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Probability models are used for many statistical tasks, notably parameter estimation,
interval estimation, inference about model parameters, point prediction, and interval
prediction. Thus, choosing a statistical model and accounting for uncertainty about
this choice are important parts of the scientific process. Here we focus on one such
choice, that of variables to include in a linear regression model. Many methods have been
proposed, including Bayesian and penalized likelihood methods, and it is unclear which
one to use. We compared 21 of the most popular methods by carrying out an extensive
set of simulation studies based closely on real datasets that span a range of situations
encountered in practical data analysis. Three adaptive Bayesian model averaging (BMA)
methods performed best across all statistical tasks. These used adaptive versions of
Zellner’s g-prior for the parameters, where the prior variance parameter g is a function of
sample size or is estimated from the data. We found that for BMA methods implemented
with Markov chain Monte Carlo, 10,000 iterations were enough. Computationally, we
found two of the three best methods (BMA with g =

√
n and empirical Bayes-local)

to be competitive with the least absolute shrinkage and selection operator (LASSO),
which is often preferred as a variable selection technique because of its computational
efficiency. BMA performed better than Bayesian model selection (in which just one
model is selected).

Bayesian model averaging | interval estimation | LASSO | model selection | parameter estimation

Statistical analysis is often carried out using probability models for the data at hand. In
this context, five of the most important statistical tasks are parameter estimation, interval
estimation, inference about model parameters, point prediction, and producing prediction
intervals.

These tasks often have to be carried out in the context of model uncertainty, where
several different statistical models are plausible. One canonical example is variable selection
in linear regression, where a set of candidate variables is considered, and all possible subsets
of these candidate variables define possible models. Consider the linear regression model:

Y = α1n +Xβ + ε ε∼N (0,σ2I ),

where Y ∈Rn is a response variable of interest, and X = (X1, . . . ,Xp) ∈Rn×p is a set
of p possible covariates, α is the scalar intercept, and β is the p × 1 vector of regression
coefficients. For concreteness, we focus on this example here. Other examples include
the choice of functional forms of the variables and the choice of error distribution, for
instance, to account for potential outliers.

Many methods have been proposed for statistical analysis using linear regression models
in the presence of model uncertainty. When the model is known in advance and only
its parameters have to be estimated, there is consensus on how to do statistical analysis
using it, using either a frequentist or Bayesian approach. When the model is to be
determined as part of the analysis, however, things are less clear, and the large number
of competing approaches can leave it unclear how to proceed. Here we compare 21 of the
most prominent methods.

Historically, one approach has been to determine the variables in a model subjectively
using subject matter expertise, but this often leaves open questions, and a data-based
approach is desired for at least some of the variables. Another approach is to always include
all the candidate variables, but this can lead to poor statistical performance when there are
many such variables. Many of the early statistical approaches were stepwise methods, in
which variables were sequentially added or removed on the basis of significant tests, but
these have not been found to have good theoretical or empirical properties (1, 2).

In the past 30 y, many more satisfactory methods have been proposed. Most of these
are either Bayesian techniques or penalized likelihood-based approaches.

Many of the Bayesian techniques are some form of Bayesian model averaging (BMA)
(3–6); several reviews of the BMA literature are available (7–13). The basic idea of BMA is
that the predictive distribution of a quantity of interest (either a parameter or an observable
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future quantity) is a weighted average of its predictive distributions
under the different candidate models, where the weights are equal
to the models’ posterior probabilities given the data at hand.

BMA has some good theoretical properties (14). BMA point
estimators and predictions minimize mean squared error; BMA es-
timation and prediction intervals are calibrated, and BMA predic-
tive distributions have optimal performance in the log score sense
(6). These properties hold on average over the prior distribution,
extending similar results for Bayesian estimation (15), but the
results are somewhat robust to this assumption (16). Used in this
way, as a distribution of parameter values over which performance
is averaged, the prior distribution has been referred to as the world
distribution (17), the practical distribution (14), or the effect-size
distribution (18), and analysis using this concept has been called
empirical frequentist*.

The implementation of BMA involves several choices by the
user, including the prior distribution of the model parameters
under each model and the prior model probabilities. Also, the
number of candidate models can be too large for them all to be
feasibly evaluated. For example, the number of possible subsets
of p regression variables is 2p ; for p much beyond 25 or 30 this
can be computationally prohibitive. Thus, the choice of analytic or
computational approximations must also be made. Together these
choices lead to many possible implementations of BMA.

For the parameter prior distribution in linear regression, several
default choices have been proposed. Among the first was the
Zellner–Siow Cauchy prior, with a standard Jeffreys prior for the
intercept and error variance (17, 19). We treat this as a reference
method and call it the Jeffreys–Zellner–Siow (JZS) prior.

Another early prior was the Zellner g-prior (20). Consider a
binary vector γ = (γ1, γ2, . . . , γp) that indicates which explana-
tory variables are part of model Mγ , so that γj = 1 if the variable
Xj is present in Mγ and 0 if not. We use Zellner’s g-prior in the
form

πγ(βγ |α,σ2, g)∼N (βγ |0, gσ2(XT
γ Xγ)

−1),

πγ(α,σ)∝ σ−1,

where N denotes the multivariate normal distribution, and Xγ is
the n × pγ matrix consisting of the covariates Xj for which γj =
1 (9). The prior variance of the regression parameters is controlled
by the user-specified value g, and the effective prior sample size is
n/g , where n is the sample size.

Various choices of g have been proposed (13). Zellner proposed
using g = n , corresponding to a prior sample size of 1; this
has been called the unit information prior (UIP) (21). Another
choice is g = 1, corresponding to a prior sample size of n (22),
one justification being that studies have sample sizes designed
to have the power to detect effects of known sizes, so that the
prior and sampling variances are similar. An intermediate choice is
g =

√
n (9), with a prior sample size of

√
n ; this has been found

to work well in high-dimensional settings (23). The benchmark
prior where g = max{n, p2} has also been recommended (9); it
combines the consistency properties of the UIP with the good
small sample performance of the risk inflation factor (RIC) (24).

The UIP can also be approximated by the Bayesian information
criterion (BIC) (25, 26). The Akaike information criterion (AIC)
can be used as the basis for an approximation to the posterior
model probabilities under a prior that is similar to Zellner’s
g-prior with g = 1, i.e., with an equivalent prior sample size of
n (27, 28).

*J. O. Berger, World Meeting of the International Society for Bayesian Analysis, June 28–
July 2, 2021, online.

An alternative is not to use a specified g but instead to estimate
g from the data. This can be done in an empirical Bayes way, either
for each model separately (29) or globally (30, 31). It can also be
done in a more fully Bayesian way, by specifying a prior on g, such
as the hyper-g approach (32).

A different type of prior used in BMA is the nonlocal prior
(NLP) (33, 34), which removes mass close to zero. The horseshoe
(35) is a Bayesian method but not a BMA method, with a prior
that favors sparsity. The spike and slab method approximates
the zero values of lower-dimensional models with continuous
distributions around zero (5, 36).

In the frequentist setting, penalized likelihood approaches con-
vert the variable selection problem into an optimization problem.
The function to be optimized usually involves the squared error
loss function with a penalty term hλ(β) on the coefficients β, in
which case

β̂ = arg min
β∈Rp

(Y − α1n −Xβ)T

(Y − α1n −Xβ) + hλ(β). [1]

The estimates from these techniques can also be viewed as
maximum a posteriori (MAP) estimates under a prior of the
form p(β)∝ exp{−hλ(β)}. The least absolute shrinkage and
selection operator (LASSO) (37) was the first and remains perhaps
the most widely used technique in this class, where the penalty
takes the form hλ(β) = λ

∑p
j=1 |βj | and constrains the l1 norm

of the parameter vector. The popularity of the LASSO is due
to factors that include the computational efficiency of the least
angle regression and coordinate ascent algorithms that can be used
to estimate it (38, 39); its ability to provide a sparse estimate
of β; and the oracle property, namely, that the LASSO will
asymptotically find a superset of the correct predictors (40).

However, LASSO also suffers from several known issues. The
oracle property ensures only that the true predictors will be
asymptotically part of the selected model but not the converse,
so that there can be many false positive selections, even asymp-
totically. LASSO also tends to overshrink the true signals in the
observed data and hence produce biased estimates (41). It can
also be unstable in the presence of highly correlated covariates.
As pointed out by Holmes (ref. 42, p. 280), “In the presence of
strong correlations between predictors with differing effect sizes,
frequentist sparsity approaches, including the lasso, will tend to
select a single variable within a group of collinear predictors,
discarding the others in the pursuit of sparsity. However, the
choice of the particular predictor might be highly variable and
by selecting one we may ignore weak (but important) predictors
which are highly correlated with stronger predictors.”

The LASSO has a constant rate of penalization for all coef-
ficients which can cause excessive shrinking of nonzero compo-
nents. Some of the other popular penalty methods vary in the
shape or rate of penalty applied to the coefficients. The smoothly
clipped absolute deviation (SCAD) (43) and minimax concave
penalty (MCP) (44) methods involve a nonconvex penalty which
is constant for smaller coefficients and decreases to 0 for larger
coefficients. The elastic net (45) involves a convex combination of
ridge and LASSO penalties, encouraging grouping effects among
strongly correlated variables, and thus addresses one concern
mentioned above for the LASSO. Like the LASSO, these meth-
ods threshold some coefficients to zero, leading to simultaneous
variable selection and estimation.

A common issue with penalized likelihood approaches is the
lack of uncertainty quantification since variable selection is an
outcome of the constrained optimization problem and not a
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probabilistic statement of inclusion (46–48). As a result, the
zeros induced may not be the same zeros that one would get
from a full variable selection approach (49). They also do not
provide a way to account for model uncertainty. Expectation–
maximization variable selection (EMVS) (50) and the spike-and-
slab LASSO (SS LASSO) (51) are two methods that synthesize
ideas from BMA and penalized likelihood. In principle, they could
quantify uncertainty, but that has not yet been implemented in the
associated software.

It is not clear which of the many proposed methods to use.
Among penalized likelihood methods, LASSO probably remains
the most used, perhaps because it was the first one proposed, there
is a well-defined software package to implement it (the glmnet R
package), and it is fast (52). Among Bayesian methods there is
less clarity, and the relative performance of Bayesian and penalized
likelihood methods is also not clear.

To clarify this, we carried out an extensive set of simulation
studies based closely on real datasets that span a range of situations
encountered in practical data analysis. This is in contrast with
many simulation studies in the statistical literature whose design
is determined by the investigators without direct reference to data.
The simulation design, the metrics, and the underlying datasets are
described in Materials and Methods. Fig. 1 shows the sample size
and the number of candidate variables for the different datasets.
These include classic statistical situations where the sample size
is much larger than the number of variables, high-dimensional
situations where the number of variables exceeds the sample size,
and intermediate situations where the two are of the same order
of magnitude.

Results

The results are shown in Fig. 2. Performance metrics are shown for
all 21 methods for each of point estimation, interval estimation,
inference, prediction, and interval prediction. All metrics are
relative to the score for the JZS method, taken as the reference, and
averaged across datasets. Detailed results of performance metrics
for the simulation studies based on each of the 14 datasets can be
found in SI Appendix. The score column shows the average of the
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Fig. 1. Sample size n versus the number of candidate variables p for the 14
datasets on which our simulation studies are based. The n = p line is shown
in red.

five metrics for each method. For seven of the methods, interval
estimation and interval prediction metrics were not available as
the methods did not provide uncertainty assessments, and so
we calculated the “PartScore,” which is the average of the three
remaining metrics. In all cases, a lower score is better.

We first ranked the methods according to Score. We then
ranked the methods for which Score was not available according to
PartScore, ranking each one as highly as possible without changing
the Score order. Results are colored green if the method performed
better than the reference JZS method, while they are colored red
if there was a substantial gap between them and the best methods.
Yellow indicated that the method did not perform as well as the
reference method but was not substantially worse than competing
methods either. We also showed the average number of variables
used and the central processing unit (CPU) time. For CPU time,
LASSO was taken as the reference as it has generally been viewed
as a computationally efficient method.

Overall, the ranking of the methods was similar from the
different metrics. Strikingly, the venerable JZS method, now in its
fifth decade, performed well and was competitive with all other
methods, except that it required more CPU time than many. The
top scoring methods were three adaptive g-prior methods: g =√
n , the hyper-g method, and the local empirical Bayes method,

which were the only methods to consistently outperform the ref-
erence method. Other Bayesian methods with nonadaptive priors
rounded out the top eight spots. Interestingly, g = 1 and AIC
were the worst performing methods. An advantage of the Bayesian
methods is that they organically yield uncertainty statements,
unlike the penalized likelihood methods.

LASSO was the top penalized likelihood method, doing
particularly well for point prediction, as did the Elastic Net—
comparable to the top Bayesian methods for this task, although
not for the other tasks. However, they both selected far more
variables on average than the Bayesian methods—twice as many
or more in most cases without any noticeable increase in predictive
performance. Plots of prediction accuracy, given by R2, versus
average model size, denoted by p̂, for all datasets are available in
SI Appendix.

A surprise was that two of the top three methods were efficient
computationally even though they were Bayesian, comparable to
LASSO despite the reputation of Bayesian methods for being slow.
This is partly because we used a default of 10,000 Markov chain
Monte Carlo (MCMC) iterations, which is far fewer than the
default in the BAS R package used to implement these methods
(53). This clearly gave adequate performance. Performance might
be improved slightly with more iterations but at the cost of
computational efficiency. The hyper-g method is substantially
slower, which seems to be due to its greater complexity, but
this may be a worthwhile tradeoff given its good performance.
Several of the other methods were extremely slow. One needs to
be cautious in interpreting the CPU time results as they reflect the
coding efficiency of the implementations as well as the intrinsic
computational efficiency of the methods. For most methods we
used the developers’ packages with default settings, and these
could clearly often be sped up.

One question is whether inferences are sensitive to the choice
of model selection/model averaging method. To provide a partial
answer, we compared the results for our 14 datasets for the top
three methods identified by our study. Scatterplots of param-
eter estimates and posterior inclusion probabilities are shown
in SI Appendix for all 14 datasets. We found that the (model-
averaged) parameter estimates were very similar between the three
methods for the 10 tall datasets (with p < n) and less similar but
still highly correlated for the four wide datasets (with p > n). The
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Fig. 2. Performance of 21 methods for inference in linear regression under model uncertainty: “PointEst” is the RMSE for point estimation, “IntEst” is the MIS
for interval estimation, “Inference” is 1 – the AUPRC, “Prediction” is the RMSE for point prediction, and “IntPred” is the MIS for interval prediction. “N vars” is
the average number of variables used for the task. All metrics are standardized to equal 1 for the JZS method. See Results and Materials and Methods for more
information about the ranking and coloring and the definitions of the methods and metrics. Note that BICREG denotes the BICREG-SIS method, in which sure
independence screening is used first to reduce the number of variables to 30.

posterior inclusion probabilities were similar between methods for
the tall datasets but less so for the wide datasets. The g =

√
n

method tended to favor models with slightly more variables than
the hyper-g and Empirical Bayes (EB)–local methods.

Comparison of BMA with Bayesian Model Selection. An alter-
native to BMA is Bayesian model selection (BMS), in which
just one model is selected. When several candidate models are
available, a researcher can choose to select one model or perform
model averaging. BMS refers to selection of one model from a list
of candidate models based on the data (7, 10). One choice for
BMS is to select the model with the highest posterior probability
in model search, also known as the MAP model. We compared
the performance of BMA and BMS for the top three methods
identified in the previous section: g =

√
n , hyper-g, and EB-local.

We used the same performance metrics as before. As before,
all metrics are relative to BMA under the JZS prior, except for
computation time, for which LASSO was used as the reference.
The results are shown in Table 1. The BMS versions of the top
three methods performed worse than the corresponding BMA
versions in terms of all the metrics.

Discussion

Several previous comparisons of existing methods have been car-
ried out. They have tended to be based on a narrower range
of methods than we consider here, to be based on simulation
experiments whose connection to empirical data is less clear, and
to base comparisons on a subset of the statistical tasks of interest.

Fernández et al. (9) did a simulation study based on a nonem-
pirical design (54) and compared methods based on their ability to
recover the true underlying model as the MAP model and assess
predictive performance using log-predictive scores. Hence, their
comparisons were based on only two statistical tasks, namely infer-
ence and point prediction. They considered only BMA methods.
They found a UIP-based method with g = n to work best when
n < p2 and an RIC-based method (24) with g = p2 to work best
otherwise, but they pointed out that the RIC-based method is
not model-selection consistent. We have included the resulting
combined method in our study under the name “benchmark
prior.” The only other method in their study that is also in ours
is the g =

√
n method, which they found to be outperformed by

BIC, in contrast with our findings here.

Table 1. Comparison of BMA and BMS for top three methods
Method Type Score PointEst IntEst Inference Prediction IntPred N vars CPU time
g = sqrt(n) BMA 0.974 0.978 0.927 0.999 0.968 0.996 1.294 0.949

BMS 1.596 1.098 1.816 2.906 1.100 1.060 1.009 1.222
Hyper-g BMA 0.992 0.999 0.993 0.984 0.992 0.993 1.079 3.396

BMS 1.731 1.123 2.242 3.061 1.114 1.117 0.837 3.339
EB-local BMA 0.993 0.995 0.978 0.995 0.998 1 1.099 0.843

BMS 1.742 1.127 2.228 3.060 1.142 1.155 0.861 1.096
JZS BMA 1 1 1 1 1 1 1 8.835
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Eicher et al. (55) considered the same BMA methods as in
ref. 9, considered prediction for a well-known economic growth
dataset and for several simulations with the same nonempirically
based design, and again found BIC and UIP to do best. Our
results here are based on a wider and more empirically based set of
simulations, which may help explain the different results. Liang et
al. (32) also carried out a nonempirically based simulation study
using the design of Cui and George (56) and found the hyper-
g prior to be competitive with other BMA methods in terms of
parameter estimation, including several that we have considered
here (but they did not include the g =

√
n method).

Celeux et al. (57) carried out another nonempirical simulation
study to assess quality of inference and assessed point prediction
using two small real datasets; they assessed 15 methods, of which 7
were in common with ours. They focused on the situation where p
is close to n. Like us, they found Bayesian methods to outperform
non-Bayesian ones.

Deckers et al. (58) compared a subset of the Bayesian tech-
niques discussed in our study, specifically the UIP and RIC, or
benchmark prior, and LASSO with multiple testing procedures
(MTPs) controlling false discovery rate. They focused their com-
parison on the model inference performance of these procedures
using size-adjusted power, i.e., comparison of power (number of
correctly selected variables) in situations where procedures infer
similar size models. In their comparison over a nonempirical sim-
ulation study, they found that BMA was slightly more powerful
given the size than the MTPs and LASSO. Their comparison did
not focus on other statistical inference tasks of prediction and
estimation.

Bhadra et al. (59) compared variants of the horseshoe, LASSO,
and SCAD in terms of their performance in variable selection,
using the nonempirically based simulation design of Zhao and
Yu (60). They found the horseshoe to do best, then SCAD, both
substantially dominating LASSO. This agrees with our ranking in
terms of inference from Fig. 2, but we found LASSO to overtake
SCAD when other statistical tasks were also taken into account.
Forte et al. (13) compared different BMA software packages in
terms of computational performance and found the BAS package
(53) to dominate others in terms of speed, as we also found.
However, they also warned against the use of the MCMC + BAS
method within BAS, which they reported does not provide reliable
estimates of the inclusion probabilities, and instead recommended
the method MCMC. They also commented on the very high
memory demands of BAS. Here we used their recommended
method MCMC and found it to work well.

One can also evaluate methods in terms of theoretical proper-
ties. One is model-selection consistency (9), which says that if the
true model is among the candidate models considered, the method
will select it with probability approaching 1 as the sample size
increases indefinitely. All three of our top-ranked methods satisfy
this unless the true model is the null model with no predictors (9,
32). However, LASSO does not have this property (60).

A second property is whether the method is subject to Bartlett’s
paradox (61), according to which if the data are held fixed and the
prior variance increases without bound, then BMA will select the
null model with probability tending to 1, regardless of the data.
None of our top three methods is subject to this as they do not
allow the prior variance to increase without bound.

A third consideration is whether the method is subject to the
so-called “information paradox” (32). This arises when, for fixed
n and p, the data provide maximal support for a larger model, for
example, when R2 −→ 1. One could argue that in this case, the
Bayes factor for this model against any submodel should tend to
infinity with the sample size. However, g-priors with fixed g do

not have this property, and indeed in that case the Bayes factor
has a finite (although usually very high) upper bound. It has
been argued that this is undesirable, making them subject to the
information paradox. The hyper-g and EB-local methods are not
subject to this, but the g =

√
n prior is, which could be argued to

be a disadvantage of the latter.
However, one might question the relevance of the information

paradox to the choice of method (62). If R2 = 1 when n is small,
this will often be because of the inherent discreteness of most
data, which are rarely measured or recorded with full precision but
rather to within a certain measurement tolerance (for example, a
certain number of significant digits). In that case, the fact that
the Bayes factor for an additional variable is bounded above could
be viewed as an advantage. The linear regression model models the
observed response variable as a continuous variable, thus measured
with infinite precision. This is actually an approximation, which is
usually inconsequential, but is relevant for assessing the relevance
of the information paradox. If the discreteness of observed data
were accounted for in the model, the information paradox would
never arise.

For example, the famous data on heights of fathers and sons in
England (63, 64) are reported to the nearest inch. If one took a
sample of size 3 from these data, say (father, son) = (62.5, 64.5),
(67.5, 69.5), (70.5, 72.5), and regressed son’s height on father’s
height, one would find that R2 = 1 and the standard F statistic is
infinite. In this case, one would not want the Bayes factor for the
effect of father’s height to be infinite, but it is infinite for the hyper-
g and EB-local priors, while for the g =

√
n prior it is 1.65. The

latter represents positive but weak evidence for an effect, which
seems more reasonable than an infinite Bayes factor corresponding
to absolute certainty based on three data points.

Beyond that, the upper bound on the Bayes factor is typically
very high for even moderate n. For example, for n as low as 20, it
is over 4 million. So even if the existence of an upper bound on
the Bayes factor were to be viewed as undesirable, it would have no
practical effect. Overall, this suggests that the information paradox
may not be a disadvantage for the g =

√
n prior and others that

it affects and may even be a positive feature.
We have focused here on the choice of prior distribution for

model parameters. BMA also requires a prior on the models
themselves, and we have used default choices: either a uniform
prior over all models or a uniform prior on model size. It would be
worth carrying out a similar analysis to the present one to compare
different possible model priors.

Given the good performance of the g =
√
n prior of ref. 9, it is

of interest how it relates to the popular BIC criterion, which cor-
responds approximately to g = n and performed less well in our
experiments. Let us consider just two models: the null model and a
regression model of interest, with d variables. Then if B is the Bayes
factor for the regression model against the null model, the exact
result is −2 logB = (n − 1) log{1 +√

n(1− R2)} − (n −
1− d) log(1 +

√
n). The BIC approximation is −2 logB ≈

n log(1− R2) + d log(n). A similar approximation with the
g =

√
n prior is −2 logB ≈ n log(1− R2) + d(log(n)/2) +√

n(1− R2)R2. The last term does not involve the number of
parameters directly, and so the complexity penalty in the Bayes
factor with the g =

√
n prior is effectively half that in the BIC.

We have focused on one specific type of model uncertainty in
one statistical setting, namely, uncertainty about which variables
to include in a linear regression model. This has been much
studied and arises frequently in science, as well as being a canonical
example for other statistical models. However, there are many
other statistical settings in which the same issue arises, and it
would be of interest to carry out similar comparative studies. In

PNAS 2022 Vol. 119 No. 16 e2120737119 https://doi.org/10.1073/pnas.2120737119 5 of 8

https://doi.org/10.1073/pnas.2120737119


Table 2. Variable selection methods compared in this study
Implementation

Method Authors (R package–version) Function
g =

√
n Fernández et al. (9) BAS-V1.5.5 (53) bas.lm(..., prior=’’g-prior’’,

alpha = sqrt(n))
Hyper-g Liang et al. (32) BAS-V1.5.5 (53) bas.lm(..., prior=’’hyper-g’’)
EB-local Hansen and Yu (29) BAS-V1.5.5 (53) bas.lm(..., prior=’’EB-local’’)
JZS Zellner and Siow (19) BAS-V1.5.5 (53) bas.lm(..., prior=’’JZS’’)
Horseshoe Carvalho et al. (35) horseshoe-V0.2.0 (65) horseshoe()
UIP Kass and Wasserman (21) BAS-V1.5.5 (53) bas.lm(..., prior=’’g-prior’’,

alpha = n)
EB-global Clyde and George (30) BAS-V1.5.5 (53) bas.lm(..., prior=’’EB-global’’)

and George and Foster (31)
Benchmark Fernández et al. (9) BAS-V1.5.5 (53) bas.lm(..., prior=’’g-prior’’,

alpha = max(n,p2))
NLP Rossell and Telesca (34) mombf-V2.2.9 (66) modelSelection()

and Johnson and Rossell (33)
LASSO* Tibshirani (37) glmnet-V3.0.2 (52) cv.glmnet()
SCAD Fan and Li (43) ncvreg-V3.11.2 (67) cv.ncvreg(..., penalty=’’SCAD’’)
BIC-BAS George and Foster (31) BAS-V1.5.5 (53) bas.lm(..., prior=’’BIC’’)
BICREG-SIS Raftery (26) and Fan and Lv (68) BMA-V3.18.12 (69) bicreg()
Spike slab George and McCulloch (36) BoomSpikeSlab-V1.2.3 (70) lm.spike()
Elastic net Zou and Hastie (45) glmnet-V3.0.2 (52) cv.glmnet(, alpha)
MCP Zhang et al. (44) ncvreg-V3.11.2 (67) cv.ncvreg(..., penalty=’’MCP’’)
SS lasso Ročková and George (51) SSLASSO-V1.2.2 (51) SSLASSO()
EMVS Ročková and George (50) EMVS-V1.1 (71) EMVS()
AIC George and Foster (31) BAS-V1.5.5 (53) bas.lm(..., prior=’’AIC’’)
g = 1 van Zwet (22) BAS-V1.5.5 (53) bas.lm(..., prior=’’g-prior’’,

alpha = 1)

*LASSO-1se has the same reference as LASSO.

linear regression itself, there are the choices of error distribution
and functional form of the variables. The same issues arise in
generalized linear models such as logistic regression and Pois-
son regression, in addition to the choice of link function and
mean-variance relationship. Similar model choice issues arise with
Bayesian hierarchical models and many other model classes. We
expect that our main conclusion, that BMA with an adaptive
parameter prior performs well, would carry over to other settings.

Materials and Methods

Statistical Methods for Comparison. The 21 methods we compare are listed
in Table 2, along with references, the R package used, and the function call
used. All the g-prior methods implemented using the BAS package, and the
NLP methods implemented using the mombf package, use the beta-binomial
(1, 1) prior as the default model space prior. For high-dimensional datasets with
p > n, a truncated beta-binomial (1, 1) prior is used as the model space prior;
this assigns probability zero to any model with size greater than n − 2. The
BICREG-SIS method assumes a uniform prior over the model space. For methods

implemented using the BAS package, a combination of the Metropolis–Hastings
algorithm, as in the MCMC model composition algorithm (54), with a random
swap between a currently included and a currently excluded variable, is used for
model space exploration.

Datasets. We carried out 14 simulation studies, each one based on a different
publicly available real dataset, from a variety of fields including social sciences,
healthcare, genome sciences, physical sciences, chemistry, and engineering
(Table 3). We selected several of our datasets by filtering all the datasets in the
University of California, Irvine, machine learning repository as follows. We filtered
datasets with default task as regression, attribute type as numerical, data type
as multivariate/univariate, and number of attributes between 10 and 100. We
further restricted our attention to datasets with p > 20 and n < 25, 000. This
reduced our list of UCI datasets to four: the bias correction, bike sharing, SML,
and superconductivity datasets. Note that the bias correction and bike sharing
datasets each have two versions based on choice of outcome and frequency.

We also included several datasets that have been used as examples in
the literature. We included the college dataset (78) as an example dataset
where full enumeration of models is feasible. We included the diabetes (38)

Table 3. Datasets used in the study
Dataset name Sample size (N) Covariates (p) Source
College 777 14 ISLR (72)
Bias Correction-Tmax 7,590 21 UCI ML repository
Bias Correction-Tmin 7,590 21 UCI ML repository
SML2010 1,373 22 UCI ML repository
Bike sharing-daily 731 28 UCI ML repository
Bike sharing-hourly 17,379 32 UCI ML repository
Superconductivity 21,263 81 UCI ML repository
Diabetes 442 64 spikeslab (73)
Ozone 330 44 gss (74)
Boston housing 506 103 mlbench (75)
NIR 166 225 chemometrics (76)
Nutrimouse 40 120 mixOmics (77)
Multidrug 60 853 mixOmics (77)
Liver toxicity 64 3,116 mixOmics (77)
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and ozone (1, 32) datasets and the Boston housing dataset with squares
and interaction terms between its covariates. Finally, we included four high-
dimensional datasets from chemometrics and genomics from the mixOmics
(77) and chemometrics R packages (76). For all the datasets, the continuous
predictors were standardized to have mean zero and variance 1, and the response
variable was centered to have mean zero. The 14 datasets used in the simula-
tion study are listed in Table 3. Details of dataset preprocessing are given in
SI Appendix.

Determining the Generating Model for the Simulation Study. For our
simulation study, we require a data generating model based on each of our real
datasets. For datasets for which p < 30, we performed all subsets regression
using the leaps package in R (79) and selected the largest model with all variables
significant at 0.05 level. For datasets with p > 30, all subsets regression can
be computationally intensive, and so we performed iterative sure independence
screening (ISIS) (68) to reduce the number of variables. If the filtered list con-
tained more than 30 variables, we further selected the top 30 variables with
the highest R2 values under univariate regression. We then applied all subsets
regression to the filtered list of covariates with the above criteria to find the data
generating model for our simulation study.

Consider the Boston housing dataset (n = 506, p = 103) as an example. This
includes 14 geographic housing variables, plus interactions and squares for each
continuous variable, leading to 103 possible predictors. All subsets regression
is not computationally feasible, so instead we used ISIS to get a filtered list of
81 variables. We then performed univariate regressions for each of the filtered
variables to select the top 30 variables with the highest R2 values. Finally, we
performed all subsets regression using the screened variables to get our data
generating model with 23 variables and an R2 of 0.86.

Simulation Design. For each dataset, we chose a data generating model as
described above to closely approximate the data. Using this model, we used
the parametric bootstrap to generate 100 bootstrapped datasets with the same
design matrix X but different simulated response vectors. We compared the
performance of the different techniques for parameter estimation, interval esti-
mation, and variable selection on these datasets for our simulation study using
the metrics described below.

To evaluate the predictive performance of the methods, we divided each of
the simulated datasets into 100 random 75–25% train–test splits. We trained
the methods on the training data and used the test data to assess the predictive
performance using the metrics described below. We calculated point predictions
for each of the methods and posterior predictive intervals for Bayesian techniques
that allow for uncertainty quantification.

We used the following metrics to compare the methods.
PointEst. For point estimation, we calculated the root mean squared error
(RMSE) of the parameter estimates as follows:

RMSE =

√
√
√
√1

p

p∑

i=1

(βi,DG − β̂i)2, [2]

where βi,DG, i = 1, . . . , p denote the coefficients in the data generating model,
and β̂i, i = 1, . . . , p denote the posterior means of the coefficients for the
Bayesian techniques and the estimated optimal coefficients for penalized like-
lihood based approaches.

IntEst. The interval score (IS) (80) provides a balance between the narrowness
of the intervals and the accuracy of the coverage. It is a sum of two components:
the first rewards narrow intervals, and the second rewards accurate coverage. For
a variable z, the IS is given by

MISα(l, u, z) = (u − l)+
2
α
(l − z)1{z < l}

+
2
α
(z − u)1{u < z},

[3]

where l and u denote the upper and lower bounds of the (1 − α)× 100%
posterior intervals of z. In order to assess the quality of the interval estimation,
we considered the mean interval score (MIS) for the coefficients and calculated
the average MIS across coefficients for each of the datasets. We used α= 0.05.
Inference. To compare the performance of the techniques for identifying the
appropriate variables, we calculated the area under the precision recall curve
(AUPRC) for each of the techniques. This gives an overall assessment of model
selection quality and does not require a threshold to be chosen for the posterior
inclusion probability of a covariate.

For penalized likelihood based approaches, the AUPRC was obtained by
varying the cross-validation parameterλ from close to 0 (no penalization) toλmax ,
defined as the smallest value of λ for which none of the variables is included
in the model (81). For the horseshoe, the AUPRC was obtained by varying the
credible set levels leading to different number of variables being selected by the
method. We report Inference with (1 – AUPRC) as our metric, and a lower value is
better.
Prediction. In order to assess the accuracy of point prediction, we calculated R2

test
as follows:

R2
test = 1 −

∑
i∈test(yi − ŷi)

2

∑
i∈test(yi − ȳtrain)2 , [4]

where {yi : i ∈ test} denotes the response variable of the test set, ŷi denotes the
corresponding predictions, and ȳtrain denotes the mean of the response variable
in the training set. Note that this quantity can be less than zero, if the predictions
perform worse than the baseline ȳtrain.
IntPred. To assess the quality of the prediction intervals, we calculated the
interval score using Eq. 3 for each of the test set observations. Here l and
u represent the lower and upper bounds of the (1 − α)× 100% posterior
predictive interval for the test observation. We calculated the MIS, averaging IS
over test set observations for each of the train–test splits. A lower MIS corresponds
to a better interval forecast.
N vars. To report sparsity levels, we recorded the average model size for the BMA
techniques and the number of nonzero estimated coefficients for the penalized
likelihood based approaches. For the horseshoe, we calculated a 95% credible
interval and checked whether 0 was included in it to arrive at the model size. We
denote the average model size by p̂.
CPU time. We recorded the average computation time (in seconds) taken by
each technique to fit the model for one bootstrapped dataset.

Data Availability. Previously published data were used for this work
(https://archive.ics.uci.edu/ml/index.php) (76, 77).
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