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Abstract

Retinitis pigmentosa (RP) is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and
atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin
cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete
ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal
vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and
high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After
mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2,
III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering
steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger
sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A.G mutations of the CYP4V2 gene, known as
genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family.
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Introduction

Retinitis pigmentosa (RP) is a heterogeneous group of progres-

sive retinal degenerations characterized typically by pigmentation

and atrophy in the mid-periphery of the retina. It was estimated to

affect 1 in 3500 in the general population [1,2]. Symptoms for RP

include night blindness, tunnel vision and bone-spicule pigmen-

tation in retina.

Considerable clinical and genetic heterogeneity was demon-

strated in RP patients, with wide variations in age of onset,

severity, clinical phenotype, rate of progression and pattern of

inheritance. Genotype-phenotype correlations are not strong

enough to predict for RP. About 20–30% of patients with RP

also presented with non-ocular disorders such as hearing loss,

obesity, and cognitive impairment. Such cases fall within more

than 30 different syndromes [3].

Over 50 genes have been identified to cause RP, but still only

explain no more than half of the clinical cases [3]. Therefore, there

has been limited success with approaches of screening of known

candidate genes for RP by conventional Sanger sequencing.

Fortunately, exome sequencing technique has come to the aid by

enabling the identification of disease-associated mutations by

sequencing the whole exome of a small number of affected

individuals [4–6].

In the present study, disease-associated mutations were identi-

fied in a large Chinese family with RP complicated with congenital

cataract, corneal thinning and high myopia using the exome

sequencing techniques.

Materials and Methods

Subjects and Clinical Assessment
Twenty two family members underwent complete ophthal-

mologic examinations, including slit-lamp biomicroscopy, fundus

examination, fundus fluorescein angiography, optical coherence

tomography (OCT) for assessment of retinal thickness, B-scan

ultrasonagraphy for detection of vitreous and retina, central

corneal thickness (CCT) and full-field flash electroretinography

(ERG). Written informed consent was obtained in accordance

with the Declaration of Helsinki before blood samples were

taken for analysis (see attachment for details). The study was

approved by West China Hospital, Sichuan University Institute

Review Board.
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DNA Extraction
Venous blood samples were obtained from twenty two family

members in EDTA Vacutainers. Genomic DNA was extracted

from 200 ml peripheral venous blood using Qiamp Blood DNA

mini Kit (Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions. DNA samples were stored at 220uC until

used. DNA integrity was evaluated by 1% agarose gel electropho-

resis.

Mutational Screening
Polymerase chain reaction (PCR)-based, direct sequencing was

used in the analysis. A number of candidate genes previously

shown to be mutated in RP patients including RP1, RP2, RPGR,

RHO, RDS, ROM1, TULP1 and RPE65 were sequenced. These

genes were known to be frequently involved in autosomal

dominant, recessive or X-linked RP [3,7]. Intronic primers

flanking the exons of the candidate genes were designed based

on gene sequences of RP1 (GenBank NG_009840.1), RP2

(NG_009107.1), RPGR (NG_009553.1), RHO (NG_009115.1),

RDS (NG_009176.1), ROM1 (NG_009845.1), TULP1

(NG_009077.1) and RPE65 (NG_008472.1) synthesized by BGI-

Beijing, Beijing, China. DNA fragments were then amplified by

PCR using a MyCycler thermocycler (Bio-Rad, Hercules, CA)

under the following conditions: 1 ml dNTP (2 mmol/L), 5 ml 106
buffer (containing MgCl2, 210 mmol/L), 0.5 ml primer (20 pmol/

ml), 3 ml polymerase (5 U/ml) and 5 ml genomic DNA (70 ng/ml).

An aliquot of 5 ml of PCR product was subjected to electrophoresis

on 1.5% agarose gel to confirm successful DNA amplification.

Purified PCR products were directly sequenced using an ABI

377XL automated DNA sequencer (Applied Biosystems, Foster

City, CA). Sequence data were compared pair-wisely with the

related Human Genome database.

Exome Sequencing
The exome sequencing was employed in this study to identify

the disease-associated genes based on the following reasons. Firstly,

given the fact that the father II1 was deceased 20 years ago and his

affected status cannot be ascertained, the exact inheritance pattern

cannot be decided with certainty. Secondly, undertaking Sanger

sequencing of further RP-associated genes would not be cost-

effective. Thirdly, the condition in this family might be due to

mutations in a gene not previously reported to be associated with

RP.

Exome sequencing was performed on 3 patients (III2, III4, and

III6) and II2 (the mother of all the patients) by BGI Inc.,

Shenzhen, China. The reason for choosing the mother (II2) was

that, the data from her was essentially needed in almost all

inheritance models including the autosomal recessive model, in

which the mother was a carrier. Thirty mg human genomic DNA

was extracted from peripheral venous blood samples of each

participant. Agilent SureSelect target enrichment system (44 Mb)

was used to collect the protein coding regions of human genome

DNA. It covered 18134 genes in the Consensus Coding Sequence

Region database 2008(http://www.ncbi.nlm.nih.gov/projects/

CCDS/). The qualified genomic DNA samples were randomly

fragmented on a Covaris Acoustic System, before adapters were

ligated to both ends of the resulting fragments. The adapter-ligated

templates were purified by Agencourt AMPure SPRI beads.

Fragments with insert size about 250 bp were excised. Extracted

DNA was amplified by ligation-mediated PCR (LM-PCR),

purified, and hybridized to SureSelect Biotinylated RNA Library

(BAITS) for enrichment. Hybridized fragments were bound to the

strepavidin beads, whereas non-hybridized fragments were washed

out after 24 h. Captured LM-PCR products were subjected to

Agilent 2100 Bioanalyzer to estimate the magnitude of enrich-

ment. Each captured library was then loaded on HiSeq 2000

platform for sequencing. Each captured library was sequenced

independently to ensure each sample had at least 30-fold coverage.

Raw image files were processed by Illumina Pipeline v1.7 for base-

calling with default parameters and the sequences of each

individual were generated as 90 bp paired-end reads. We obtained

a mean exome coverage of 466, which provided sufficient depth

to accurately call variants at ,96% of each targeted exome.

Variant Analysis
The sequencing reads were aligned to the human reference

genome (NCBI Build 36.3) with SOAPaligner (soap2.21) [4].

Based on the SOAP alignment results, the software SOAPsnp v

1.05 [8] was used to assemble the consensus sequence and call

genotypes in target regions. Data were provided as lists of

sequence variants (SNPs and short indels) relative to the reference

genome. Identified variants were filtered against the Single

Nucleotide Polymorphism database (dbSNP 129, http://www.

ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi), 1000 genome

project (www.1000genomes.org/,1094 individuals from the

20101123 sequence and alignment release of the 1000 genomes

project), HapMap 8(http://hapmap.ncbi.nlm.nih.gov/) database

and YH database [9] (Table 1 and Table 2).

We collected reads that were aligned to the designed target

regions for SNP identification and subsequent analysis. The

consensus sequence and quality of each allele was calculated by

SOAPsnp. We filter SOAPsnp results as follows: Base quality is

more than 20, depth is between 4 and 200, estimate copy number

is equal or less than 2 and the distance between two SNPs must be

longer than 4.

Verification of Variants
Sanger sequencing was used to determine whether any of the

remaining variants co-segregated with the disease phenotype in

this family. Primers flanking the candidate loci were designed

based on genomic sequences of Human Genome (hg18/build36.3)

and synthesized by BGI-Beijing, Beijing, China. All shared

variants of the three affected individuals after filtering were then

confirmed by direct polymerase chain reaction (PCR) and

analyzed on an ABI 3730XL Genetic Analyzer. Sequencing data

were compared pair-wisely with the Human Genome database.

Results

Clinical Assessment and Findings
A four-generation family from Sichuan Province of China was

recruited in this study (Figure 1). Ophthalmic examinations

identified 4 affected individuals as RP patients among the 22

examined family members.

Affected members of this family exhibited similar clinical

features. They suffered from high myopia since about 10 years

old. Visual acuity dropped progressively to light perception in

their 50 s. Fundus examination and fluorescein angiography in

affected patients demonstrated peripheral pigmentation, retinal

choroidal atrophy and retinal vascular attenuation in the retina

(Figure 2A, 2B). OCT scan demonstrated retinal atrophy

(Figure 2C). ERG records showed no detectable cone or rod

responses in the patients (Figure 2D). These were consistent with

the diagnosis of RP. Punctate opacities of the lens were revealed in

affected members under slit-lamp examination (Figure 2E).

Corneas of affected members were also found to be thinner.

CCT of the unaffected were above 500 mm, while CCT of the

patients was in range 460-475 mm on average (Except IV7, who
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underwent LASIK surgery) (Table 3). B-scan ultrasonagraphy

showed posterior scleral staphyloma in all of the patients

(Figure 2F), indicating high myopia.

Mutational Screening
Direct sequencing of the RHO, RDS, RP1, RP2, RPGR (including

ORF15), ROM1, RPE65 and TULP1 exons showed no pathogenic

mutations in any of the affected individuals in this family. The

following SNPs (rs444772, rs446227, rs414352 of RP1; rs7764439,

rs390659, rs425876, rs434102 of RDS; rs5918520 of RPGR) were

found in both affected and unaffected members of this family and

were shown to have no correlations with the disease.

Exome Sequencing
Exome sequencing identified 32216 SNPs and 2477 Indels that

were shared by the 3 patients. The results were then filtered

against several public variation databases, removing all previously

reported variants (Table 1, 2). Filtering all exomes for a

homozygous mutation causing the disease in the affected sibs

(III2, III4, III6), and which was present in heterozygous form in

the unaffected mother (II2, ‘‘carrier’’), Variants satisfying a

recessive homozygous inheritance model were not identified. This

led us to investigate the possibility of recessive compound

heterozygous inheritance. Under the hypothesis of a compound-

heterozygous model, we filtered all exomes for variants present in

the heterozygous state in all affected individuals for variants and

also not present heterozygous in their mother’s exome. It restricted

the results to 26 heterozygous variants (Table 4). Heterozygous

CYP4V2 c.1091-2A.G was one of the 26 variants, and was

known to be responsible for recessive BCD. The mutation was

predicted to disrupt the splicing of intron 8, resulting in an in-

frame skipping of 45 amino acid–encoding exon 9 [10–12].

As one heterozygous variation was identified from the father

side, the other one inherited from the mother (II2) was identified

by re-filtered the exome sequencing data for CYP4V2 variations

present in all affected individuals and their mother (Table 4).

Thirteen variants of the CYP4V2 gene were identified, including

two non-synonymous variants c.775C.A and c.802-8_810de-

l17insGC. The former was non-pathogenic [13], whereas the

latter harbored a 17 bp deletion including the exon 7 splice-

acceptor site, leading to an in-frame deletion of 62 amino acid-

encoding exon 7 [13,14].

All the family members were then screened by PCR amplifi-

cation and Sanger sequencing for these two mutations, c.802-

8_810del17insGC and c.1091-2A.G. Only patients were found

to carry both mutations (Figure 3). Phenotypes and underlying

mutations of related family members were summarized in Table 3.

Discussion

In 2004, CYP4V2 defects were identified previously as causative

mutations for BCD [11]. The same mutations found in this study

have been reported to be associated with an autosomal recessive

BCD, which exhibited a totally different phenotype from this

pedigree [10]. It is the first time, to the best of our knowledge, to

show that mutations in CYP4V2 caused not only BCD, but also

RP.

BCD is an autosomal recessive retinal degeneration character-

ized by multiple tiny glistening crystalline deposits scattered over

the fundus. The small glistening crystals can also occur in the

corneal limbus and circulating lymphocytes [11,12,15]. The

molecular basis for BCD remains unclear. Previous studies showed

that defects in lipid metabolism were associated with this disease.

In BCD patients, the level of polyunsaturated fatty acids (PUFAs)

decreased due to the abnormal metabolism of fatty acid

Table 1. Number of candidate variants filtered against several public variation databases.

Feature_SNP Case (III2) Case(III4) Case (III6) Carrier (II2)

Total_SNPs 49303 59461 53966 58596

Functional_SNPs 12410 14137 13142 14053

Filtered_DBsnp 1561 1792 1577 1768

Filtered_DBsnp_1000gene 932 1076 965 1049

Filtered_DBsnp_1000gene_Hapmap 932 1076 965 1049

Filtered_DBsnp_1000gene_Hapmap_YH 911 1044 940 1017

doi:10.1371/journal.pone.0033673.t001

Table 2. Number of candidate Indels filtered against several
public variation databases.

Feature_Indel
Case
(III2) Case(III4)

Case
(III6)

Carrier
(II2)

Total_Indels 3929 4524 4316 4450

Functional_Indels 817 916 885 895

Filtered_DBindel 486 533 521 514

Filtered_DBindel_1000gene 189 211 199 205

doi:10.1371/journal.pone.0033673.t002

Figure 1. Pedigree of this family with RP. Solid symbols indicate
affected individuals. Open symbols indicate unaffected individuals.
Arrow indicates the proband and slash indicates deceased person.
doi:10.1371/journal.pone.0033673.g001
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precursors, possibly because of the presence of the abnormal lipid-

binding protein and enzymes essentially needed in elongation and

desaturation of fatty acid [16,17].

The CYP4V2 gene encodes a member of the cytochrome P450

hemethiolate protein superfamily which is involved in oxidizing

various substrates in the metabolic pathway. The CYP4 family is

associated with endogenous fatty acid metabolism, with CYP4V2

capabling of hydroxylating the omega-3 PUFAs, including

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)

[18]. PUFAs are highly enriched in the brain and eye, particularly

in the retina [19], playing an important role in regenerating disk

membranes of the outer segments of photoreceptor cells [20].

Phenotypically, the patients in this family showed remarkable

differences from BCD patients who carried exactly the same

mutations [10]. Instead of glistening crystalline deposits, pigment

deposits, retinal vascular attenuation and choroidal atrophy were

the most significant observations in the fundus. In addition, the

patients in our study had younger average age at onset and worse

visual acuity than those reported [10]. Interestingly, abnormalities

in lipid metabolism was also noticed in RP patients [21]. For

example, serum DHA was lower in patients with RP [21–24].

DHA deficiency may affect the activity of omega-3 fatty acid

desaturation and elongation reactions, and then alter the physical

and functional properties of outer segment membranes. Animal

studies have shown that reduction of DHA in dietary intake results

in abnormal ERGs and visual loss [25,26]. Clinical trial in RP

patients showed that progression of RP could be prevented or

slowed down when the patients were treated with DHA [27].

Dietary supplementation of DHA in such patients would by-pass

some biosynthetic and transport steps and may restore blood levels

of DHA back to normal [28]. All these suggest a link between

DHA deficiency and risk of RP, and between CYP4V2 defects and

the pathogenesis of RP.

Since the inheritance pattern of this pedigree was not clearly

clarified, making the genetic analysis of this pedigree difficult. We

presumed autosomal recessive as the most likely inheritance

model. Mutational screening for several genes associated with

autosomal recessive inheritance failed to identify the causative

gene(s). Given the fact that many mutations in at least 50 genes

are known to cause autosomal recessive RP (RetNet: http://www.

Figure 2. Representative photographs of patients of this family. (A) Fundus photographs showing bone spicule-like pigmentation, optic
never head epimembrane and retinal vascular attenuation. Chorioretinal degeneration with peripapillary atrophy was seen. (B) Fundus fluorescein
angiography images showing retinal vascular attenuation and chorioretinal atrophy. (C) OCT showing retinal atrophy. (D) ERG records showing no
detectable cone and rod responses. (E) Slit-lamp photography showing punctate opacity of the lens as indicted by the arrows. (F) B-scan ophthalmic
ultrasonic images showing posterior scleral staphyloma, indicating high myopia.
doi:10.1371/journal.pone.0033673.g002
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sph.uth.tmc.edu/Retnet/sum-dis.htm) and more to be identified,

exome sequencing was employed for genetic analysis of this

pedigree. Our results showed that this approach can be used to

effectively narrow down candidate genes and to identify genetic

defects responsible for Mendelian-inheritance diseases in pedi-

grees.

The mother II2 in this study was not a real negative control for

exome sequencing since she was supposed to be a carrier in the

autosomal recessive model. Initial analysis of exome sequencing

showed that c.1091-2A.G in CYP4V2 was first carried by the 3

patients (III2, III4, III6); further sequence verification showed that

this variation was present not only in another patient (III8), but

also in unaffected individuals, including II1’s brother (II3). It was

thus presumed that this heterozygous variation was inherited from

father II1, and carrying this variation only was not pathogenic. In

a compound-heterozygous model, as one heterozygous variation

was identified from the father side (II3), the other one inherited

from mother (II2) was identified by re-filtered the exome

sequencing data for variations present in all affected individuals

and their mother. The mutation c.802-8_810del17insGC in

CYP4V2 was then identified, since only the four patients carried

both c.1091-2A.G and c.802-8_810del17insGC in CYP4V2.

Among the mutations identified in this pedigree, c.1091-2A.G

of CYP4V2 was predicted to disrupt the splicing of intron 8,

resulting in an in-frame skipping of 45-amino-acid encoding exon

9. [11,12] The other 39 splicing acceptor site mutation, c.802-

8_810del17insGC was reported as a frequent founder mutation in

East Asian populations [13,29]. The change in this splicing

acceptor site was expected to cause an in-frame deletion of 62

amino acid-encoding exon 7, which was confirmed by reverse

transcriptase (RT)-PCR [13,14].

Table 4. Exome sequence variants shared by all affected individuals in homozygous or compound heterozygous states.

Inheritance Model Homozygous compound heterozygous

Presented heterozygous
in carrier (II2)

Presented heterozygous in carrier
(II2)

Not presented heterozygous in
carrier (II2)

Exome sequence variants shared
by all affected individuals

SNP 0 75 26

Indel 0 72 22

Disease-association
Mutation

– – c.802-8_810del17insGC c.1091-2A.G

doi:10.1371/journal.pone.0033673.t004

Figure 3. Mutations of the CYP4V2 gene. III8 and other 3 patients harbored compound heterozygous c.802-8_810del17insGC and c.1091-2A.G
mutations of the CYP4V2 gene. c.802-8_810del17insGC was carried by the mother II2. c.1091-2A.G mutation was carried by II3, the brother of II1, in
one allele, suggesting that the mutation was also carried by II1 and inherited by patients in the fourth generation. Intronic variation c.802-7C.T is
non-pathogenic.
doi:10.1371/journal.pone.0033673.g003
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In summary, a RP- associated gene, CYP4V2, was identified by

exome sequencing. The phenotype–genotype correlations with

regard to CYP4V2 sequence alterations were discussed. Our study

highlights the clinical heterogeneity of RP and demonstrates that

exome sequencing can be a valuable method to the diagnosis of

genetic diseases. Most interestingly, the same compound hetero-

zygous mutations were identified to cause two retinal disorders

with totally different phenotypes. The underlying mechanisms

need to be further elucidated.
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