
TECHNOLOGY REPORT
published: 09 August 2019

doi: 10.3389/fninf.2019.00059

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2019 | Volume 13 | Article 59

Edited by:

Antonio Fernández-Caballero,

University of Castilla La Mancha,

Spain

Reviewed by:

Jaakko Jarvi,

University of Bergen, Norway

Adrián Riesco,

Complutense University of Madrid,

Spain

*Correspondence:

Felix G. Knorr

felix.knorr@tu-dresden.de

†Johannes Petzold

orcid.org/0000-0003-4163-9014

Received: 07 February 2019

Accepted: 22 July 2019

Published: 09 August 2019

Citation:

Knorr FG, Petzold J and Marxen M

(2019) PyParadigm—A Python Library

to Build Screens in a Declarative Way.

Front. Neuroinform. 13:59.

doi: 10.3389/fninf.2019.00059

PyParadigm—A Python Library to
Build Screens in a Declarative Way
Felix G. Knorr*, Johannes Petzold † and Michael Marxen

Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany

In experimental psychology, subjects are often confronted with computer-based

experimental paradigms. Creating such paradigms can require a lot of effort. PyParadigm

is a newly developed Python library to ease the development of such paradigms by

employing a declarative approach to build user interfaces (UIs). Paradigm specifications in

this approach requires much less code and training than in alternative libraries. Although

PyParadigm was initially developed for the creation of experimental paradigms, it is

generally suited to build UIs that display or interact with 2D objects.

Keywords: Python, library, experimental psychology, paradigm, declarative UI, 2D

1. INTRODUCTION

In experimental psychology, subjects are confronted with computer-based experimental paradigms.
A paradigm usually consists of multiple different states in which stimuli are displayed, and the user’s
task is to react to the stimuli by using a response device, usually a keyboard or a pad with a few
buttons. It can be thought of as something between a mini game and an interactive Powerpoint
presentation. Most stimuli are either (colored) text, images, or geometric primitives, sometimes
sounds are used as stimuli too. The primary goal of a paradigm is to quantify the users behavior
in form of reaction times or made decisions, for example. The results need to be stored; a popular
format would be CSV or TSV files.

Creating such paradigms can require quite an effort and a number of software tools have been
developed to this end. Two very popular commercial ones are E-Prime and Presentation. Both of
them consist of a graphical user interface (GUI), which, in case of E-Prime, even allows to specify a
paradigm by dragging and dropping visual elements into a sequence, and a run-time environment,
which can execute previously defined paradigms, and must be present on the PC that executes the
paradigm. However, in many cases, knowledge of an integrated scripting language is required. But
if it is necessary to program anyway, using a fully fledged general purpose programming language
has obvious advantages. There are many programming languages that could be used, but one of the
favorites in the field is Python. Besides being free, it has a reputation of being simple to learn and
easy to read. Additionally it is a popular tool for data analysis, and a large number of high quality,
freely available libraries exist. Thus, it is a useful addition to a scientist’s skill set.

There are many popular libraries for python to create GUIs, the two most prominent ones
probably being Qt and TKinter. A GUI normally runs in potentially multiple windows and consists
of predefined elements like text fields and buttons, which are clicked using the mouse. Often
deeply nested elements are required and elaborate methods are needed for a variety of graphical
input options. An experimental paradigm, in contrast, runs in full-screen mode and requires
often simpler and different types of graphical elements or input options. In addition, the temporal
sequence of events is of primary importance.

Consequently, a number of libraries specifically for creation of paradigms have been developed :
PsychoPy (Peirce, 2009), Expyriment (Krause and Lindemann, 2014), and VisionEgg (Straw, 2008).

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00059&domain=pdf&date_stamp=2019-08-09
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:felix.knorr@tu-dresden.de
https://orcid.org/0000-0003-4163-9014
https://doi.org/10.3389/fninf.2019.00059
https://www.frontiersin.org/articles/10.3389/fninf.2019.00059/full
http://loop.frontiersin.org/people/680411/overview
http://loop.frontiersin.org/people/742993/overview
http://loop.frontiersin.org/people/133374/overview

Knorr et al. PyParadigm

For a comparison (see Table 1). These libraries all work in a
very similar way: Stimuli are loaded and then positioned on the
screen using absolute or relative x and y coordinates. All of these
libraries have a particular strength: PsychoPy has a GUI builder
that will generate Python code, Expyriment can run on Android,
and puts extra effort in synchronizing display time stamps with
the screen refresh rate, and VisionEgg puts an emphasis on using
the GPU and supports 3D graphics.

While all of these libraries have their own advantages, they
are relatively complex, need a fair amount of training to master,
and require more lines of code than needed in many cases.
We developed PyParadigm with the goal of being able to write
paradigms with a minimum of code and training. Less code
means faster development, and less room for bugs. PyParadigm
can also increase readability, once familiar with it (it takes ∼ 1
h to go through our tutorial at: https://pyparadigm.readthedocs.
io/en/latest/tutorial.html). The main idea in PyParadigm is that
images shown as stimuli are specified declaratively—not by
issuing commands to draw specific parts of images but by
specifying their nested structure. PyParadigm is a very thin
wrapper around the video game development library pygame and
uses its Surface class to represent visual data. This means that
it can freely interact with pygame directly where PyParadigm
falls short. For example, freely moving visual stimuli cannot be
programmed using the layouting mechanisms of PyParadigm.
But they can be easily implemented using pygame and integrated
into PyParadigm. Additionally, PyParadigm also accepts 2D-
numpy arrays as image data, which makes it easy to write scripts
that utilize image data, e.g., browsing 2D-slices of a 3D MRI
volume using a moving marker.

2. THE LIBRARY

In this section, we will present PyParadigm in depth. It is
published on PyPi and can be installed via pip (Python 3 only):

TABLE 1 | Comparison of the features the different paradigm programming

libraries offer.

PsychoPy VisionEgg Expyriment PyParadigm

Positioning with (x, y)

coordinates

✓ ✓ ✓ ✓*

Positioning via layouts ✗ ✗ ✗ ✓

GPU acceleration ✓ ✓ ✓ ✓*

3D support ✓ ✓ ✗ ✗

GUI builder ✓ ✗ ✗ ✗

Android support ✗ ✗ ✓ ✗

v-sync timing

synchronization

✓ ✗ ✓ ✗

Support for blocks, run, and

trials

✓ ✗ ✓ ✗

Support for rendering

numpy arrays

✓ ✗ ✗ ✓

Support for text input ✗ ✗ ✓ ✓

Direct interactivity with

pygame

✗ ✗ ✗ ✓

A * means: yes, through pygame.

pip install pyparadigm. PyParadigm is split into four modules: (1)
surface_composition, (2) eventlistener, (3)misc, and (4) extras.

The surface_composition module is used to create images
that are subsequently displayed on the screen. The eventlistener
module handles keyboard input. The misc module contains
functions to create the window, draw images within the window
and a few others. The extras module contains code that has
extra dependencies besides pygame, which are not installed
automatically (currently numpy and matplotlib). The full
documentation can be found at https://pyparadigm.readthedocs.
io. In the following, you will be introduced to the important
principles of PyParadigm, based on concrete examples which
should enable you to write paradigms yourself with only little
additional reference to the documentation or the tutorial.

2.1. The Surface Composition Module
This module is the heart of PyParadigm. The idea is to describe
an image with a hierarchical tree structure. Every element in the
tree is assigned a part of the image to draw on, additionally it
can assign any part of its space to its child elements, if it has any.
The elements of which a screen is composed are not actual visual
data that is stored in memory and copied onto the image, they are
rendering instructions.

There are a few important subgroups of elements: layouts,
wrapper, and primitives. Layouts have the sole purpose of
dividing their space among their children, and enable the creation
of resolution independent visuals. There are 3 different layout
types: LinLayout arranges its children in a line, that is either
horizontal or vertical. By default the available space is split
equally among the children. The LLItem class can be used to
change the proportions of the children or insert empty cells,
GridLayout arranges its children on a grid, proportions can be
defined for rows and columns, Overlay draws its children on top
of each other.

Wrappers take a single child item (which can also be a
layout) and modify the rendering. For example, they pad the
element with a buffer space (Padding), reduce the available
area to the biggest rectangle with defined side proportions
(RectangleShaper), surround the area with a border (Border)
or fill the background with a given color (Fill). One very
special wrapper is the Surface, which will automatically wrap
a pygame.Surface, i.e., an image that was loaded from disc
or created otherwise. Images have a resolution, and cannot
easily be scaled, because this might lead to bad image quality
if the available space is bigger than the image, or distortions.
Therefore, the default behavior is to scale images down, to the
biggest possible rectangle that can be fit into the available space
without distorting the image, if the available space is smaller
than the image. If the available space is larger than the image
it will be centered but not upscaled. The detailed behavior of
how an image should be inserted can be specified through
the various parameters of Surface, if it is used to wrap a
pygame.Surfacemanually.

Primitives do not accept any children and simply render
something into the assigned area, using as much space as
possible. Available primitives are Circle, Cross, Line, Text,
and Rectangles (by using Fill).

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2019 | Volume 13 | Article 59

https://pyparadigm.readthedocs.io/en/latest/tutorial.html
https://pyparadigm.readthedocs.io/en/latest/tutorial.html
https://pyparadigm.readthedocs.io
https://pyparadigm.readthedocs.io
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knorr et al. PyParadigm

2.2. The Eventlistener Module
Input processing works in the following way: if a key is pressed,
this information goes to the operating system, where it is
processed. Unless it is a control sequence, like Win + L, the
command will be sent to the window that has input focus (in
this case: the pygame display window). These events are gathered
in an event-queue, which is controlled by pygame. To react
to events they need to be polled from the queue, then their
information needs to be parsed and, consequently, actions can
be taken. This process needs to be repeated periodically. Pygame
provides abstractions for this by means of the EventListener
class. An EventListener object will offer multiple methods.
Each of them will parse the event-queue repeatedly until the
event-of-interest occurs. In this case, they will return the
information that was contained in the event. Additionally a
timeout can be specified, which will cause the method to return
if no event-of-interest occurred during the provided timeout.
Available methods are for example, wait_for_keys(), which
will return when one of multiple provided keys was pressed
once, wait_for_unicode_char(), which will return if the user
presses any key, that represents a Unicode char. This is the
method of choice to get text-input from the user since it returns
the unicode character instead of a pygame key-code. For mouse
input, a wrapper element for the render tree is provided, which
will give all its space to its child, and calls a callback function, if a
mouse event that corresponds to its area occurs.

In case functionality is required that is not provided by
the currently available methods, a handler function can be
defined, and passed as argument to the listen()method. These
functions will then be confronted with each event and can react
to it in a customized way. The EventListener can take a list
of handler functions on instantiation, which will always be used
when the event loop is parsed.

2.3. The Misc Module
This module contains a collection of functions that are useful,
but do not fit well into one of the other modules. It contains
functions to create the display window, draw a pygame.Surface
onto the screen, create a pygame.Surface of the size of the
display window that is filled with a specified color, manipulate
a string buffer according to a provided Unicode character and
display multiple frames in a list successively.

2.4. The Extras Module
The extras module contains functions to use numpy arrays
as images and may be extended by the user as needed. This
module can be used, for example, to work interactively with
data represented as numpy arrays, like browsing neuroimaging
data, to extract information from volumes of choice. It could
also be used to render stimuli that cannot be easily created with
the surface_composition module because they based on a
complex mathematical formula.

3. CREATING A PARADIGM

To demonstrate that it is very simple to create a paradigm with
PyParadigm, we will walk the reader through the basic elements

of a paradigm in this section. First we create the display window
calling init(), and an EventListener instance. The rest of the
main function below looks like a table of contents:

def main():

init((0, 0), pygame.NOFRAME)

el = EventListener()

display_introduction(el)

do_training(el)

results = execute_task(el)

store_results(results)

An introduction is displayed; there is a training period followed
by the task; lastly, the behavioral results are saved. The
introduction could look something like this:

def white_bg():

return empty_surface(

pygame.Color(255, 255, 255))

def display_introduction(el):

frames = [

compose(white_bg())(

Text(text_page , Font(size=40)))

for text_page in intro_text]

slide_show(frames, lambda:

el.wait_for_keys(pygame.K_RETURN))

First, the frames with the text that should be displayed are created,
then slide_show() is used to display all of them. A lambda
function is provided that will return once the subject presses the
return key, to get to the next text page. intro_text is a list of
strings, where every string contains the text for one frame.

The execute_task function could look like this:

def execute_task(el):

display_rdy_msg(el)

block_results = [exec_block(el, ∗∗args)

for args in block_parameter_sets]

display_finished_msg(el)

return block_results

It displays a text to prepare the subject that the task will start,
calls the function that will execute a single block in a list
comprehension with the parameters for each block, which might
be defined as a global variable in the beginning of a script, and in
the end displays another message.

Here is an example for the exec_block() function:

def exec_block(el, args1, args2, args3,

ITIs):

trial_onsets = []

reaction_onsets = []

decision = []

for a1, a2, a3, iti in zip(args1,

args2, args3, ITIs):

display(make_trial_screen(

Frontiers in Neuroinformatics | www.frontiersin.org 3 August 2019 | Volume 13 | Article 59

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knorr et al. PyParadigm

a1, a2, a3))

display_onset.append(time.time())

decisions.append(el.wait_for_keys(

pygame.K_j, pygame.K_f,

timeout=2))

reaction_onsets.append(time.time())

display_fixcross()

el.wait_for_seconds(iti)

return trial_onsets , reaction_onsets , \

parse_decisions(decisions)

It manages the execution of a block, i.e., it calls a function to
display a trial, stores an onset, waits for a response, stores the
reaction time, and in the end returns the results. ITIs stands for
inter trial interval and is a list of seconds which represents the
duration that the subject has to wait for between two trials. The
nth entry represents the waiting time after the nth trial, therefore
the last value in the list should be zero.

To be able to run this code, the user still has to provide
a number of variables, like a subject id, which could be
passed as an argument to the script, or be queried via the
input() function. It also misses the code to actually render a
trial (make_trial_screen(p1, p2, p3)). Possible examples
for the make_trial_screen(p1, p2, p3) function will be
provided in the next section.

A fully functioning example for a real world paradigm can
be found at https://github.com/KnorrFG/set_switch_paradigm/
tree/master/felix_2. The implementation took roughly 1 week.

4. EXAMPLES

In this section, we provide some source code together with images
of the resulting displays to illustrate the declarative nature and
code efficiency of the library.

4.1. Example 1
In the first example, we create a screen for an inter-temporal
choice task, in which subjects have to make a decision between
receiving a small of money immediately or a larger amount after
some waiting time.

def offer_box(title, amount):

return Border()(LinLayout("v")(

Text(title, Font(size=50)),

LLItem(2)(Text(

f"{amount} €",

Font(size=50, bold=True)))))

def make_offer(now, later, delay):

return compose(empty_surface(

pygame.Color(255, 255, 255)))(

LinLayout("h")(

padding.from_scale(0.8)(

offer_box("Now", now)),

padding.from_scale(0.8)(

offer_box(f"In {delay} days",

later))))

FIGURE 1 | An exemplary screen of an inter temporal choice paradigm, where

the subject is tasked to decide between 10e that are payed out immediately

and 20e that are payed out after 30 days.

In the make_offer() function the screen is first divided
horizontally into two parts, then the space for both is scaled
down to 80% and filled with an offer box, which is a box (the
Border() around the LinLayout) that contains two Text items,
both of font size 50, and the amount has a bold type face. Also the
space for the amount is twice as large as the space for the delay,
which is implied by LLitem(2) and leads to the positioning seen
in Figure 1.

4.2. Example 2
In this example, two symbols are displayed, and the subjects
have to press either the F-key or the J-key, depending on
whether the symbols are identical. The output can be seen
in Figure 2 and the source code below. First, the screen is
divided vertically (LinLayout("v")), then the instruction text
is added, implicitly with a proportion of one, then the two
symbols are added. They are wrapped in a horizontal LinLayout,
which also contains three empty LLItems to create the visible
spacing. In the end, another empty LLItem is added to the outer
layout, to shift everything upwards. This time, the color for the
background image is provided as a hex-code, which is shorter
than using pygame.Color(), also the outer LinLayout is now
moved to the second argument of compose, which saves one
indention level.

def same_or_different_trial(left, right):

return compose(empty_surface(0xFFFFFF))(

LinLayout("v")(

Text("Press F if both symbols "

+"are the same, otherwise "

+"press J",

Font("arial", size=40)),

LLItem(3)(LinLayout("h"))(

LLItem(1),

RectangleShaper()(left),

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2019 | Volume 13 | Article 59

https://github.com/KnorrFG/set_switch_paradigm/tree/master/felix_2
https://github.com/KnorrFG/set_switch_paradigm/tree/master/felix_2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knorr et al. PyParadigm

FIGURE 2 | Screen of example 2.

LLItem(1),

RectangleShaper()(right),

LLItem(1)),

LLItem(1)))

4.3. Example 3
Example 3 shows the training stage of a Stroop task, where
subjects have to learn the color mappings by heart. The output
is shown in Figure 3.

class Color(Enum):

red = 0xFF0000

green = 0x00FF00

blue = 0x0000FF

def _bg():

return empty_surface(0xFFFFFF)

def text(s, color=0):

return Text(s, Font("Arial", size=30),

color=pygame.Color(

color ∗ 0x100))

def make_train_stim(kind, color):

assert kind in ("color", "text")

return RectangleShaper()(

text(color.name)

if kind == "text" else

Fill(color.value))

def make_color_mapping():

return LinLayout("h")(∗[

LinLayout("h")(

LLItem(1),

text(str(key + 1)),

make_train_stim("color", color),

LLItem(1))

for key, color in enumerate(Color)])

def stroop(stim_type , target_color):

return compose(_bg(), LinLayout("v"))(

text("target color:"),

Padding.from_scale(0.3)(

make_train_stim(

stim_type ,

target_color)),

make_color_mapping())

Here, two screens are provided in the output, the left one
is created by the call stroop("color", Color.green) and
the right one by stroop("text", Color.green). The basic
layout is just 3 vertically aligned items of equal size. Then the text
“target color:” is added. Next a box with the given color, or its
name as text, is defined in the function make_train_stim().
At last the mapping, displaying which key to press for which
color, is created in the bottom by make_color_mapping(). The
mapping is created as a horizontal layout that has one horizontal
layout as child for each possible color. The inner horizontal
layout uses two empty LLItems on the outsides as buffers, and
has a text, and a colored square in the middle. This leads to a
distribution of one empty LLItem on the outsides, but two empty
LLItems between 2 mappings.

5. LIMITATIONS

While PyParadigm is capable to create most psychological
standard tests as it is, it still has some limitations. PyParadigm
currently only supports keyboard and mouse input. So any
external input device that does not create key-press events would
require the creation of additional handler functions, probably
using pygames joystickmodule.

Another limitation is that we did not perform any
measurements of input or display delays for two reasons: 1.
these delays are highly dependent on the executing hardware,
2. compared to the variance in human behavior the variance
in hardware delays is low and does usually not have a negative
impact on statistical outcomes (Damian, 2010). We rely on
pygame’s default plotting mechanisms, which usually means an
instantaneous screen update when display() is called, but
a delay of the screen update when the pygame.DOUBLEBUF is
used for window creation. While this is no problem for most
paradigms, it matters in studies using subliminal priming.
Therefore, we cannot recommend using PyParadigm for
such studies.

Additionally, some people may expect some classes or
functions to handle the structure of a paradigm, like runs and
blogs thatmay ormay not use different conditions.We found that
there is no real advantage in using something like this opposed to
simply using for-loops and itertools.product, which is part

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2019 | Volume 13 | Article 59

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knorr et al. PyParadigm

FIGURE 3 | Screen of example 3.

of the python standard library. However, if you prefer to use such
functions, we recommend to use the library “experimentator”
(Harrison, 2018), which was explicitly built for this purpose. It
is completely independent from PyParadigm, and since there are
no overlapping functionalities, it should work together without
any problems. However, we haven’t tested this.

pygame does not support the serial port, but there is a library,
PySerial Liechti (2019), that can be utilized to this end.

Although PyParadigm is based on pygame, which is tested
thoroughly, the underlying technology is complex, and depends
on the operating system, the hardware and the vendors drivers.
Therefore, in some rare cases, PyParadigm might not function
on some systems.

6. CONCLUSION

In this paper, we have presented our newly developed library,
PyParadigm, an efficient, minimalistic and easy to learn approach
to paradigm implementation. We demonstrated that the process
of creating a paradigm is very straight forward. We introduced
the principles of the different modules, gave a breakdown of
how paradigm creation works in general, and provided three
concrete examples for the surface_composition module.

A real-world paradigm, which was used in a study, can
be found at https://github.com/KnorrFG/set_switch_paradigm/
tree/master/felix_2 to browse the source. PyParadigm is designed
to save developers time in creating paradigms and to minimize
the required lines of code by using an efficient composition

mechanism for 2D UIs. Critical feedback via https://github.
com/KnorrFG/pyparadigm and extensions of the package are
very welcome.

AUTHOR CONTRIBUTIONS

FK designed and implemented the library, and wrote the
manuscript. JP tested all provided examples and ensured that all
examples are understandable to a layperson as well as proofread
and improved the manuscript. MM contributed to the design of
the software and provided improvements to the manuscript.

FUNDING

This research was supported by the Deutsche
Forschungsgemeinschaft (DFG grant SFB 940/2). We
acknowledge support by the Open Access Publication Funds of
the SLUB/TU Dresden.

REFERENCES

Damian, M. F. (2010). Does variability in human performance outweigh

imprecision in response devices such as computer keyboards? Behav. Res.

Methods 42, 205–211. doi: 10.3758/BRM.42.1.205

Harrison, H. S. (2018). Experimentator. Available online at: https://github.com/

hsharrison/experimentator

Krause, F., and Lindemann, O. (2014). Expyriment: a Python library for

cognitive and neuroscientific experiments. Behav. Res. Methods 46, 416–428.

doi: 10.3758/s13428-013-0390-6

Liechti, C. (2019). Python serial port access library. Contribute to pyserial/pyserial

development by creating an account on GitHub. Available online at: https://

github.com/pyserial/pyserial

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Front.

Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008

Straw, A. D. (2008). Vision Egg: an open-source library for realtime

visual stimulus generation. Front. Neuroinform. 2:4. doi: 10.3389/neuro.11.

004.2008

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Knorr, Petzold and Marxen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2019 | Volume 13 | Article 59

https://github.com/KnorrFG/set_switch_paradigm/tree/master/felix_2
https://github.com/KnorrFG/set_switch_paradigm/tree/master/felix_2
https://github.com/KnorrFG/pyparadigm
https://github.com/KnorrFG/pyparadigm
https://doi.org/10.3758/BRM.42.1.205
https://github.com/hsharrison/experimentator
https://github.com/hsharrison/experimentator
https://doi.org/10.3758/s13428-013-0390-6
https://github.com/pyserial/pyserial
https://github.com/pyserial/pyserial
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3389/neuro.11.004.2008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	PyParadigm—A Python Library to Build Screens in a Declarative Way
	1. Introduction
	2. The Library
	2.1. The Surfaceheight1pt width6ptComposition Module
	2.2. The Eventlistener Module
	2.3. The Misc Module
	2.4. The Extras Module

	3. Creating a Paradigm
	4. Examples
	4.1. Example 1
	4.2. Example 2
	4.3. Example 3

	5. Limitations
	6. Conclusion
	Author Contributions
	Funding
	References

