OMC-meso-20-modified
electrodes, which was also well-matched with CV results. The calculated SC values vs.
current density for all the carbon materials are plotted in Figure 8a. As expected, the OMC-
meso-10-modified electrode delivered a high SC value for all the applied current densities
when compared to other carbon-modified electrodes. The maximum SC of OMC-meso-10
electrode was about 241 F/g at an applied current density of 1 A/g, which was more than
2 times higher than those of the MC-10 (~104 F/g) and OMC-20 (~115 F/g). The higher
SC value of OMC-meso-10 was due to the high micropore volume ratio (~42.42%) and
the presence of a highly ordered mesoporous structure with a high surface area, which
enhances the accumulation of electrolytes at the electrode interface in large quantities
and also promotes efficient ionic transfers between the electrode and electrolyte [9,11].
These electrochemical studies clearly demonstrated that the prepared mesoporous carbon
materials were highly useful for real energy-storage applications.

Further, the electrochemical properties of the mesoporous carbon-modified electrodes
were studied by electrochemical impedance measurements. Figure 8b shows the Nyquist
plot of different mesoporous carbon-modified electrodes. It presented the semicircle at a
higher-frequency region, with the linear response at lower-frequency regions. The diameter
of the semicircle was directly related to the insulating characteristics of the materials [49,50].
The as-obtained Nyquist curve fitted with Randles equivalent electrical circuit was used to
evaluate the solution resistance (RS) and charge transfer resistance (RCT) of the mesoporous
carbon-modified electrodes using Zsimpwin software (VersaStudio, PowerSINE, Princeton
Applied Research Co., USA). The OMC-meso-10 showed the low RS and RCT values (0.44 Ω,
0.06 Ω), when compared to MC-meso-10 (0.62 Ω, 1.08 Ω) and OMC-meso-20 (0.54 Ω, 0.36 Ω)
electrodes. These lower RS and RCT values of OMC-meso-10 were further evidenced for
obtaining higher electrochemical energy-storage performance.
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4. Conclusions

In this study, MCs and OMCs with high SSA were prepared by a self-assembly process
and a low-temperature autoclave (LTA) method using the mixture derived of phenolic
resin and different amounts of petroleum based-mesophase pitch as the carbon precursors,
respectively. Small-angle XRD analysis revealed that the OMC prepared with 10 wt%
mesophase pitch (OMC-meso-10 electrode) had a highly ordered hexagonal meso-structure.
This was further confirmed by TEM analysis, which revealed the presence of stripe-like
and hexagonally arranged mesopores, indicating the formation of a high-quality hexagonal
mesostructure. In addition, the mesoporous carbons prepared by LTA methods exhibited
the crystalline carbon structures with higher specific surface area (SSA) of 756 m2/s and
pore volume of 0.63 cm3/g. Further, the OMC-meso-10 electrode delivered the maximum
SC of about 241 F/g at an applied current density of 1 A/g, which was higher than those of
the MC-10 (~104 F/g) and OMC-20 (~115 F/g). As a result, the LTA method could offer
useful advantages over the EISA method in the construction of monolithic carbon products
with an ordered mesostructure, and also might be an efficient technique for the preparation
of the mesoporous carbons with high SSA in industrial applications.
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