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SUMMARY

In liquid biopsy, detecting and differentiating circulating tumor cells (CTCs) and non-CTCs in metastatic can

cer patients’ blood samples remains challenging. The current gold standard often involves tedious manual 

examination of extensive image galleries. While machine learning (ML) offers potential automation, human 

expertise remains essential, particularly when ML systems face uncertainty or incorrect predictions due to 

limited labeled data. Combining self-supervised deep learning with an easily adaptable conventional ML 

classifier, we propose a human-in-the-loop approach with a targeted sampling strategy. By directing human 

efforts to label a limited set of new training samples from high-uncertainty clusters in the latent space, we 

iteratively reduce the system’s uncertainty and improve classification performance, thereby saving time 

compared to naive sampling approaches. On data from metastatic breast cancer patients, we show the feasi

bility of our approach and achieve better performance while reducing expert evaluation time compared to the 

gold standard, the FDA-approved CellSearch system.

INTRODUCTION

Continuous research on cancer over the last decades has led to 

a steady improvement in early detection and treatment, resulting 

in an increase in patient outcomes in terms of both survival rates 

and quality-adjusted life years.1–5 Thus, monitoring cancer pro

gression is important to evaluate individual treatment responses. 

Especially, detection of metastasis is of high interest, as it is the 

driving force behind progression and strongly correlates with pa

tient outcome. As part of the metastatic cascade, tumor cells 

disseminate from the primary tumor and circulate primarily 

through the bloodstream to surrounding or distant organs.6

THE BIGGER PICTURE Cancer ranks among the leading causes of death worldwide, and metastasis is the 

primary contributor to its lethality. During the metastatic process, circulating tumor cells (CTCs) are shed 

into the bloodstream from both primary and secondary tumor sites. CTCs are a crucial liquid biopsy marker, 

and their counts act as prognostic indicators for various solid cancers, as supported by numerous clinical 

trials. The CellSearch system is currently the gold standard strategy for CTC detection and enumeration, 

but it often requires manual evaluation of large image galleries, especially in metastatic cases, emphasizing 

the need for increased automation. This study employs machine learning and deep learning to develop a hu

man-in-the-loop strategy for CTC classification. In this approach, human feedback provides limited but 

meaningful training examples to optimize the classifier models. Ultimately, this method helps develop adapt

able classifiers, saving time when similar blood samples of patients are analyzed again in the future. 
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These cells are referred to as circulating tumor cells (CTCs). 

Numerous studies have analyzed blood draws of patients to 

investigate the spread of tumor cells and to identify related 

markers in liquid biopsy (LB).7–9 However, challenges arise 

from the heterogeneity of CTCs, such as various phenotypic ex

pressions,6 and the CTC rarity (<10 cells mL− 1),10 and reliable 

CTC detection is still associated with difficulties.

So far, only one solution is cleared for routine clinical analysis of 

CTCs from metastatic breast, prostate, and colorectal cancers11

by the US Food and Drug Administration (FDA)12: the CellSearch 

(CS) system (Menarini Silicon Biosystems, Bologna, Italy). Multi

ple clinical studies with the CS system have demonstrated a tight 

correlation between CTC appearance and poor prognosis in met

astatic breast cancer.13–15 CS follows a three-step process. First, 

in the Autoprep system (Menarini), blood samples are processed 

with a widely used method for isolating CTCs from the bulk of 

blood cells through EpCAM (epithelial cell adhesion molecule)- 

based immunomagnetic separation. Second, these enriched 

cells are fluorescently labeled. Subsequently, the cells are placed 

in a magnetic cartridge, where a magnetic force draws them to a 

single focal depth.16 The cartridge is then transferred into the 

Autoanalyzer (Menarini) for automated microscopy scanning. In 

the next step, images containing positive signals in the 4′,6-dia

midino-2-phenylindole, dihydrochloride (DAPI) and phycoery

thrin (PE) channels in close proximity16 are automatically selected 

and presented in an image gallery by a software. Finally, all pre

sented images have to be evaluated manually by a trained oper

ator to identify CTCs and differentiate them from contaminating 

leukocytes or artifacts12 according to defined criteria. A cell is 

considered a CTC when it has a round or oval shape with a diam

eter of at least 4 μm, a DAPI-positive nucleus, cytoplasmic PE 

staining as an indicator of keratin (cytokeratin, CK) positivity, 

but no allophycocyanin (APC) staining, to exclude CD45-positive 

leukocytes. While effective, this manual evaluation is labor inten

sive and time consuming, especially when an extensive gallery of 

images is presented to the expert.

Despite the necessity of human assessment in evaluating CTC 

candidate images, there is a strong need for greater automation 

in CTC detection and analysis. Zeune et al.17 used LB data from 

various cancer entities, including metastatic breast cancer, 

among others, in a supervised deep learning (DL) approach. 

The cell images were sampled from cartridge images acquired 

by CS using the ACCEPT tool,18 and automatically generated an

notations were manually corrected by human experts. They 

further shed light on the model behavior by investigating the 

latent space using dimension reduction and analyzing clustering 

behavior for different sub-populations of cells. Building on the 

findings of Zeune et al.,17 Nanou et al.19 presented a strategy 

for semi-supervised labeling of training data by utilizing a latent 

space analysis and identifying additional unambiguous samples 

in dense CTC and non-CTC regions identified by a k-nearest 

neighbors (KNN)-based analysis.19 In parallel, self-supervised 

learning (SSL) has advanced in the medical field and showed 

promising performance utilizing less annotated data but taking 

advantage of the availability of often large amounts of unlabeled 

samples.20 For example, Husseini et al.21 demonstrated that a 

self-supervised setup for CTC detection in a breast cancer 

cohort outperforms supervised approaches with only a fraction 

of the annotations needed.

In response to methodological advancements and challenges 

in accurately differentiating CTCs, this work focuses on efficient 

and targeted improvement in classifying CTC and non-CTC im

ages, particularly in areas where classifier uncertainties arise, 

identified through analysis of clusters in the latent space. We 

introduce a human-in-the-loop (HiL) strategy to provide limited 

yet meaningful additional training samples, guided by experts, 

from these uncertain areas to an initial classifier, thereby 

improving classification performance while minimizing the time 

demand on experts during annotation and final evaluation of pre

dicted CTCs. Although Nanou et al.19 sampled from dense CTC 

and non-CTC latent space areas to increase the certainty of 

automatically pseudo-labeled data points, we hypothesize that 

sampling from areas with higher uncertainty is more beneficial, 

since these areas are where most of the false classifications 

take place. This is intrinsically not accounted for by Nanou 

et al.19; for their approach, the classification of cells within these 

regions remains uncertain.

In our approach, we bridge the gap between self-supervised 

and semi-supervised approaches by combining a custom self- 

supervised (self-distillation with no labels, DINO22) pretrained 

image encoder with a lightweight machine learning (ML) classi

fier (support vector machine, SVM) following the setup by Hus

seini et al.21 and Nielsen et al.20 We incorporate a HiL mechanism 

to facilitate rapid classifier adjustments as new training samples 

become available.

The study builds on CS cartridge images from 90 metastatic 

breast cancer patients. The proposed framework deploys the 

StarDist algorithm to extract single-cell crops from the cartridge 

images.23 For cell classification, we combine the advantages of 

both state-of-the-art ML and human experience and interven

tion. We demonstrate the feasibility of the HiL strategy by exper

iments both based on simulations (simulated HiL) and with a hu

man operator in the loop (real-world HiL).

Our major contributions and major findings are the following:

(1) Detailed latent space analysis: we provide a detailed anal

ysis of the latent space cell representations for metasta

tic breast cancer LB data and demonstrate that clusters 

with differing classification performance exist in the latent 

space.

(2) Proposal of an efficient HiL strategy: based on finding (1), 

we introduce an iterative, local classifier performance- 

driven sampling and labeling strategy and demonstrate 

its feasibility and effectiveness.

(3) Public availability of training framework and models: the 

complete framework (2), including model weights for the 

image encoder and a pipeline to generate cell images 

from cartridge images, is made publicly available.24

RESULTS

Framework overview and the HiL principle

The proposed framework consists of three main modules (Figure 

1): single-cell image extraction (Figure 1A), self-supervised im

age encoder training using unlabeled cell images (Figure 1B), 

and cell classification based on the HiL principle (Figure 1A, 

bottom), utilizing a cluster analysis of the latent space cell 
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representations (Figure 1C). The extraction of the single cells 

starts with applying the StarDist algorithm23 to segment the cells 

in the CK channel of the cartridge images acquired by the CS 

system. The segmented cells are then cropped and organized 

in the order of DAPI, CK, and CD45 channels to create three- 

channel images that define the input of subsequent DL systems. 

In the present study, this step is applied to all the image car

tridges of all 90 breast cancer patients.

The SSL-based image encoder training followed the DINO 

principle. The SSL part was performed using data from 60 out 

of 90 patients.

The learned representations of the DINO teacher backbone 

were then used for the addressed downstream task, that is, 

the classification of the single-cell images (CTC vs. non-CTC). 

Based on the data of the 20 patients not used for the SSL part, 

an initial training pool and a test set were defined before the 

HiL approach was initiated (see methods for details). The ex

tracted features of the training set were used to fit an SVM clas

sifier. Additionally, a designated relabeling pool was defined, 

consisting of samples from previously non-annotated data.

The HiL strategy for drawing samples from the relabeling pool 

is depicted in Figure 1C. The central idea was to target latent 

space clusters that showed a low classification performance, 

in this study, the lowest F1 score, i.e., the harmonic means of 

precision and recall. We contrasted this with a baseline 

approach where additional samples were randomly selected 

from the relabeling pool, independent of a cluster association. 

A human operator carried out relabeling of the new samples, 

and the labeled samples were added to the training pool to adapt 

the SVM decision boundary and reevaluate the classification 

performance. For the performed experiments, the HiL loop de

picted in Figure 1A (bottom) was applied four times.

Cluster identification and characterization

The cluster analysis was aimed at the automatic identification of 

areas in the latent space with a low F1 score compared to other 

areas, i.e., areas with relatively many misclassifications.

The results of the cluster analysis are summarized in Figure 

2B. A total of five clusters with varying sizes and shapes were 

identified. Data points not assigned to any of these clusters 

were referred to as belonging to the background cluster. The 

meaningfulness of each cluster was then assessed, confirming 

that cell images within the same cluster exhibited similar charac

teristics. For example, cluster 1 contained cell images with rather 

small and point-like signals, in both the DAPI and the CK chan

nels, while cluster 2 primarily showed many DAPI signals in the 

background. Furthermore, cluster 0 contained images where a 

shine-through effect occurs, originating from a strong fluores

cence signal in the CK channel that extended into the CD45 

channel.25 Additionally, we observed images displaying artifacts 

such as smeared cells and noisy data spread across the clusters 

(Figure 2A). Upon this finding, an additional ML classifier was 

trained to preselect these images and to include only valid cell 

images in the subsequent classification task.

Regarding the classification performance on the test set, we 

observed that each cluster contained varying amounts of mis

classifications, with cluster 2 showing the highest number of mis

classified cells and the lowest F1 score (see red dashed box in 

Figure 2B). A closer inspection of cluster 2 revealed that the pre

dominant misclassifications within and in the vicinity of cluster 2 

A B

C

Figure 1. Framework overview and the HiL 

principle 

(A) The flowchart begins with a cartridge image 

from the CS system, where single cells are 

segmented and cropped using StarDist, and the 

available single-channel images are merged into a 

three-channel image. 

(B) The DINO network is trained with data from 60 

patients, while 20 undergo classification using a 

conventional ML classifier (support vector ma

chine, SVM) within the HiL framework (A). After 

training and evaluation, additional images were 

sampled from a relabeling pool and labeled by a 

human expert to boost classification perfor

mance. This process involves the proposed clus

ter-based approach and random resampling as a 

naive baseline approach. 

(C) The proposed cluster-based approach uses 

information from a cluster analysis based on 

labeled data to identify the clusters in the latent 

space with low F1 scores. Relabeled images are 

then included in the training pool. The HiL loop 

was applied four times. The remaining 10 patients 

(out of the 90) are not shown here and will be 

included later for the final evaluation of CTC 

detection performance of the proposed pipeline. 

Abbreviations and explanations: DAPI, nuclear 

stain; CK, tumor marker; CD45, leukocyte marker; 

SSL, self-supervised learning; CE, cross entropy; 

CS, CellSearch; DINO, self-distillation with no la

bels; UMAP, uniform manifold approximation and 

projection.
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were non-CTC predictions of cells that were determined as 

CTCs by human experts.

Impact of sampling on classification performance

The central hypothesis of the proposed HiL approach was that 

targeted sampling and labeling of additional cell images from 

automatically determined latent space areas, based on the 

F1 scores of the local areas, results in improved local and 

overall classification performance compared to fully random 

sampling.

To investigate the hypothesis, three HiL experiments were 

performed: two simulated experiments in a controlled, idealized 

environment and one real-world experiment with a human 

expert who assigned labels to unseen data. All three experi

ments were based on the identified clusters shown in Figure 

2B, left. The performance of the cluster-based strategy to com

plement the classifier training dataset was compared against 

random sampling approaches. Each HiL experiment was 

repeated five times. The results are summarized in Figure 3A 

and Table 1.

Simulated HiL scenario 1: Limited global data

The first experiment assessed the classification performance 

of the cluster-based HiL strategy when starting with a very 

limited classifier training dataset. The initial training pool for 

this experiment consisted of a subset of only 100 labeled 

samples randomly selected from the labeled training set. Dur

ing each simulated HiL loop, 100 additional labeled cell im

ages were sampled and added to the classifier training pool. 

For the baseline approach, these images were randomly 

sampled. For the cluster-based strategy, new samples were 

drawn from the clusters with a frequency inversely propor

Figure 2. Cluster identification and evalua

tion 

In (A), representative cell images with corre

sponding DAPI, CK, and CD45 channels are 

shown, including the overlap of DAPI and CK: a 

CTC (positive for DAPI and CK, negative for 

CD45), a non-CTC, a shine-through effect from CK 

to CD45 channel, and an artifact example. The left 

side of (B) displays the latent space of a trained 

image encoder, reduced to two dimensions by a 

UMAP transform, for the labeled test and unla

beled training data. Clusters identified via clus

tering are highlighted by closed contours. Data 

points not assigned to any of the identified clus

ters are defined as background. The cluster with 

the lowest F1 score, based on the labeled test 

data, is highlighted by a red dashed box. Mis

classified cells are indicated by crosses. The right 

side of (B) depicts exemplary cell images from 

clusters 0, 1, and 2. The first two rows of the 

cluster examples contain cell images from the 

labeled test data and the third row from the unla

beled training data. Abbreviations and explana

tions: DAPI, nuclear stain; CK, tumor marker; 

CD45, leukocyte marker; GT, ground truth.

tional to the cluster-specific F1 scores 

before the respective HiL loop.

Figure 3A shows that the cluster with 

the lowest initial F1 score was cluster 2 (average F1 score for 

five repetitions of the experiment, 0.107; evaluation based on 

the test dataset); the other clusters start with higher F1 scores. 

After four HiL loops, a noticeable classification improvement 

for cluster 2 is depicted, using the cluster-specific approach, 

achieving an F1 score of 0.635. In contrast, the random sampling 

approach to enrich the SVM training dataset reached only 0.260 

after four iterations. The quantitative evaluation is supported by 

the qualitative impression of the latent space snapshots of clus

ter 2 and its proximate area (Figure 3A, bottom): after initializa

tion, many erroneous non-CTC predictions occurred, especially 

in the northern region of cluster 2, while more erroneous CTC 

predictions appeared in the southern region. After HiL loop 4, 

the number of false predictions reduced, and the reduction of 

false non-CTC predictions was more apparent for the cluster- 

specific than for the random approach.

Further, in both approaches, the F1 score increased for the ma

jority of clusters after four HiL loops (see Figure 3A), albeit with 

less pronounced improvements than for cluster 2. For the clus

ter-based sampling approach, this can be explained by the pro

posed sampling strategy: with an increasing F1 score for cluster 

2, the probability of drawing and labeling new samples from the 

other clusters increases for the available training for the individ

ual. On average, the F1 score increased from initially 0.849 to 

0.911 for the cluster-based and 0.896 for the random approach 

after four HiL loops. To achieve an F1 score of 0.911, the random 

approach required an average of five additional HiL loops (mini

mum, 2; maximum, 6), translating to an annotation task of 500 ex

tra samples (minimum, 200; maximum, 600) per repeated run by 

an expert. We further estimated the time savings of our cluster- 

specific approach by having an expert label 100 randomly 
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selected cells, which took approximately 5 min, translating into 

approximately 25 min additional human intervention time for the 

naive sampling time for our feasibility experiment.

Simulated HiL scenario 2: Limited local data

While the first experiment focused on challenges due to limited 

labeled training data in general, the second experiment ad

dressed the challenge of limited training data for a specific local 

latent space area, i.e., a specific cluster. As the latent space cap

tures the learned representation of the input images, this scenario 

corresponds to the situation in which the images and cell repre

sentations of a new patient do not match the characteristics of 

the majority of the images and patients used for classifier training.

To mimic this scenario, the number of training samples was 

cut to 20% of the original training dataset size for one cluster 

(subsequently called the main cluster) and to 80% for the other 

clusters. Within each loop of the simulated HiL scenario, an addi

tional 20% of the main cluster training samples was added to the 

SVM training dataset. As a comparison benchmark, the addi

tional training samples were randomly drawn from the left-out 

samples of the other clusters and 20% of the left-out samples 

of the main cluster.

Figure 3. Impact of HiL sampling strategy 

on classification performance 

Two experiment settings are depicted: simulated 

sampling and relabeling (simulated HiL: limited 

global data) in (A) and relabeling by a human 

expert (real-world HiL) in (B). Line plots display 

mean F1 scores and standard deviations of the 

respective loops across the five HiL runs for each 

cluster, including background. Snapshots depict 

the latent space after initialization and final loop 4, 

focusing on cluster 2, i.e., the cluster with the most 

misclassifications, highlighting differences in pre

diction accuracy. Abbreviations and explanations: 

HiL, human-in-the-loop; Init, initialization; loops 

1–4, sampling and relabeling loops.

The experiments focused on cluster 2 

(cluster with the most misclassification) 

and cluster 3 (largest cluster) as main 

clusters. The results are summarized in 

Table 1.

With cluster 2 as the main cluster, the 

cluster-specific HiL approach yielded a 

higher F1 score (0.492 for cluster 2 after 

four HiL loops) than the random sampling 

strategy (F1: 0.456). This trend was 

consistent for the entire testing set evalu

ation (cluster-specific HiL, F1 score of 

0.921; random sampling, 0.919).

With cluster 3 as the main cluster, the 

cluster-specific HiL strategy surpassed 

random sampling for both the main clus

ter (cluster-specific HiL, F1: 0.852; 

random sampling, 0.809) and the neigh

boring cluster 2 (cluster-specific HiL, 

0.485; random HiL, 0.423).

Real-world HiL experiment

For the real-world experiment, the initial 

classifier training pool was the entire labeled training set. Addi

tional samples for classifier refinement were drawn from unseen 

and unlabeled data, and the new samples were labeled by a hu

man expert. The experiment focused again on cluster 2. Since 

most of the initial misclassifications in cluster 2 were erroneous 

non-CTC predictions, only new samples from cluster 2 that 

were classified as non-CTCs were considered for expert label

ing. To enrich the SVM training dataset, only the subset of these 

samples categorized as CTCs by the human expert was used. 

The labeling time was limited to 5 min per loop (see methods

for further details).

The results are summarized in Figure 3B. During the labeling 

periods, the expert identified in total 32 CTCs in the initially unla

beled samples of cluster 2 that were erroneously classified as 

non-CTCs. Although the number of additional new SVM training 

samples was small, the proposed HiL strategy resulted in an in

crease in the F1 score for cluster 2 from initially 0.524 to 0.661 

after four HiL loops, illustrating the efficacy of the proposed tar

geted sampling strategy. A similar random sampling strategy led 

to an F1 score of 0.578 after four loops. This trend is further 

evident in the latent space. Snapshots of cluster 2 and its 
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surroundings reveal relatively fewer misclassifications after the 

last loop for the cluster-specific strategy than for the random 

one (see Figure 3B, bottom). Small improvements in the F1 score 

were also noted in the neighboring clusters, such as cluster 3. 

Further, starting from an overall F1 score of 0.923 for the com

plete test set, the cluster-specific approach achieved a higher 

F1 score (0.930) than the random one (0.926).

Application of final model

To evaluate the CTC detection performance of the proposed 

training strategy, the final model of the cluster-specific real- 

world HiL experiment was applied to 10 additional patients. 

The performance of the proposed pipeline was compared to 

the CS system in terms of the number of identified CTCs and 

the positive predictive value. The latter is defined by how many 

of the cells and events shown to the human observer are actual 

CTCs. The results are summarized in Table 2.

The overall numbers of actual CTCs identified across the 10 

patients were comparable for both systems, whereas the posi

tive predictive value of the proposed pipeline was noticeably 

higher for all patients, resulting in a lower number of false-posi

tive images that need to be analyzed.

In a subsequent analysis, the actual CTCs identified by both 

systems were examined to assess the overlap in CTC detection 

between the two systems and to identify any CTCs detected by 

only one system. For many patients, some CTCs suggested by 

the CS system were not detected by the proposed system (see 

Figure 4B) (CTCs found only by CS across patients: range, 

2–18; average, 7) and vice versa (CTCs found only by proposed 

system: range, 0–26; average, 6). Exemplary CTCs found by the 

model but not by the CS system are depicted in Figure 4A. 

Among these, there are CTCs with a relatively lower DAPI signal 

intensity (see the third CTC; Figure 4A) or lower CK signal inten

sity (see the first and fourth CTC; Figure 4A). Further, the CTC de

tected in the second row (Figure 4A) exhibits a small DAPI signal 

but overlaps with the CK signal.

DISCUSSION

In recent years, multiple efforts have been made to automate the 

detection of CTCs. These include the application of ML tech

niques encompassing supervised learning approaches,17 semi- 

supervised methods,19 and, taking up current trends in ML, first 

self-supervised techniques.21 Many of these developments 

address existing limitations posed by the FDA-cleared CS sys

tem, which is regarded as the reference and gold standard in 

this field: due to the semi-automated nature of the CS system, 

it requires the intervention of a skilled human operator to select 

CTCs from a sometimes large number of images, introducing a 

time-intensive aspect to the process.

While we acknowledge the efforts that aim at complete auto

mation of CTC detection, we argue that leveraging human exper

tise will remain crucial, especially for the clinical application of 

such systems. We think that human input will remain essential 

especially in cases where ML system uncertainties arise, for 

instance, due to a mismatch of the training population and the 

specific patient and blood samples to be analyzed. However, 

in such cases, human expert input is also valuable to further opti

mize the ML system predictions, resulting in a HiL scenario.

In this study, we introduced a novel HiL strategy that bridges 

the gap between self-supervised and semi-supervised method

ologies. We combined a self-supervised DL feature extraction 

with a conventional ML classifier to perform a binary classifica

tion of CTCs and non-CTCs. Leveraging self-supervised feature 

extraction enabled us to learn comprehensive cell representa

tions using a large amount of unlabeled data that are always 

available in related clinical settings. Using only a limited amount 

of labeled data enabled the identification of clusters in the latent 

space with low classifier performance. The latent space analysis 

then allowed us to generate (pseudo)labels for uncertain regions, 

to focus human efforts on labeling a limited set of new samples 

for classifier improvement only where they are most needed, 

and, thereby, to improve the classifier predictions and increase 

the ML system certainty.

The feasibility and the advantages of the proposed strategy 

were demonstrated for LB data of metastatic breast cancer 

Table 1. Classification performance: Cluster-specific vs. random 

sampling approach for simulated HiL experiment 2, limited 

local data

F1 score

Simulated HiL: limited local data

Main cluster: 

cluster 2

Main cluster: 

cluster 3

Cluster- 

specific Random

Cluster- 

specific Random

Total—Init 0.919 ± 

0.003

0.919 ± 

0.003

0.909 ± 

0.003

0.909 ± 

0.003

Total—loop 4 0.921 ± 

0.002

0.919 ± 

0.003

0.921 ± 

0.003

0.916 ± 

0.003

Background— 

Init

0.945 ± 

0.001

0.945 ± 

0.001

0.942 ± 

0.002

0.942 ± 

0.002

Background— 

loop 4

0.946 ± 

0.001

0.945 ± 

0.002

0.946 ± 

0.002

0.946 ± 

0.001

Cluster 0—Init 0.982 ± 

0.006

0.982 ± 

0.006

0.985 ± 

0.006

0.985 ± 

0.006

Cluster 0—loop 4 0.982 ± 

0.006

0.985 ± 

0.006

0.980 ± 

0.005

0.980 ± 

0.005

Cluster 1—Init 0.800 ± 

0.000

0.800 ± 

0.000

0.818 ± 

0.040

0.818 ± 

0.040

Cluster 1—loop 4 0.800 ± 

0.000

0.800 ± 

0.000

0.808 ± 

0.019

0.800 ± 

0.000

Cluster 2—Init 0.432 ± 

0.087

0.432 ± 

0.087

0.315 ± 

0.082

0.315 ± 

0.082

Cluster 2—loop 4 0.492 ± 

0.056

0.456 ± 

0.109

0.485 ± 

0.079

0.423 ± 

0.029

Cluster 3—Init 0.854 ± 

0.012

0.854 ± 

0.012

0.799 ± 

0.016

0.799 ± 

0.016

Cluster 3—loop 4 0.847 ± 

0.018

0.847 ± 

0.018

0.852 ± 

0.017

0.809 ± 

0.027

Cluster 4—Init 0.922 ± 

0.015

0.922 ± 

0.015

0.895 ± 

0.024

0.895 ± 

0.024

Cluster 4—loop 4 0.919 ± 

0.009

0.919 ± 

0.009

0.919 ± 

0.009

0.919 ± 

0.009

Data reported are the mean and standard deviation across clusters, 

including background. ‘‘Total’’ refers to the F1 score evaluated for the 

complete test set. Abbreviations: Init, initialization; HiL, human-in- 

the-loop.
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patients. We showed the existence of distinct latent space clus

ters of cells of similar characteristics (shape, size, and feature 

expression) and observed differing system classification perfor

mances for the different clusters. The proposed iterative cluster- 

specific HiL strategy was compared to a random sampling 

approach that was independent of cluster associations of newly 

sampled data points. Across all our experiments, encompassing 

real-world HiL and simulated HiL experiments, we consistently 

observed a faster increase in classification accuracy in overall 

performance as well as in local performance, particularly for 

the cluster initially displaying the lowest F1 score, when employ

ing the cluster-specific approach. Furthermore, the observed to

tal classification accuracy of our framework was higher than the 

corresponding numbers reported by Nanou et al.19 for their 

testing set from metastatic breast cancer (precision on CTC, 

0.938 vs. 0.814; recall on CTC, 0.923 vs. 0.793).

The benefits of a targeted strategy are further evident in a sce

nario mimicking clinical application of the system, where an 

expert reviewed CTC candidates from multiple patients. While 

the CS system is not explicitly designed to propose CTC candi

dates but rather events where the DAPI and CK signals are close 

together,26 this results in a lengthy review process. As shown in 

Table 2, the CS system necessitated reviewing 3,638 events for 

10 new patients. In contrast, a classifier trained with our targeted 

strategy reduced the number of cells requiring review to 985, of

fering a reduction factor of approximately 3.7 while still identi

fying a similar number of CTCs compared with the CS system. 

Although we did not attempt to measure the time the expert 

required to label this sample set of images, in practical 

terms, the more images an expert must review, the greater the 

potential for fatigue, which in turn extends the annotation time 

and potentially increases the likelihood of errors. In practice, 

the annotation efforts significantly vary due to factors such as 

the expert’s experience, number of images, signal intensity, 

and background complexity, adding more time required for 

annotation. Ideally, in the context of metastatic cancer, it would 

be advantageous to eliminate the necessity of reviewing all im

ages for these patients.

Continuing with a clinical application perspective, the pro

posed HiL strategy in combination with latent space analysis 

Table 2. Summary of the CTC detection results of the proposed HiL system and the CS system

Patient

Final HiL model CS

Suggested CTC candidates Actual CTCs Positive predictive value Events Actual CTCs Positive predictive value

1 91 77 0.846 239 74 0.310

2 135 104 0.770 531 107 0.202

3 91 76 0.835 219 80 0.365

4 38 24 0.631 101 23 0.228

5 225 124 0.551 1,197 113 0.094

6 71 34 0.479 168 38 0.226

7 50 31 0.620 133 35 0.208

8 23 20 0.870 167 20 0.120

9 23 14 0.609 93 16 0.172

10 148 130 0.878 790 144 0.182

The positive predictive value indicates the fraction of (proposed) cells that are actual CTCs. ‘‘Events’’ refers to the images presented in the CS gallery.

A B
Figure 4. Comparison of CTCs detected us

ing the proposed model and the CS system 

(A) CTCs found by the model but not by CS and 

(B) vice versa. Abbreviations and explanations: 

DAPI, nuclear stain; CK, tumor marker; CD45, 

leukocyte marker; CS, CellSearch.
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enables the identification of latent space areas with higher clas

sification uncertainty and proposes a targeted strategy to reduce 

uncertainty. This means that for each blood draw, the user can 

see whether the system accuracy can be expected to be high 

for the respective latent space cluster. If this is not the case, 

the user can ask the system to suggest potential CTC candidates 

for visual inspection that, based on the classifier probability 

threshold, are considered less certain CTC candidates. In the 

next step, the results of the expert evaluation can be fed back 

into the system to improve the classification performance for 

the cluster. This approach allows one to develop highly adapt

able classifiers. When blood samples with similar characteristics 

need to be analyzed again, it saves time in the long run.

Limitations of the study

The current study focused on the feasibility and proof of concept 

of the proposed HiL strategy. The feasibility was demonstrated 

using LB data from metastatic breast cancer patients. We further 

showed that the CTC detection performance of the proposed 

pipeline is comparable to that of the CS while presenting fewer 

images to the human operator. The differences in CTC detection 

between our approach and the CS system may be attributed to 

the fundamentally different thresholds (our system, StarDist 

segmentation thresholds; SVM’s confidence threshold; CS, seg

mentation threshold) each system applies to the cartridge im

ages. However, since the CS algorithm is not publicly available, 

the specific implementation details and thresholds cannot be 

determined. One approach to understanding these differences 

is to visually inspect both detected and undetected CTCs on car

tridge images by the CS system and by our system to identify 

areas where CTCs are missed. In this context, Stevens et al.27 re

ported that the CS system struggles with segmentation when cell 

density is relatively high. Therefore, it would be insightful to 

examine whether similar failures are present in our study data 

and if this might contribute to missed CTCs by both systems. 

As the image archive of the CS system consists of multiple adja

cent images, Stevens et al.27 further noted that segmenting 

events at the edges of these images posed additional challenges 

for CS. Consequently, an inspection of these issues could be 

carried out for both the CS system and our proposed system.

As future work, we will expand the scope of our present study 

to include other tumor entities, especially metastatic prostate or 

colon cancer, for which the CS system has also been approved. 

So far, we used data with high CTC counts, which emphasizes 

the need to extend and evaluate our approach to patient data 

with lower reported CTC numbers and data of healthy blood do

nors. This is particularly important considering the predictive sig

nificance attributed to the current consensus threshold of 5 

CTCs per 7.5 mL blood draw for both progression-free survival 

and overall survival.13 The potential of the proposed framework 

in a comprehensive clinical setting has, therefore, to be investi

gated as future work. Additionally, following the FDA-cleared 

standard protocol of the CS system, we evaluated CTCs based 

on their DAPI and keratin positivity, CD45 negativity, and size 

and shape. Therefore, identifying the molecular subtype of the 

patients was not subject of this analysis. Considering additional 

markers in the fourth channel of the CS system to further pheno

typically characterize CTCs, e.g., for HER2 or estrogen receptor 

positivity, would help in distinguishing different molecular 

subtypes.

METHODS

Materials: Data description

LB data preparation

This study is based on LB data of 90 metastatic breast cancer 

patients, i.e., cartridge images obtained through the CS system. 

Cartridge images were obtained by transferring enriched and 

stained cells from a 7.5 mL whole blood sample into a cartridge, 

which is then subjected to a magnetic field to pull the cells in a 

single focal plane against a glass surface.16 A fluorescence mi

croscope then scans the cartridge and creates 175 digitized 

cartridge images with a size of 1,384 × 1,036 px. Each cartridge 

image consists of three channels, representing the three applied 

staining agents: DAPI, CK, and CD45.

CTCs were detected in blood samples from patients with 

metastatic breast cancer treated at the University Medical 

Center Heidelberg, Germany. CTC counts were determined 

by the CS approach in the Institute of Tumor Biology, Univer

sity Medical Center Hamburg-Eppendorf, Germany. CTC 

analyses were approved by the ethics committee of the Univer

sity of Heidelberg (case no. S295/2009 and S-164/2017; 

NCT05652569) and the University of Mannheim (2010- 

024238-46) and by the ethics committee of the chamber of 

physicians of Hamburg (5392-3704-BO), and all patients pro

vided their written consent.

For detection and segmentation of single cells in the CS car

tridge images, we applied StarDist,23 which has already been 

shown to be well suited to single cell segmentation in similar con

texts.27 In this study, the cells were detected and segmented 

based on the CK channel.21 Based on the segmentation informa

tion, cropped three-channel single-cell images of size 48 × 48 px 

were generated. Further preprocessing (min-max intensity 

normalization to a channel intensity range between 0 and 1) fol

lowed the protocol described by Husseini et al.21

Data split

The processing and cell segmentation of the cartridge images of 

the 90 patients led to a total of 1,322,751 (three-channel) single- 

cell images. Data from 60 patients with 999,285 cell images were 

used for self-supervised training of the image encoder. Data 

from 20 patients (275,342 cells) were used for solving the down

stream task of binary classification of cells into CTCs and non- 

CTCs and respective experiments. 5,411 cells were labeled by 

two domain experts and evaluated by consensus, resulting in 

2,723 CTCs and 2,688 non-CTCs. The 20 patients were 

randomly grouped into 10 training (GT, 1,509 CTCs and 1,129 

non-CTCs) and 10 test patients (GT, 1,214 CTCs and 1,559 

non-CTCs). The unlabeled cell images of the training group 

were used as an unlabeled cell image pool for sampling and la

beling additional cell images during the HiL experiments.

Due to the presence of noisy images within the unlabeled 

training dataset, i.e., images with channel signals that were 

hardly interpretable by the human observer, an SVM was trained 

on a small subset of the unlabeled images (400 images that were 

considered noisy by the human experts and 400 that were not 

noisy) to identify such samples. The trained SVM was applied 

to the entire unlabeled training dataset and noisy images were 
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excluded. The refined and final unlabeled training dataset 

comprised 48,312 samples.

The data for the remaining 10 patients with 48,124 cell images 

were set aside for the final evaluation of CTC detection perfor

mance of the proposed pipeline compared to the CS system.

Methods

Self-supervised image encoder training

Self-supervised DL image encoder training was based on the un

labeled single cell three-channel images of 60 patients (999,285 

images) using the public sparsam implementation20 of the DINO 

framework by Caron et al.22

Based on the concept of knowledge distillation between two 

DL models28 and building on contrastive learning frameworks 

and momentum encoders,29 the DINO framework consists of a 

teacher and a student DL model, both sharing the same architec

ture while being trained on different patch views of the same 

input image. As shown in Figure 1B, an input image is randomly 

cropped into two global and five local crops. The teacher re

ceives only the global crops, while the student obtains all crops. 

The objective of the training is to minimize a temperature- 

weighted categorical cross entropy between student and 

teacher model outputs, thereby learning a consistent represen

tation of the different patches of the same input image. The stu

dent model parameters are optimized by stochastic gradient 

descent and the teacher model parameters are computed as 

the running exponential mean of the student parameters.22

Each model consists of a backbone network and a projection 

head that is used only during SSL training. The setup in this study 

follows that of Nielsen et al.20 and Husseini et al.21 and deploys a 

cross-variance vision transformer (XCiT)30 as the backbone. 

Training was carried out for 30,000 iterations. After training, the 

teacher model backbone was applied to infer the image represen

tations used for latent space analysis and image classification.

SSL feature-based image classification

Following the recent success of combining SSL-trained DL 

models and standard ML classifiers for image analysis for sce

narios with only a few annotated data,20,21 we applied an SVM 

for the classification task, given their strong record in cancer 

research,31 including breast cancer.21,32,33 Moreover, Nielsen 

et al.20 demonstrated that SVM-based classification has a slight 

advantage over other ML approaches such as logistic regression 

(LR) and KNN for medical image analysis. As shown in Table S1, 

our observations confirm better performance with the SVM 

compared to other models like KNN and LR. Also, the classifica

tion performance was robust when comparing outcomes with 

and without hyperparameter optimization. Based on these find

ings, we conducted the main binary classification experiments of 

CTC vs. non-CTC using an SVM configured with the default pa

rameters from scikit-learn (except for class weight=binary, 

cache size=10,000, probability=True, and breakties=True, as 

proposed by Nielsen et al.20). The input to the SVM was the rep

resentation of the single-cell image as extracted by the trained 

teacher backbone model, which was further reduced from 128 

to 32 dimensions by principal-component analysis (PCA). These 

32 PCA components accounted for over 90% of the variance of 

the labeled training features, and the SVM was fitted to this 

labeled training dataset.

Latent space cluster analysis

To perform the latent space cluster analysis, we first reduced the 

SSL image representations using PCA. Following common prac

tice,34,35 a uniform manifold approximation and projection 

(UMAP) was further applied on the aforementioned PCA compo

nents to obtain a two-dimensional representation of the latent 

space. Clustering in this two-dimensional space was carried 

out using hierarchical density-based spatial clustering of appli

cations with noise (HDBSCAN). HDBSCAN can automatically 

determine a suitable number of clusters and identify clusters 

with varying densities and shapes (e.g., compared to density- 

based spatial clustering of applications with noise [DBSCAN]36). 

Both properties were desirable in the present study, as little was 

known about the true data distribution, such as the true number 

of clusters and their characteristics.

The cluster analysis was performed on the UMAP features of 

the joint unlabeled training and the test datasets. While this 

might seem unintuitive at first glance, it serves an important 

purpose: to study local cluster effects in a real-world scenario 

(e.g., the real-world HiL experiment), non-training data must 

be assigned to a cluster; therefore, test data must be included 

in the clustering process. If the cluster analyses were conduct

ed without the test data and solely on the training data (labeled 

and unlabeled data), most clusters would retain a similar size 

and shape; however, the representation of the cluster contain

ing a large portion of the test data and in particular consisting of 

most misclassifications would not be captured and represented 

well as a distinct cluster (see Figure S1). Furthermore, to 

compensate for the limited size and potential biases when us

ing only the labeled part of the test dataset, we enriched the 

test set with the much larger and potentially more diverse unla

beled training set. During evaluation, data samples not as

signed to any cluster by HDBSCAN were referred to as the 

background data.

Proposed HiL strategy

The underlying idea of the proposed HiL strategy was to improve 

labeling efficiency and classification performance by targeted 

automatic sampling and labeling new data points from latent 

space clusters with low(er) classification performance. The iter

ative process consists of the following steps:

(1) Initialization: a pool of unlabeled samples is defined, 

called the relabeling pool, along with an initial training 

pool of labeled samples. Furthermore, a test set is pre

pared for evaluation purposes.

(2) Relabeling loop: the following steps constitute the loop 

and are repeated until the classification performance is 

satisfying or no more data are available in the relabel

ing pool:

(i) The classifier (SVM) is fitted to the labeled training 

samples.

(ii) The fitted classifier is applied to classify the labeled cell 

images of the test set.

(iii) The local performance of the classification is evalu

ated for the latent space clusters and the labeled 

test set. In this study, the F1 score was used and 

computed for each cluster and the entire test set.

(iv) Cluster-specific sampling of new data points: based 

on the classification performance for the different 
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clusters, unlabeled samples are drawn from the relab

eling pool.

(v) The drawn samples are presented to a human expert 

who assigns class labels. The labeled images are 

added as new data points to the training pool and 

removed from the relabeling pool.

Experiments

The working hypothesis of the proposed HiL strategy was that it 

allows improving classification performance with fewer new 

labeled samples compared to a naive, fully random sampling 

approach. The hypothesis was tested in two simulation exp

eriments (simulated HiL scenarios 1 and 2, performed in an 

idealized environment) and a real-world implementation of the 

strategy, involving a human expert and unseen new data (real- 

world HiL experiment).

Each experiment comprised four relabeling loops and was 

repeated five times with different random seeds to study the 

robustness of the results. The classification performance was 

assessed by the F1 score for the different clusters and the overall 

F1 score.

Simulated HiL scenario 1: Limited global data

In the first scenario, classification improvement through local 

training dataset adaptation was assessed when starting with 

very limited initial training data. For this simulation experiment, 

only 100 labeled samples were selected randomly from the 

labeled training pool to form the initial SVM training dataset. 

The remaining labeled cells of the original training dataset 

defined the relabeling pool for this experiment. During each re

labeling loop, 100 additional samples were drawn from this 

pool, resulting in 500 samples after one completed HiL experi

ment (i.e., after four loops). During each loop, a 100-fold Monte 

Carlo (MC) cross-validation of the limited labeled training pool 

of this experiment was performed by splitting the data into MC 

training (90%) and MC validation (10%) for each step. The split

ting process was not stratified, as the objective was to simulate a 

realistic data sampling scenario and better reflect potential sam

pling randomness. Stratification would enforce an artificial 

constraint by guaranteeing a specific distribution of class, and 

such precise knowledge may not be available during sampling. 

All cross-validation results were then combined, and the classi

fication performance of each cluster was evaluated in terms of 

the F1 score. For cluster-specific sampling, new samples were 

drawn from the relabeling pool and the clusters with a relative 

frequency ci inversely proportional to the associated MC valida

tion F1 score si of cluster i,

ci =
1 − si

∑

j

1 − sj

:

As a baseline comparison, a random sampling approach was 

simulated, where in each loop 100 new samples were randomly 

drawn from the entire relabeling pool of this experiment, agnostic 

of cluster performance.

Simulated HiL scenario 2: Limited local data

The second experiment emphasized the scenario of limited 

labeled training data for a specific local area in the latent space 

in the initialization phase. For this scenario, the training dataset of 

only a single cluster (referred to as the main cluster) was pruned 

to 20% of its original size, while all others were limited to 80% of 

their original size. Due to the limited number of training samples 

for SVM fitting, the classification performance for the main clus

ter was hampered compared to the other clusters. During each 

relabeling loop, the next 20% of the labeled original training da

taset of the main cluster was randomly drawn (calculated based 

on 100% of the total available samples from the main cluster) un

til 100% (i.e., all labeled samples) of the main cluster was used 

for classifier fitting.

For comparison purposes, the same initial labeled training set 

was defined, but we used 20% of the left-out labeled data for 

each cluster, including the main cluster, to form the relabeling 

pool. Sampling from the relabeling pool was then carried out 

randomly, with the number of drawn samples per loop given by 

the corresponding number for the cluster-specific sampling 

strategy.

This experiment was conducted only for the two most inter

esting clusters: cluster 2, which represented the cluster with 

the lowest F1 score at initialization, and cluster 3, which repre

sented the largest cluster.

Real-world HiL experiment

The real-world HiL experiment followed the same scheme as the 

simulated HiL but did not rely on artificially limited labeled clas

sifier training data. Instead, new training data were sampled 

from initially unlabeled samples. That is, the initial classifier 

was trained on the entire labeled training dataset, and the test 

set was used to evaluate the cluster-specific classification 

performance.

As for the relabeling pool, 1,000 new samples were drawn from 

the unlabeled training set. We focused on the cluster with the 

initially lowest F1 score (cluster 2) and constrained the relabeling 

pool by sampling only from this cluster. For cluster 2, the low F1 

score was mainly due to erroneous non-CTC prediction. We 

therefore limited the relabeling pool to samples for which the 

classifier predicted the cell to be non-CTC. Interested in mainly 

reducing the number of erroneous non-CTC predictions, the hu

man expert was given 5 min to identify as many of these false 

predictions as possible, taking observer variability into ac

count.37 These were then, as new CTC examples, added to the 

classifier training pool.

In the first HiL run, 32 new samples were labeled as CTC, with 

11 samples in loop 1, 10 samples in loop 2, 7 samples in loop 3, 

and 4 samples in loop 4. Since no further CTCs were found, the 

new labeled samples were shuffled in the remaining repeated 

HiL runs while maintaining the same number of new samples 

per loop.

For the random sampling approach, also only non-CTC pre

dictions from the unlabeled training set were sampled, but 

without considering their cluster association. Furthermore, only 

images that were initially predicted to be non-CTCs but were 

identified as CTCs by the expert were added to the training pools 

to match the cluster-specific experiment design. Furthermore, 

the number of added samples per loop was the same as for 

the cluster-specific experiment.

Application of final model

To assess the performance of the proposed HiL strategy for CTC 

detection, the final SVM model of the real-world cluster-specific 

HiL experiment (after four HiL loops) was applied to the 
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remaining 10 patients who had not been used in the aforemen

tioned experiments. Similar to the other experiments, the input 

for the SVM consisted of the PCA-reduced representations of 

single-cell images extracted by the trained teacher backbone 

model. CTC candidates were determined utilizing the SVM deci

sion function with a confidence threshold above 0.5 (minor ad

justments to 0.4 and 0.6 showed similar positive predictive 

values), and duplicate cells were automatically removed.

Similar to the image gallery of the CS system, the suggested 

CTC candidates were presented to an expert, and CTCs were 

identified. For all patients, the same expert analyzed the CS im

age gallery and identified the CTCs therein. The number of CTCs 

was counted for both systems. For the identified CTCs, their co

ordinates in the CS cartridge image were extracted from the 

extensible markup language (.xml) file generated by CS, and 

the fraction of CTCs that were identified in the image galleries 

of both systems was analyzed. Cells that were labeled as 

CTCs for one system and as non-CTCs for the other were taken 

into account during evaluation.
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Data and code availability

• The processed data supporting the cluster analysis and the simulation 

findings and the model weights for the DINO image encoder are publicly 

available at Zenodo.24
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