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The decision making function is governed by the complex coupled neural circuit in the

brain. The underlying energy landscape provides a global picture for the dynamics of the

neural decision making system and has been described extensively in the literature, but

often as illustrations. In this work, we explicitly quantified the landscape for perceptual

decision making based on biophysically-realistic cortical network with spiking neurons

to mimic a two-alternative visual motion discrimination task. Under certain parameter

regions, the underlying landscape displays bistable or tristable attractor states, which

quantify the transition dynamics between different decision states. We identified two

intermediate states: the spontaneous state which increases the plasticity and robustness

of changes of minds and the “double-up” state which facilitates the state transitions.

The irreversibility of the bistable and tristable switches due to the probabilistic curl flux

demonstrates the inherent non-equilibrium characteristics of the neural decision system.

The results of global stability of decision-making quantified by barrier height inferred

from landscape topography and mean first passage time are in line with experimental

observations. These results advance our understanding of the stochastic and dynamical

transition mechanism of decision-making function, and the landscape and kinetic path

approach can be applied to other cognitive function related problems (such as working

memory) in brain networks.

Keywords: decision making, neural network, attractor, energy landscape, kinetic path

1. INTRODUCTION

The brain operates as a complex non-linear dynamical system, performing various physiological
or cognitive functions. The computational ability emerges when a collection of neurons richly
interact with each other via excitation or inhibition. Decisionmaking is a cognitive process in terms
of choosing a particular action or opinion among a set of alternatives, governing the behavioral
flexibility and pervading all aspects of our life (Lee, 2013). Decision making process for sensory
stimuli, such as the interpretation of an ambiguous image (Sterzer et al., 2009; Wang et al., 2013) or
the discrimination of motion direction of random dots (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Churchland et al., 2008; Lin et al., 2020), is closely associated with lateral intraparietal
cortex (area LIP), which receives the inputs from sensory cortex and guides the motor output.
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Decision making functions have been successfully described
by the attractor network-based framework (Wang, 2002; Wong
and Wang, 2006; Wong et al., 2007; Deco et al., 2013; You and
Wang, 2013; Murray et al., 2017), which is characterized by its
ability to account for the persistent activity observed broadly
across many decision-related neurons. In the attractor network
model, the persistent activity of the neural populations can be
sustained, i.e., the system settles in the decided attractor state,
even after the withdrawal of the external stimulus (Wang, 2002;
Wong and Wang, 2006).

A concept closely related to attractor state is multistability,
which refers to the coexistence of multiple steady states and
exists in both a single neuron and neuronal populations in the
brain, evidenced by a number of theoretical and experimental
studies (Kelso, 2012). For example, two patterns of neuronal
oscillations in cortical neurons, slow oscillations vs. tonic and
irregular firing, correspond to two different cortical states, slow-
wave sleep vs. wakefulness (Shilnikov et al., 2005; Fröhlich
and Bazhenov, 2006; Destexhe et al., 2007; Sanchez-Vives
et al., 2017). Perceptual multistability in visual and auditory
systems is closely related to the coordination of a diversity
of behaviors (Kondo et al., 2017). Furthermore, the brain is
essentially noisy, originating from stochastic external inputs and
highly irregular spiking activity within cortical circuits (Wang,
2008; Braun and Mattia, 2010). In multistable system, the
noise induces alternations between distinct attractors in an
irregular manner. For example, during extended gazing of
a multistable image, inherent brain noise is responsible for
inducing spontaneously switches between coexisting perceptual
states (Braun and Mattia, 2010). The alternative switching
between coexisting mental states for thinking process is also
triggered by neuronal brain noise, either spontaneously or
initiated by external stimulation (Kelso, 2012). Despite many
advances on attractor networks and multistability in neural
systems, the stochastic transition dynamics and global stability
for decision making in neural networks have yet to be
fully clarified.

For non-equilibrium dissipative dynamical systems such
as biological neural circuits, the non-equilibrium potential
(NEP) can be defined to facilitate the quantification of the
global stability (Ludwig, 1975; Graham, 1987; Ao, 2004).
Hopfield pioneeringly proposed the qualitative concept of
"energy function" to explore the computational properties of
neural circuits, such as the associative memory (Hopfield,
1984; Hopfield and Tank, 1986; Tank and Hopfield, 1987). The
underlying energy landscape provides a global and quantitative
picture of system dynamics which potentially can be used to
study the stochastic transition dynamics of neural networks
and has been described extensively in the literature, but
mostly as illustrations (Walczak et al., 2005; Wong and Wang,
2006; Moreno-Bote et al., 2007; Braun and Mattia, 2010;
Fung et al., 2010; Rolls, 2010; Zhang and Wolynes, 2014).
Recently, some efforts have been devoted to quantifying the
energy landscape from mathematical models. For the neural
oscillations related to cognitive process, for example, the rapid-
eye movement sleep cycle, the landscape shows a closed-ring
attractor topography (Yan et al., 2013). The energy landscape

theory also uncovers the essential stability-flexibility-energy
trade-off in working memory and the speed-accuracy trade-
off in decision making (Yan et al., 2016; Yan and Wang,
2020). However, these attempts are based on the simplified
biophysical model rather than more realistic spiking neural
network model, which may not fully capture some key aspects
of the corresponding cognitive function (Wong and Wang,
2006). Therefore, how to quantify the energy landscape of
cognitive systems based on a spiking neural network is still
a challenging problem. Besides, the non-equilibrium landscape
and flux framework has been applied to explore the cell fate
decision-making based on gene regulatory networks (Wang et al.,
2008; Li and Wang, 2013a,b, 2014a; Lv et al., 2015; Ge and Qian,
2016; Ye et al., 2021). So in this work, we focus on quantifying the
energy landscape from a more plausible spiking cell-based neural
network model to study the underlying stochastic dynamics
mechanism of perceptual decision making in the brain.

In this work, we aim at quantifying the attractor landscape
and further the stochastic dynamics and global stability
of the decision making function from the spiking neural
network model. The model we employed here was firstly
introduced in Wang (2002), characterized by the winner-take-
all competition mechanism for the binary decision. Depending
on the parameter choice, the underlying neural circuit displays
up to four stable attractors, which characterizes decision
states, spontaneous state and intermediate states, individually.
The irreversibility of the kinetic transition paths between
attractors is due to the probabilistic flux, which measures
the extent of the detailed balance broken in non-equilibrium
biologically neural system. The barrier heights inferred from
the landscape topography are correlated with the escape time,
indicating the robustness of the decision attractor against the
fluctuations. The results of barrier height also agree well with
the reaction time recorded from behavioral experiments. These
analyses on the landscape and transition dynamics facilitate our
understanding of the underlying physical mechanism of decision
making functions.

2. RESULTS

The classic random-dot motion discrimination (RDM) task is a
suitable experimental paradigm to study the perceptual decision
making behavior and the associated brain activity (Newsome
et al., 1989; Shadlen and Newsome, 1996, 2001; Resulaj
et al., 2009; Stine et al., 2020). The monkeys are trained to
judge the direction of motion in a random dot display and
their choices are indicated by a saccadic eye movement. We
explored a biologically realistic attractor model with spiking
neurons, first introduced in Wang (2002), to account for the
decision making function. The model is composed of two
selective excitatory populations (labeled as S1 and S2) with
each encoding one of the two target directions, one non-
selective excitatory population (labeled as NS) and one inhibitory
interneuron populations (labeled as I), illustrated in Figure 1.
S1 and S2 are characterized by the strong recurrent self-
excitations dominated byNMDA-mediated receptors andmutual
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FIGURE 1 | Schematic depictions of the model. The model is characterized by the strong recurrent excitation in stimulus-selective populations and the reciprocal

inhibition between them mediated by GABAergic interneurons (inhibitory neurons). The two selective populations receive Poisson spike trains I1 and I2, representing

the external sensory inputs. All neurons receive background inputs, allowing spontaneously firing at a few hertz. Arrows represent activation, and dots denote

repression. The numbers above the links indicate the dimensionless interaction strengths.

inhibitions mediated by NS. The model details are illustrated in
the Methods.

To imitate the sensory input of the RDM task, S1 and S2
independently receive the stimulus inputs I1 and I2 until the end
of the simulation, which are modeled as uncorrelated Poisson
spike trains with rates µ1 and µ2 (the unit is Hz). For S1, µ1 =
µ(1+c), and for S2,µ2 = µ(1−c), where c represents themotion
strength (the percentage of coherently moving dots), reflecting
the difficulty of the task and µ is the stimulus strength.

In this work, we will probe how the circuit structure and
stimulus input, more specifically, the recurrent connectivity w+
in S1 and S2, the stimulus strength µ and the motion strength c,
influence the dynamical behavior of the decision making system
in terms of the underlying energy landscape and the kinetics of
state switching. The simulations are implemented on a free, open
source simulator for spiking neural networks, Brain2 (Stimberg
et al., 2019). And the equations (see Methods) are integrated
numerically using a second order Runge-Kutta method with a
time step dt = 0.02ms.

2.1. Multistable Landscape Quantifies the
Decision Making Function
In the context of a two-choice decision task, at zero coherence,
the stimuli to the two selective pools are similar and hard to
distinguish, so the system will make decisions randomly in a
“coin tossing” manner. Therefore, it can be anticipated that there

exists two symmetric attractors in favor of one of the two distinct
choices (the left or right motion direction) in the binary decision
system.When the parameters are specified asw+ = 1.61,µ = 58
and c = 0, we obtained a bistable attractor landscape (shown in
Figure 2). The normalized steady state probability distribution
Pss(r1, r2) is firstly quantified by collecting the statistics of the
system state in the “decision space” constructed by the selective
populations averaged firing rate r1 and r2, and then the potential
landscape can be mapped out by U(r1, r2) = −lnPss(r1, r2) (Sasai
and Wolynes, 2003; Li and Wang, 2013a, 2014a) where U(r1, r2)
is the dimensionless potential (see section 2 for details). Here,
the potential U(r1, r2) does not correspond to the real energy
in physical system, but a reflection of steady state probability
distribution. In Figure 2A, the blue regions represent higher
probability or lower potential, while the yellow regions indicate
lower probability or higher potential. The landscape displays two
symmetric basins of attraction. The two attractors with higher
activity for one neural population (winner) and lower activity
for the other (loser) are identified as distinct decision states,
DS1 and DS2.

The decision making process corresponds to the transition
from a spontaneous state where both S1 and S2 fire with similar
low rates, to a decision state (DS1 or DS2) where they compete
with each other in a winner-take-all manner, in response to
the motion input. The attractor landscape provides an intuitive
explanation for the decision process. Starting from an initial
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FIGURE 2 | (A) The energy landscape for the network dynamics with bistability. (B) The probabilistic flux (white arrows) for the bistable system. The red dashed circles

shows the curl direction of flux. (C) The dynamical transition paths between the two decision states for bistable dynamics. The green line is the transition path from

DS1 to DS2 and the megenta line for the reverse transition. The green and meganta dashed circles indicate the decision boundaries where the corresponding

decision is made. The parameters are designed as w+ = 1.61, µ = 58, and c = 0. r1 and r2 are the population averaged firing rate for the two selective pools. DS1,

decision state 1; DS2, decision state 2; Sps/s, spikes/s.

resting state, the system will evolve dynamically to arrive at a
decision state. This process can be pictured as the system follows
a path downhill to the bottom of the nearest valley which has the
minimal potential energy (DS1 or DS2).

In response to the visual stimulus, subjects will make an
initial decision. However, they continue to accumulate noisy
evidences (Resulaj et al., 2009) or monitor the correctness of the
previous decision (Cavanagh and Frank, 2014) after a choice has
been made. Then the decision-maker may or may not change
the mind, i.e., the initial decision is made to subsequently either
reverse or reaffirm. Since the decision-making is endowed with
randomness from the external stimulus and spontaneous activity
fluctuations, the stability of an attractor state in landscape is only
guaranteed up to a limited time-scale. In the case of changing
minds, the noise will terminate the self-sustained pattern of
activity and drive the system to escape away from the initial
attractor and switch to the other although the stimulus input
remains unchanged.

The neural system operates far from equilibrium. So we
quantified the non-equilibrium probability flux map (denoted
by the white arrows in Figure 2B) to measure the extent of
the violation of detailed balance. The flux is calculated from
the dynamical stochastic trajectories of neural activity (the time
window used to calculated firing rate is 50ms) over a long
time (see section 2) (Battle et al., 2016). We can see that the
force from the curl flux drives the system away from one
local attractor and guides the transition to the other. To see
the effects of using different time windows for simulations, we
showed typical trajectories for using different time windows
(Supplementary Figure 1). We also estimated the landscape and
probabilistic flux when the time window used to calculate firing
rate is 20ms (Supplementary Figure 2). A major difference for
different time windows is that for smaller time windows there
are larger fluctuations (Supplementary Figure 1), which is also
reflected by the landscape results showing that the landscape
using 20ms as time window displays a little more variations

(compare Figure 2B and Supplementary Figure 2). As for the
curl flux, different time windows lead to qualitatively similar
results (compare Figure 2B and Supplementary Figure 2), i.e.,
the magnitude of flux is larger in the region close to the basins,
and the flux has certain curl direction.

The dynamical transition paths corresponding to the changes
of mind process (green line for DS1 to DS2 and megenta line
for DS2 to DS1) are shown in Figure 2C. Note the fact that
the forward and backward paths are irreversible, which is the
consequence of the non-equilibrium curl flux (Wang et al., 2008;
Li and Wang, 2014a; Yan and Wang, 2020). It is worth noting
that the curl flux and noise play different roles in the decision
making system. Here, the role of the none-zero flux is breaking
detailed balance, which is also the cause for the irreversibility
of forward and backward transition paths (the green path and
the magenta path are not the same, Figure 2C). If the flux is
zero, the green and magenta path will duplicate completely,
which corresponds to an equilibrium case (Wang, 2015). To
see whether this irreversibility is due to stochastic effects,
we used different stochastic trajectories to calculate transition
path (Supplementary Figure 3) and obtained consistent curl
directions for the irreversible transition paths for both bistable
and tristable system. We also showed single-trajectory examples,
which support the irreversibility for the transition path for
both bistable and tristable cases (Supplementary Figure 4).
Therefore, flux is important for the state transitions. In terms
of the role of noise, we see that although the landscape and
flux keep the same, the single sample for transition path
varies due the noise effects (Supplementary Figure 4). The
noise also contributes to the state transition for the barrier
crossing process.

Furthermore, we found that the number of stable attractors
on landscape changes under different parameter combinations.
Figure 3A shows the tristable attractor landscape of the decision
making network for w+ = 1.66, µ = 16 and c = 0.
Compared to Figure 2A, the attractor that emerges at the bottom
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FIGURE 3 | (A) The energy landscape for network dynamics with tristability. (B) The probabilistic flux (white arrows) for tristable system. The red dashed circles show

the curl direction of flux. (C) The dynamical transition paths between the two decision states. The green line is the transition path from DS1 to DS2 and the megenta

line for the reverse transition. The change of mind process evolves through the SS state. The green and meganta dashed circles indicate the decision boundaries

where the corresponding decision is made and the white dashed circle represents the attractor region for spontaneous state. The parameters are calibrated as

w+ = 1.66, µ = 16, and c = 0. r1 and r2 are the population averaged firing rate for the two selective pools. SS, spontaneous state, DS1, decision state 1; DS2,

decision state 2; Sps/s, spikes/s.

left corner is identified as the spontaneous undecided state with
low activities of both selective neural populations, indicated
by SS on the landscape. Similar to the case of bistability,
the property of curl flux and irreversibility of transition path
also exist in the tristable system (Figures 3B,C), illustrating
the inherent non-equilibrium property of neural system. It is
worth noting that the kinetic switches between two decision
states go through the SS state (green and megenta path in
Figure 3C), indicating that the system will erase the former
decision (back to the resting state) firstly and then make another
decision (Pereira and Wang, 2014). So the SS state can be treated
as an intermediate state.

The intermediate state has been observed in various biological

process. For example, in epithelial–mesenchymal transition, stem

cell differentiation and cancer development, the intermediate

state cell types play crucial roles in cell fate decision system

governed by corresponding gene regulatory networks (Lu et al.,

2013; Li and Wang, 2014b; Li and Balazsi, 2018; Kang et al.,
2019). For working memory, the presence of the intermediate

state significantly enhances the flexibility of the system to a

new stimulus without seriously reducing the robustness against

distractors (Yan and Wang, 2020). For the decision making

function in this work, our landscape picture provides some
hints on the roles of the intermediate state on mind changing.
The mind changing process occurs in a step-wise way with the
existence of the SS state. The system will switch to SS state
firstly and stay there for a while, and then depending on the
new accumulated evidences, decide whether transit to the other
decision state (change of minds) or return back to the initial
decision state (reaffirm previous decision) (Figure 3C). This
demonstrates that the intermediate state may increase plasticity
and robustness of perceptual decision making as the system
can switch back to the original decision state from intermediate
state if the accumulated evidences are not enough for change
of mind.

2.2. Stimulus Strength Influences Decision
Making Process by Altering Landscape
Topography
The stimuli strength applied to the two selective pools is a key
factor in decision making tasks. In Figure 4, we quantitatively
mapped out the potential landscape for the decision-making
dynamics under different stimulus strength µ. The landscape
displays three qualitatively different topographies (monostable,
bistable and tristable) across the range of stimuli strength from 5
to 90Hz.

For small inputs, the spontaneous state with both selective
populations firing at low rates, is the exclusively stable state
(Figure 4A). The additional increase of stimulus strength
induces the emergence of the two decision attractors (Figure 4B).
The central basin of the spontaneous state becomes weaker for
increasing stimulus strength (Figure 4C) until the system
operates in a binary decision-making region (Figure 4D).
When the selective inputs are sufficiently high, an intermediate
state with high activity for both neural assemblies encoding
the possible alternatives (Figure 4E), called "double-up"
state, emerges, in line with both experimental evidences and
computational results in delay response tasks (Shadlen and
Newsome, 1996; Roitman and Shadlen, 2002; Huk and Shadlen,
2005; Wong and Wang, 2006; Martí et al., 2008; Albantakis
and Deco, 2011; Yan et al., 2016; Yan and Wang, 2020). The
“double-up” state reduces the barrier between decision states
and the transitions are more likely to occur, facilitating changes
of mind (Albantakis and Deco, 2011; Yan and Wang, 2020). The
two symmetric decision states disappears simultaneously for the
further increase of the stimulus strength, so the system loses its
ability to compute a categorical choice (Figure 4F).

To track the landscape change and dynamical transition
property of decision-making process, we calculated the
typical kinetic transition paths averaged over many trials for
continuously increasing (from 5 to 90Hz, magenta lines) and
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FIGURE 4 | The energy landscape over a range of external inputs, applied symmetrically to both selective pools (0% coherence). (A) With slight stimulus, none of the

decided attractors can be reached, the network stays at the resting state. (B) Two attractors corresponding to the decision states emerge for larger stimulus strength.

(C) The central basin of the spontaneous state becomes weaker for increasing stimulus strength. (D) When the stimulus input is strong enough, the resting state

vanishes, and the two decision states remain on two sides. (E) The strong inputs induce the emergence of an intermediate state, called “double-up” state, with high

activity for both selective neural assemblies between decision states. (F) The “double-up” state becomes the exclusively steady state while two symmetric decision

states disappear simultaneously for the further increase of the stimulus strength.

FIGURE 5 | Landscapes are shown in the four-dimensional pictures. The magenta and green lines are the dynamical decision paths averaged over many trials with

continuously varied stimulus input along the z axis. Each layer corresponds to a three-dimensional landscape with fixed stimulus strength µ. (A) The paths for

increasing and decreasing input both pass through the DS1 state. (B) The paths for increasing and decreasing input pass through the DS1 and DS2 states,

respectively. (C) The paths for increasing and decreasing input pass through the DS2 and DS1 states, respectively. (D) The paths for increasing and decreasing input

both pass through the DS2 state. (E) A quantitative landscape to illustrate the maintenance of decisions during the delay period in the delayed version of random-dot

motion discrimination task. The gray balls represent the instantaneous states of the system. The parameters are specified as w+ = 1.66 and c = 0.

decreasing (from 90 to 5Hz, green lines) stimulus inputs, as
displayed in Figures 5A–D. There exists four combinations and
corresponding landscapes of the decision path since the forward
and backward paths can pass through either the DS1 or the DS2
state due to the stochasticity. In Figures 5A,D, the backward
path deviates away from the forward decision-making path due

to the non-equilibrium flux force although the two paths pass
through the same decision state (DS1 or DS2). Figures 5B,C
show the forward and backward paths pass through distinct
decision states. It can be seen that the system will spend some
time staying at the spontaneous state (µ = 5, 16) before making
a decision (µ = 40) for the forward paths while maintaining
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FIGURE 6 | Landscape comparisons when the stimulus strength µ and recurrent connectivity in the two selective populations w+ change.

the "double-up" state for a period of time (µ = 90, 76) before
making a decision (µ = 40) for the backward paths, implying
the existence of hysteresis for state switches in biological
neural system.

The energy landscape we obtained here also explains the
delayed version of the RDM task well, which involves both the
decision computation and working memory. The delayed RDM
task additionally requires the subjects to withhold the choice
in working memory across a delay period before responding
to the saccadic eye movement (Shadlen and Newsome, 2001).
Figure 5E shows the three layers of landscape corresponding
to the targets, motion and delay in the delayed RDM task,
respectively. The gray balls represent the instantaneous states of
the system. Themegenta and green lines are two possible decision
paths due to the symmetry and fluctuations. Initially, the system
rests at the spontaneous state until the visual inputs force the
system switching into one of the two decision attractor states.
The decision is stored in the DS1 or DS2 and this information
will be retrieved to produce motor responses at the end of the
delay period even though the stimulus is absent. This quantitative
picture of landscape echos with the one-dimensional illustrative
diagram of decision “landscape” proposed in Wong and Wang
(2006).

To provide a more global picture of the system dynamics,
we explored the change of landscape topography when the
stimulus strength µ and recurrent connectivity in the two
selective populations w+ vary (Figures 6A–I). We found that the
number of stable states increases as the recurrent connectivity
w+ increases (horizontal direction), while the stimulus strength
µ increases (vertical direction) there is no apparent trend for
the occurrence of multistability. This suggests that stronger self-
activation strength may promote the occurrence of multistability.

2.3. The Influence of the Difficulty of Task
on Landscape Stability
The stability of attractor states is critical for decision-making
network since the decisions can be changed easily for unstable
decision state. Experimental and modeling works both suggested
that the probability of changes of mind depends on the
task difficulty, namely, the motion strength c (Resulaj et al.,
2009; Albantakis and Deco, 2011). For biased stimulus input
(c 6= 0), the symmetry of attractor landscape is broken
(Supplementary Figures 5, 6 for the asymmetric landscapes).
Correspondingly, we can calculate relative barrier height (RB)
between pairs of local minima and mean first passage time
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FIGURE 7 | For the change of mind process from bistable landscape, (A) the relative barrier height (RB1) increases for c = 0.5%, 1%, 1.6%, 2.4%, 3.2%, (B) RB1 is

correlated with the logarithm of the mean first passage time (MFPT). RB1 represents relative barrier height from DS1 to DS2, which quantifies the global stability of

DS1 against DS2. The MFPT from DS1 to DS2 are estimated from dynamical neural activity trajectories. For the decision making process from tristable landscape, (C)

The relative barrier height (RBSS) increases for c = 12.8%, 6.4%, 3.2%, 0%, (D) RBSS is correlated with the logarithm of the reaction time (RT, mean ± SEM). RBSS

denotes the relative barrier height for the transition from SS to DS1. RT is the experimental observed reaction time of correct trials in the motion-discrimination

task (Roitman and Shadlen, 2002).

(MFPT) to quantitatively measure the global stability of the
neural network under different motion strength c.

For bistable system, the relative barrier height (RB1) is defined
in terms of the two basins of decision state. Based on landscape
topography, we define U1 and U2 as the potential minimum of
the DS1 and DS2, and Usaddle as the potential of the saddle point
between the two states. The barrier heights quantifying the global
stability are BH1 = Usaddle − U1 and BH2 = Usaddle − U2.
Then RB1 = BH1 − BH2, quantifying the relative stability of DS1
against DS2.

The MFPT represents the average kinetic time of the
alternations between different attractor states, thus also
describing the stability of attractors. With dynamical neural
activity trajectories over a long time window, we can estimate
the time taken for the system to switch from one attractor
to another for the first time and get the first passage time
(FPT). Here, an attractor region is roughly taken as a
small ellipse centered on the local minimum (megenta and
green dashed circles in Figure 2C), and the transition is
finished once the stochastic trajectory enters the destination

ellipse. Then the MFPT is defined as the average of FPT
by samplings.

We study whether the landscape can quantify the transition
time. Figure 7A shows that for bistable system, RB1 increases as
we increase c for c = 0.5%, 1%, 1.6%, 2.4%, 3.2%. The positive
value of RB1 indicates that the two stable states are no longer
symmetric and the DS1 has a deeper basin of attraction than
DS2 due to the biased external inputs. When the motion strength
gets stronger (larger c), the time taken to switch from DS1 to
DS2 increases with higher barrier (Figure 7B), indicating that
when the task is easier (larger c) the change of mind needs more
time, i.e., the change of mind (the right decision becomes wrong
decision in current case) is harder.

We further ask how the model predictions from landscape
fit quantitative experimental data. We use tristable system as
an example to describe the decision process. Here, the relative
barrier height (RBSS) between SS and DS1 has the similar
definition as RB1. Figure 7C shows that for tristable system, RBSS
increases as we decrease c for c = 12.8%, 6.4%, 3.2%, 0%,
indicating that it is harder to make a decision since the barrier is
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higher for the more difficult task. The transition from SS to DS1
represents the decision process, thus related to the behavioral
reaction time (RT). The positive correlation between RBSS and
the experimentally observed RT (Roitman and Shadlen, 2002)
suggests that the speed of decisions decreases in harder decision
tasks (smaller c) with higher barrier (Figure 7D). Intuitively, this
means that for a more difficult task, it is harder to make decision,
which takes longer reaction time. Therefore, the landscape results
explain the experimental data well and provide an intuitive and
quantitative way to understand the decision making function.

Of note, the linear correlation between the logarithm ofMFPT
and RT and the barrier height of landscape is not a perfect fit. In
fact, this is due to another important factor, the curl flux. For a
non-equilibrium system, the landscape may explain a major part
of the transition rate (barrier crossing from a potential valley).
However, the landscape does not solely determine the transition
rate as in an equilibrium system, i.e., the flux will contribute to
the transition dynamics for barrier crossing (Feng et al., 2014).
We should notice that due to the approximation nature of this
approach, at very small or very large time scales, it might be less
precise for the estimation of the relationship between MFPT and
barrier height.

3. DISCUSSION

The biological neural circuit underlying the decision-making
function is a non-linear, non-equilibrium, non-stationary, open
and strongly coupled system. The underlying energy landscape
allows us to understand the complex dynamic behavior of the
neural system from a global view. In this work, we explicitly
quantified the landscape and further studied the stochastic
transition dynamics for perceptual decision making from the
plausible biophysical spiking cell-based model to mimic the
visual motion discrimination task.

When the motion strength c is zero, i.e., the two selective
populations receive stimuli with the same strength, we identified
qualitatively different landscape topographies with different
number of attractors in the phase space under certain parameter
regions. The bistable attractor landscape is characterize by
two symmetric basins of attraction corresponding to the two
competing decision states. The spontaneous state with both
selective pools firing at low rates, as an intermediate state,
emerges on tristable attractor landscape, which increases the
plasticity by making a two-step transition for change of mind
and robustness by reaffirming previous decision of decision
making. The irreversibility of the bistable and tristable switches
due to the probabilistic curl flux demonstrates the inherent non-
equilibrium property of the neural decision system. We found
that the neural ensembles evolve across different regimes under
the control of driving input. Of note, a new intermediate state,
the "double-up" state with both selective pools firing at high
rates also emerges when the stimulus strength is sufficiently
high. The "double-up" state reduces the barrier between the
two decision states and facilitates the state transitions, in line
with both experimental evidences and computational results in
delay response tasks (Shadlen and Newsome, 1996; Roitman and

Shadlen, 2002; Huk and Shadlen, 2005; Wong and Wang, 2006;
Albantakis andDeco, 2011; Yan et al., 2016; Yan andWang, 2020).
By exploring the parameter region, we found that a possible way
of promoting the occurrence of mutilstability and intermediate
state is to increase the strength of recurrent connectivity or
self-activation of neural populations.

We also quantified the global stability of decision-making
by barrier height and mean first passage time to explore the
influence of the difficulty of task. When the difficulty of task
increases, namely, the coherence level c decreases, the speed
of decisions gets slower and it takes longer for the system to
make a decision characterized by higher barrier height, which
is consistent with experimental observations. The landscape and
path results advance our understanding of stochastic dynamical
mechanism of decision-making function.

In previous study, Wong and Wang reduced the spiking
neural network model to a two-variable coupled ordinary
differential equations by mean-field approximations (Wong
and Wang, 2006). This allows the analysis of dynamics with
the tools of nonlinear dynamical system, such as phase-plane
analysis and bifurcation based on ordinary differential equations.
However, these analysis is under the framework of deterministic
simulation, so the stochastic dynamics is hard to be studied from
bifurcation type of approaches. The non-equilibrium potential
theory we employed here is characterized by its ability to quantify
the stochastic dynamics and global stability of decision-making
function. The barrier height inferred from potential landscape
and mean passage time measure the difficulty of switching
between basins of attractions, which is also applicable in large-
scale model. The quantitative picture of landscape in Figure 5E

also echos with the one-dimensional illustrative diagram of
decision “landscape” proposed in Wong and Wang (2006).

The spiking neural network we studied here consists of
thousands of neurons interacting in a highly nonlinear manner,
which is more biologically realistic compared to simplified
firing rate-based model. Each parameter in the model has
specific biologically meaning, allowing us to explore the neural
mechanisms of decision-making. However, there are also
some limitations for current spiking neural network model.
Firstly, the numerical simulation of spiking neural network is
computationally intensive and time-consuming. The accuracy
of our results depends on the volume of collected dynamical
trajectories, which is limited by the computational efficiency.
Secondly, to facilitate our analysis, we reduced the dimension of
spiking neural network system to 4 by averaging the microscopic
activity of individual neurons in homogeneous populations
to obtain macroscopic population-averaged firing rate. For
visualization and analysis, we projected the system to the two
dimensions (r1 and r2) for the estimation of potential landscape
and flux. This may introduce inaccuracy for analyzing original
high-dimensional system, quantitatively. So, it’s also important
to develop other dimensional reduction approach (Kang and
Li, 2021). Furthermore, the local circuit model we studied here
only involves individual brain area, while a biologically realistic
decision-making may be distributed, engaging multiple brain
regions (Siegel et al., 2015; Steinmetz et al., 2019). It is anticipated
that the landscape and path approach can be applied to account
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TABLE 1 | Connection weight matrix.

to

from NS S1 S2 I

NS 1 1 1 –1

S1 w− w+ w− –1

S2 w− w− w+ –1

I 1 1 1 –1

for other cognitive function related issues (such as distributed
working memory or decision-making) in more realistic brain
networks considering more complex circuits in neural network
scale or brain region scale (Murray et al., 2017; Schmidt et al.,
2018; Mejias and Wang, 2021).

4. METHODS

4.1. Neural Network Model
The biologically plausible model for binary decision making was
first introduced in Wang (2002), illustrated in Figure 1. The
model is a fully connected network, composed of N neurons
with NE = 1600 for excitatory pyramidal cells and NI =
400 for inhibitory interneurons, which is consistent with the
observed proportions of the pyramidal neurons and interneurons
in the cerebral cortex (Abeles, 1991). Two distinct populations in
excitatory neurons (S1 and S2) respond to the two visual stimuli,
respectively, with NS1 = NS2 = fNE and f = 0.15, and the
remaining (1−2f )NE non-selective neurons (NS) do not respond
to either of the stimuli. All neurons receive a background Poisson
input of vext = 2.4kHz. This can be viewed as originating from
800 excitatory connections from external neurons firing at 3Hz
per neuron, which is consistent with the resting activity observed
in the cerebral cortex (Rolls et al., 1998).

Table 1 is the connection weight matrix between these four
populations, where minus sign represents inhibition effect. The
synaptic weights between neurons are prescribed according to the
Hebbian rule and remain fixed during the simulation. Therefore,
inside the selective populations, the synapses are potentiated and
the weight w+ is larger than 1. Between selective populations
and from nonselective population to selective ones, the synaptic
weight is w− = 1 − f (w+ − 1) /(1 − f ) so that the overall
recurrent excitatory synaptic drive in the spontaneous state
remains constant when altering w+ (Amit and Brunel, 1997).
w− < 1 indicates the synaptic repression. The remaining weights
are 1.

Herein, we consider the leakage integrate-and-fire
(LIF) model to describe both pyramidal cells and
interneurons (Tuckwell, 1988). The membrane potential of
a neuron, V(t), can be described by a capacitance-voltage (CV)
equation when it is less than a given voltage threshold Vth,

Cm
dV(t)

dt
= −gL

(

V(t)− VL

)

− Isyn(t), V ≤ Vth. (1)

Here, Cm is the capacitance of the neuron membrane, Cm =
0.5nF (0.2nF) for excitatory (inhibitory) neurons. gL is the

leakage conductance, gL = 25nS (20nS) for excitatory
(inhibitory) neurons. Each neuron has a leakage voltage VL =
−70mV and firing threshold Vth = −50mV . Isyn represents the
total synaptic current flowing into the neuron.

When V(t) = Vth at t = tk, the neuron will emit a spike
and the membrane potential is reset at Vreset = −55mV for a
refractory period τref ,

V(t) = Vreset , t ∈
[

tk, tk + τref
]

. (2)

After then, V(t) is governed by the CV (Equation 1) again. Here,
τref = 2ms (1ms) for excitatory (inhibitory) neurons.

The synaptic model maps the spike trains of the presynaptic
neuron to the postsynaptic current. For the fully connected
neural network, the total postsynaptic current is the sum of the
following four currents:

Isyn(t) = Iext,AMPA(t)+ Irec,AMPA(t)+ Irec,NMDA(t)+ Irec,GABA(t)
(3)

The first term is the external excitatory current, which is assumed
to be exclusively mediated by AMPA receptor. The second and
third terms are the recurrent excitatory currents mediated by
AMPA and NMDA receptors. The last term is the inhibitory
current mediated by GABA receptor. More specifically,

Iext,AMPA(t) = gext,AMPA

(

V(t)− VE

)

sext,AMPA(t)

Irec,AMPA(t) = grec,AMPA

(

V(t)− VE

)

NE
∑

j=1
wjs

AMPA
j (t)

Irec,NMDA(t) =
gNMDA(V(t)−VE)

(1+[Mg2+] exp(−0.062V(t))/3.57)

NE
∑

j=1
wjs

NMDA
j (t)

Irec,GABA(t) = gGABA
(

V(t)− VI

)

NI
∑

j=1
sGABAj (t),

(4)
where VE = 0mV , VI = −70mV . For excitatory cells, the
synaptic conductances for different channels are gext,AMPA =
2.1nS, grec,AMPA = 0.05nS, gNMDA = 0.165nS, and gGABA =
1.3nS; for inhibitory cells, gext,AMPA = 1.62nS, grec,AMPA =
0.04nS, gNMDA = 0.13nS, and gGABA = 1.0nS. wj is the
dimensionless synaptic weight and sj is the gating variable,
representing the fraction of open channels for different receptors.
The sum over j denotes a sum over the synapses formed by
presynaptic neurons j. Specially, the NMDA synaptic currents
depend on both the membrane potential and the extracellular
magnesium concentration (

[

Mg2+
]

= 1mM) (Jahr and Stevens,
1990). The gating variables are given by

dsAMPA
j (t)

dt
= −

sAMPA
j (t)

τAMPA
+
∑

k

δ

(

t − tkj

)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)

(

1− sNMDA
j (t)

)

dxj(t)

dt
= −

xj(t)

τNMDA,rise
+
∑

k

δ

(

t − tkj

)

dsGABAj (t)

dt
= −

sGABAj (t)

τGABA
+
∑

k

δ

(

t − tkj

)

(5)
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where the decay time for AMPA, NMDA and GABA synapses are
τAMPA = 2ms, τNMDA,decay = 100ms and τGABA = 5ms (Hestrin
et al., 1990; Spruston et al., 1995; Salin and Prince, 1996; Xiang
et al., 1998). The rise time for NMDA synapses are τNMDA,rise =
2ms (the rise times for AMPA and GABA are neglected because
they are typically very short) and α = 0.5ms−1 (Hestrin et al.,
1990; Spruston et al., 1995). The sum over k represents the
sum over all the spikes emitted by presynaptic neuron j at time
tkj . For external AMPA currents, the spikes are generated by

independently sampling Poisson process with rate vext = 2.4kHz
from cell to cell.

4.2. Potential Landscape and Probabilistic
Flux Theory
By numerically simulating the neural network system for a
long time, we can obtain the raster plot, i.e., neurons emit
spikes at specific time points. However, since the spiking
neural network we studied here is a high dimensional system
consisting of thousands of interacting neurons, we focus on
the macroscopic activity of population-averaged firing rate
rather than microscopic neural spikes, which effectively reduced
the dimension of the system dynamics to 4 (4 populations).
For visualization, two more important dimensions, i.e., the
population-averaged firing rates of two selective neural groups
r1 and r2 are chosen as coordinates to form the "decision space"
and then the probablistic distribution at steady state (energy
landscape) is projected into the decision space by integrating
other dimensions. r1 and r2 can be calculated by firstly counting
the total spike numbers of a population in a timewindow of 50ms,
which slides with a time step of 5ms, and then dividing it by the
neuron number and the time window to get r1 and r2.

To visualize the probability distribution of the system
state in the "decision space" constructed by the firing rate
r1 and r2, we discrete the space into a collection of grids
and collect the statistics for the system state falling into
each grid. Finally, the potential landscape is mapped out by
U(r1, r2) = −lnPss(r1, r2) (Sasai and Wolynes, 2003; Li and
Wang, 2013a, 2014a), where Pss(r1, r2) represents the normalized
joint probability distribution at steady state and U(r1, r2) is the
dimensionless potential.

Of note, a key issue is to decide when a stationary distribution
has been reached. Theoretically, the steady state distribution
need to be obtained as time t goes to infinity (or very large).
Since the numerical simulation of spiking neural network is
computationally intensive and time-consuming, the time length
of the dynamical trajectory we can obtained is limited. To address
this problem, we define relative Euclidean distance between two

probability distributions as σ =

√

√

√

√

∑

ij

(

Pt+500ij −Ptij

)2

(

∑

ij P
t
)2 , where Ptij and

Pt+500
ij are probability distributions obtained by firing rate activity

with time length t and t + 500, respectively. So σ measures the
deviation of distribution by prolonging the trajectory by 500s.
If increasing time t does not significantly change this relative
distance for the probability distribution between different time
length (σ is less than a threshold, σ < 0.06% for bistable

landscape in Figure 2), we consider that a steady state has
been reached.

Biological systems, including neural circuits, are generally
dissipative, exchanging energies or materials with the
environment to perform functions (Lan et al., 2012). For a
non-equilibrium system, the violation of detailed balance lies
at the heart of its dynamics. Different from the equilibrium
system whose dynamics is solely determined by the underlying
energy landscape, the non-equilibrium system is also driven
by the steady state probabilistic flux, which measures to what
extent the system is out of equilibrium or the detailed balance is
broken (Wang et al., 2008; Yan et al., 2013, 2016; Li and Wang,
2014a; Yan and Wang, 2020). For high-dimensional systems, for
example, the neural network we studied here, it is challenging to
quantify the non-equilibrium probabilistic flux from diffusion
equation (Wang et al., 2008; Li and Wang, 2014a). Therefore,
we employ an approach which is based on the fluctuating
steady-state trajectories, to quantify the probability flux (Battle
et al., 2016). As we discussed before, the reduced stochastic
system trajectory evolves over time in a four-dimensional phase
space. However, for the sake of simplicity and visualization,
the two more important dimensions, r1 and r2, are utilized to
estimate the probabilistic flux. To determine the probability
flux of the non-equilibrium neural system, we discrete the
subspace constructed by r1 and r2 in a coarse-grained way, i.e.,
the subspace is divided into N1 × N2 equally sized, rectangular
boxes, each of which represents a discrete state α. Such a discrete
state is a continuous set of microstates. Then the probability flux
associated with state α is the following vector:

EJ (Exα) =
1

2

(

w
(r1)
α− ,α

+ w
(r1)
α,α+

w
(r2)
α− ,α

+ w
(r2)
α,α+

)

(6)

Here, Exα is the center position of the box related to state
α. There exist four possible transitions since state α has two

neighboring states in each direction. The ratew
(r1)
α− ,α

is the net rate

of transitions into state α from the adjacent state α− (i.e., the state

with smaller r1), while w
(r1)
α,α+

represents the rate of transitions

from α to α+ (the state with larger r1). Similarly,w
(r2)
α− ,α

andw
(r2)
α,α+

denote corresponding transitions rates between boxes arranged
along the r2 direction, respectively. Of note, each rate has a sign.

For example, w
(r1)
α− ,α

< 0 means there are more transitions from α

to α− than the reverse direction per unit time.
These rates can be estimated by the temporal trajectories of r1

and r2:

w
(ri)
α,β =

N
(ri)
α,β − N

(ri)
β ,α

ttotal
. (7)

where ttotal is the total simulation time and N
(ri)
α,β (N

(ri)
β ,α) is the

number of transitions from state α (β) to state β (α) along the
direction ri. For the cases where the trajectories go from one
box to a non-adjacent box in a single time-step, we perform
a linear interpolation to capture all the transitions between
adjacent boxes.
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4.3. Transition Path
To quantify the transition paths between the steady-state
attractor states on landscape, we firstly treat a small spherical
area centered on the local minimum point as a attractor area
(green and megenta dashed circles in Figures 2C, 3C), denoted
by B1, · · · ,Bm where m is the total number of attractors. The
transition path from attractor Bi to attractor Bj is defined as a set
of trajectory points

{

Xt1 , · · · ,Xtn

}

starting from Bi and ending at
Bj. Since the trajectory is noisy, the start point is defined as the last
point in Bi before leaving Bi and the transition is finished once the
trajectory wanders into the area of attractor Bj. Each transition

path corresponds to a non-linear mapping ϕk :[0, tend] → R
d.

Suppose there are K transition paths from Bi to Bj, then the
average transition path ψij is defined as

ψij(t) =
1

K

K
∑

k=1

ϕk(t), t ∈ [0, tend]. (8)

Of note, since the noise should be large enough to drive the
transitions between attractors, the time durations of each single
transition trajectory is diverse. To deal with this problem, we
firstly split the trajectories evenly into equal number of points and
then average these points to form the average trajectory.
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