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Abstract

Morphological changes are critical for the virulence of a range of plant and
human fungal pathogens. Candida albicans is a major human fungal
pathogen whose ability to switch between different morphological states is
associated with its adaptability and pathogenicity. In particular, C. albicans
can switch from an oval yeast form to a filamentous hyphal form, which is
characteristic of filamentous fungi. What mechanisms underlie hyphal
growth and how are they affected by environmental stimuli from the host or
resident microbiota? These questions are the focus of intensive research,
as understanding C. albicans hyphal growth has broad implications for cell
biological and medical research.
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Introduction

Morphology changes occur in a range of human fungal patho-
gens upon interaction with the host'. In response to different
host signals, Candida albicans switches from the yeast form to
a hyphal form, a cell shape characteristic of filamentous fungi,
such as Aspergillus nidulans and Neurospora crassa’™. However,
hyphal cells of C. albicans are different from those of these
organisms with respect to shape/diameter and extension rate
(10- to 100-fold slower with this fungal pathogen). Further-
more, in these filamentous fungi, microtubules are critical for
hyphal growth, a striking difference with C. albicans, in which
microtubules do not play a prominent role’. C. albicans is an
opportunistic human fungal pathogen and a number of studies
have linked the switch from yeast to hyphal form with patho-
genicity, whether during superficial or systemic infections®'’.
This brief review presents an update of research from the past 2
to 3 years on C. albicans technological advances, cell signaling,
host interactions, and membrane traffic and puts an emphasis
on hyphal growth (Figure 1).

Technological advances

In the past several years, technological advances have opened
a range of new possibilities in C. albicans research. Specifi-
cally, the majority of approaches have opened our horizons with
respect to large-scale analyses of fungal pathogen function,
including a major thrust coming from clustered regularly inter-
spaced short palindromic repeat (CRISPR)-based tools that have
particularly revolutionized genome manipulation in geneti-
cally less accessible fungi, such as the diploid C. albicans'"".
Other notable approaches that are changing how we work with
and view this fungal pathogen include experimental or micro-
evolution approaches'*™, in particular with respect to host
niche environments. In addition, large-scale approaches, such as
population and genetic diversity analyses via genome sequences
of large numbers of isolates'®, and the establishment of genomic
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platforms that facilitate the study of gene function at a genome-
wide level "’ pave the way for future multi-omic studies.

The application of CRISPR-based methods to C. albicans in
2015 was a major step in facilitating molecular genetics in this
less genetically tractable fungus’' and opened a myriad of possi-
bilities for studying gene function, including marker recycling**,
a “gene drive array” platform for genetic interaction'?, rapid gene
concatenation for genetic rescue of multi-gene mutants®, and
gene regulation™”°. Overall, C. albicans CRISPR-based methods
have been substantially optimized''>**~** and now facilitate a

range of gene functional analyses up to a genome-wide scale.

Experimental or micro-evolution approaches are particularly
powerful tools when applied to opportunistic pathogens™.
These approaches have been used initially to identify mutations
that restore filamentation in a non-filamentous mutant within
macrophages™ and more recently to investigate drug resistance'”,
host niche-specific mutations'’, and the emergence of mutual-
ism between host and fungus'”. These approaches, coupled with
whole-genome sequencing and other genome-wide methods, are
extremely useful when applied to a diploid commensal that can
undergo a panoply of genome rearrangements with far-reaching
consequences.

The application of novel large-scale approaches, as well as the
refinement and optimization of existing methods to gene func-
tion analyses in C. albicans, will undoubtedly promote a deeper
understanding of this fungal pathogen. Chemical inhibitors
and chemogenomic profiling have been used to identify genes
involved in enhanced antifungal drug sensitivity or resistance’’
and novel inhibitors of morphogenesis™.

Genome sequencing and comparative genomics of 182 world-
wide C. albicans isolates have revealed evidence of gene flow

Growth and organization

Host interactions

Functional genomics

Cell-cell and
environmental signaling

Antifungal drug
resistance

Figure 1. Schematic highlighting Candida albicans hyphal organization and studies of morphological transition in different processes
and at different levels. The upper panel shows membrane compartments of the exocytic and endocytic pathways focusing on compartments
discussed in the review. Endoplasmic reticulum and endosomes, for example, are not shown. The lower panel, reproduced from Weiner
et al.*, illustrates a segmented three-dimensional dataset from focused ion beam/scanning electron microscopy tomography of a hyphal tip
with internal membranes (yellow), secretory vesicles (red), and sites of endocytosis (blue).
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and a highly clonal lineage that has undergone substantial
pseudogenization'®. In 2018, three major studies highlighted
advances made possible by new gene function platforms and
tools'7"?. Two groups took advantage of powerful transposon-
based approaches, coupled with a stable haploid C. albicans
derivative, to probe essential genes, generate a comprehensive set
of mutants in this fungus, and carry out genome-wide screens'”".
These studies yielded important information on gene essential-
ity and azole resistance in this fungal pathogen. Extensive effort
was also invested in generating a genomic platform centered
on an ORFeome collection representing the majority of open
reading frames (ORFs) in Gateway donor vectors, together
with a wide range of expression vectors'® facilitating genome-
wide overexpression analyses and protein—protein interaction
studies'****. Together, these new technologies have facilitated
recent advances in hyphal growth signaling, host interactions,
and membrane traffic.

Hyphal growth signaling

In the past 2 to 3 years, a range of studies have investigated hyphal
growth signaling in C. albicans®. These studies have made sig-
nificant advances, in particular in the areas of amino acid induc-
ers of the hyphal transition’*’’, gaseous sensing and signaling*~",
and reactive oxygen and oxidative stress signaling*~". Extensive
analyses of filamentation programs revealed media-independent
genetic requirements for filamentation, in particular RIM101
(pH-dependent pathway) and GPA2 (Go. functioning in the
cAMP/PKA pathway), in addition to a core transcriptional
profile*. Also, an investigation into the cAMP requirement for
hyphal morphogenesis showed that basal levels of cAMP are suf-
ficient for hyphal formation in response to N-acetylglucosamine
(GIcNAc), suggesting that cAMP-independent signals are
also important for hyphal induction’. Both G, and S phase
arrest can induce filamentous growth and this has been shown
to require the cAMP/PKA pathway**.

Nutrient deprivation triggers hyphal development in C. albicans,
and various amino acids have been shown to be critical for
this transition. The groups of Van Dijck® and Ljungdahl”
investigated cAMP/PKA-dependent morphogenesis that is trig-
gered by arginine, ornithine, proline, and methionine metabo-
lism. For these different amino acids, induced expression of
amino acid permease genes is critical, with the former three
amino acids being metabolized in the mitochondria, resulting in
elevated ATP levels that appear to increase activation of the Ras1/
cAMP/PKA pathway. With respect to methionine, it is converted
to S-adenosyl methionine (SAM) that is subsequently decar-
boxylated and the resulting amino-propyl group is converted to
polyamines that have been shown to activate adenylate cyclase.

Although a number of studies have previously analyzed the
roles of oxygen and CO, signaling in hyphal development, there
has been little attention to nitric oxide (NO) signaling in this
process. Koch ef al. examined a metabolic checkpoint for the
yeast-to-hypha transition that is regulated by endogenous NO
signaling and their results indicate that sufficient endogenous NO
releases Nrgl repression of this transition’®. Three recent studies
have shed light on how the tricarboxylic acid (TCA) cycle regu-
lates CO, signaling”, how a phosphatase—kinase pair controls
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CO,-responsive Ume6 phosphorylation and stability”’, and have
identified a link between CO, sensing and lipid/Pkh1/2 kinase
signaling during hyphal development. In the first of these
studies, the authors used a library of TCA metabolic pathway
mutants to show that the TCA cycle plays a critical role in
regulating CO, sensing and hyphal development”. Lu et al.
carried out a genetic screen to determine the CO, signaling
pathway that regulated Ume6 stability and found that a
kinase—phosphatase couple controlled the CO, response of this
transcription factor that is crucial for hyphal elongation®. A
screen in Saccharomyces cerevisiae for mutants that regulate the
transcription factor Cst6 (C. albicans homolog Rcal), which
activates the carbonic anhydrase NCEI03 in a CO,-dependent
fashion, identified the kinase Sch9''. The authors went on to
show that Sch9 phosphorylates the transcription factor Rcal in
C. albicans and that it links CO, adaptation to lipid signaling
via Pkh1/2.

The production of reactive oxygen species (ROS) during
C. albicans morphogenesis plays an important role in patho-
genicity. The conserved heat shock factor-like transcriptional
regulator Skn7 is critical for filamentous growth and pro-
tection from the accumulation of intracellular ROS in these
conditions™. Interestingly, a member of the NADPH oxidase
(NOX) family, Fre8, was recently shown to produce a ROS
burst during morphogenesis, which is particularly important in
the animal host”. Recent studies by Liu e al. have shown that
inhibition of the major high-affinity phosphate importer, Pho84,
sensitized C. albicans to oxidative stress via inducing ROS
accumulation through activation of TOR (target of rapamycin)
signaling”. In addition to these environmental conditions,
quorum-sensing molecules, such as farnesol, regulate the mor-
phological transition, and recent work proposed that the response
of C. albicans to farnesol is influenced by Eedl, a protein
critical for hyphal growth maintenance®. Together, these different
advances in hyphal growth signaling highlight the important
role of hyphal development in host niches and in response
to a range of relevant host signals.

Host interactions

The microbiota is thought to, in part, restrict the fungus to
the commensal state’’. Of note, the GUT (gastrointestinally
induced transition) cells, which are postulated to be a specialized
commensal form in the mammalian gastrointestinal (GI) tract, are
less virulent in a mouse bloodstream infection model’'~”. The
alteration of the balance between commensalism and patho-
genicity in the presence of the gut microbiota is associated
with mutations in C. albicans transcription factors required for
white-opaque switching and filamentation, such as Efgl, Worl,
and Flo8'"**. Furthermore, C. albicans strains that are hyper-
fit in the antibiotic-treated or germ-free mouse gut tend to be
deficient in hyphal morphogenesis®*™, yet the observation that a
hyperfit ume6 mutant has a ratio of yeast and hyphae simi-
lar to that of the wild-type strain in the mouse GI tract would
argue that cell shape per se does not determine commensal
fitness™. Using an experimental system based on long-term GI
tract colonization of mice, a recent work nicely demonstrated that
in the absence of microbiota C. albicans evolves into strains
that lose their ability to form hyphae'”. Interestingly, this study
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additionally shows that priming naive mice with the gut-evolved
strains resulted in a broad cross-protection against Aspergillus
fumigatus, Staphylococcus aureus, or Pseudomonas aeruginosa.

Host defense also includes the epithelial physical barrier and
host immune cells, such as macrophages. Hyphal growth is
associated with mechanical forces during the interaction of
C. albicans with such host cells®. The relative contribution of
these mechanical forces to host cell damage, compared with other
hyphal attributes, is an area of active investigation. Mechanical
forces appear to be sufficient to penetrate epithelial cells even
in the absence of secreted factors, such as the toxin candida-
lysin, encoded by ECE1 and therefore secreted only by hyphae’’.
Indeed, ece/A/A mutant hyphae can invade intestinal epithelial
cells without causing damage, yet optimal damage induction
requires a combination of hypha formation and candidalysin
secretion’. The ability to undergo yeast-to-hypha morphogenesis
and the cell wall composition are also important determinants in
the macrophage—C. albicans interaction”. Recently, C. albicans
escape from the phagolysosome was proposed to rely directly
on physical rupture®. C. albicans cells induce macrophage cell
death via pyroptosis, a caspase-l—dependent programmed cell
death®*’, and it was proposed that activation of the inflam-
masome is a consequence of this phagolysosome rupture via
the yeast-to-hypha transition®. However, this proposal was
challenged by another study, which showed that rupture is not a
prerequisite for inflammasome activation, as a collection of genes
enabled activation of macrophage pyroptosis independently
of effects on morphogenesis, and cell wall remodeling was a
major determinant®. The role of candidalysin in the phagocyte
inflammatory and damage response to C. albicans hyphae was
recently investigated and this toxin appears to trigger inflam-
masome activation®. Thus, how C. albicans morphological
transition, phagosomal neutralization and rupture, and pyroptosis
are linked remains a topic of active research®-*.

Membrane traffic and structural organization

Secretion plays an essential role during C. albicans virulence,
in releasing candidalysin and a variety of proteases and lipases.
In addition to using the conventional secretory pathway to secrete
components into the external medium, similar to other fungi,
C. albicans releases extracellular vesicles (EVs)®’, which con-
tain cytoplasmic and moonlighting proteins, and membrane and
cell wall-related proteins®. A recent study elegantly showed
that the EV population and composition released by C. albicans
during growth in a biofilm are distinct from those of planktonic
cells”. In particular, as exogenous delivery of wild-type vesi-
cles restores the biofilm drug-resistant phenotype and matrix
composition to a subset of ESCRT (endosomal sorting com-
plexes required for transport) mutants, it was proposed that
biofilm EVs, which consist predominantly of a 30- to 200-nm
diameter population, corresponding in size to exosomes, have a
direct role in matrix biogenesis and carry specific cargos to con-
fer drug resistance. The mechanism by which EVs would reach
the matrix is still unclear. However, a recent work shows that
AmBisome (60 to 80 nm liposomes) can traverse the cell wall”,
suggesting that EVs may also directly transit the cell wall.

Rapid hyphal growth requires active endocytosis to counter-
balance exocytosis at the hyphal tip and recycle membrane
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lipids and proteins’”>. For example, recent work demonstrated

that polarization of a chitin synthase to the hyphal apex in
A. nidulans occurs by indirect endocytic recycling’’. Genetic
analyses of loss-of-function mutants in a number of genes
implicated in actin regulatory complexes, such as Panl™ and
Myo577"", have also confirmed the importance of endocytosis in
C. albicans hyphal growth, and two recent articles further point to
an increased requirement for endocytosis during hyphal
growth, compared with budding growth. Taking advantage of a
complete collection of kinases and phosphatases, regulated
via an inducible TETon promoter, Bar-Yosef et al.”® identified
a novel regulator of hyphal morphogenesis, Akll (related to the
Ark/Prk family of kinases””), whose overexpression reduced
hyphal extension rates and conversely whose deletion resulted
in an initial increase in hyphal extension rate. Furthermore,
screening of well-characterized drug libraries allowed the
identification of specific inhibitors of hyphal morphogenesis,
related to piperazine®. Although these drugs inhibited hyphal
formation at concentrations that appear to be above safe levels,
these studies raise the prospect of identifying molecules that
target fungal endocytosis as potential inhibitors of C. albicans
virulence.

Membrane/protein trafficking to the plasma membrane is
mediated by vesicular transport between different cellular com-
partments, and small GTPases of the Arf (ADP-ribosylation
factor) and Rab (Ras-related in the brain) families regulate
each step of these processes’ . The role of Arf proteins was
recently investigated in hyphal growth and virulence. Of the
five Arf/Arl proteins, Arf2 and Arll were shown to be critical
for virulence in murine models for candidiasis, and Arll was
more specifically required for oropharyngeal candidiasis®. In
addition, an arfl mutant was shown to exhibit reduced virulence
in a murine systemic infection model and in macrophage killing
yet this strain had a reduced growth rate and underwent cell cycle
arrest’. In the latter study, Arfl was implicated as a regulator of
endoplasmic reticulum (ER)-mitochondria interactions, which
would directly or indirectly impact ERMES (ER-mitochondria
encounter structure). Whereas Arf2 is required for viability, Arll
is involved in hyphal extension and in restricting hyphal growth
to a single site. The hyphal extension defect of the ar// mutant
was associated with an altered distribution of the Rab GTPase
Sec4 and both defects could be restored by overexpression of
the Rab GTPase Ypt6*®, suggesting that a genetic interaction
between Arll and Ypt6, perhaps via the GARP (Golgi-associated
retrograde protein) complex®®, could be specifically critical
for hyphal growth. In S. cerevisiae, analysis of trafficking
mutants demonstrated that the late stage of exocytosis is par-
ticularly critical to regulate endocytosis®’, and more recently it
was shown that Sec4 coordinated polarized exocytosis with the
assembly of cortical actin patches that initiate endocytosis®,
indicating that this Rab GTPase is central for the balance in
membrane trafficking.

Individual Rab GTPases can coordinate multiple transport path-
ways by recruiting effectors to different organelles®, and the
importance of Rab GTPases during hyphal growth has been inves-
tigated in filamentous fungi, such as A. nidulans and N. crassa®.
However, as mentioned above, the differences in hyphal
growth in these fungi, compared with C. albicans, raise the
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question as to how hyphae are organized to regulate membrane
traffic in this organism (Figure 1). Using three-dimensional
electron microscopy, a high-resolution view of the C. albicans
hyphal filament shows that the secretory pathway is organized
in three distinct structural domains: sheet-like parallel mem-
branes, shorter sheet-like membranes, and the Spitzenkorper
(Spk), which is composed of a uniform population of approxi-
mately 60 vesicles that are about 70 nm in diameter”. Thus,
the C. albicans Spk appears to be simpler than that of filamen-
tous fungi, which is composed of a heterogeneous population of
vesicles”™. Dynamic analyses of vesicle delivery to the apex
suggest that short-range vesicle delivery significantly contributes
to filamentous growth in C. albicans and that the Spk could act
as a focal point for incoming secretory vesicle traffic, produced
in the subapical and apex regions™. These distinctions between
the Spk of C. albicans and that of filamentous fungi might reflect
differences in their function. In particular, a characteristic shape
change of the Spk, from globular to crescent-like, appeared
to be associated with increased extension rate in A. nidulans,
as secretory vesicles accumulated at the Spk during phases of
slow growth subsequently fused with the plasma membrane’'.
Such a stepwise growth mode in hyphae has been shown in
several filamentous fungi’*”* but thus far not in C. albicans.
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Conclusions

Overall, this broad range of findings in the past several years
has provided both exciting novel approaches and new research
directions that give us insight into the biology of this fascinat-
ing fungal pathogen. As we understand, in greater detail, the
basic biology of this fungus, we now can put this new knowl-
edge into the context of the host and the balance between
commensalism and infection. Without a doubt, the advent of
new technologies, in particular the combination of large-scale
approaches, and effectively mixing and matching them with
animal-based studies will provide powerful platforms for novel
gene discovery and functional analyses in the years ahead.
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