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Abstract: Temporal rhythm (TR) is involved in the pathophysiology and treatment response of major
depressive disorder (MDD). However, there have been few systematic studies on the relationship
between TR-related genes (TRRGs) and MDD. This study aimed to develop a novel prognostic
gene signature based on the TRRGs in MDD. We extracted expression information from the Gene
Expression Omnibus (GEO) database and retrieved TRRGs from GeneCards. Expressed genes
(TRRDEGs) were identified differentially, and their potential biological functions were analyzed.
Subsequently, association analysis and receiver operating characteristic (ROC) curves were adopted
for the TRRDEGs. Further, upstream transcription factor (TF)/miRNA and potential drugs targeting
MDD were predicted. Finally, the CIBERSORT algorithm was used to estimate the proportions of
immune cell subsets. We identified six TRRDEGs that were primarily involved in malaria, cardiac
muscle contraction, and the calcium-signaling pathway. Four genes (CHGA, CCDC47, ACKR1, and
FKBP11) with an AUC of >0.70 were considered TRRDEGs hub genes for ROC curve analysis.
Outcomes showed that there were a higher ratio of T cells, gamma-delta T cells, monocytes, and
neutrophils, and lower degrees of CD8+ T cells, and memory resting CD4+ T cells in TRRDEGs. Four
new TRRDEG signatures with excellent diagnostic performance and a relationship with the immune
microenvironment were identified.

Keywords: temporal rhythm; immune infiltration; bioinformatics analysis; gene expression omnibus
dataset; major depressive disorder

1. Introduction

Major depressive disorder (MDD) is a heterogeneous disorder characterized by di-
minished interest in enjoyable activities, pessimism, cognitive and sleep disturbances,
and suicidal behavior [1,2]. Psychiatric disorders such as MDD are incredibly common
worldwide, affecting an estimated 20–30 million people [2–4], and are a significant public
health issue. Furthermore, worldwide disease burden is predicted to be primarily caused
by MDD by 2030. Although MDD is associated with widespread individual and societal
consequences, its etiology and neurobiological correlates are not well understood. Effective
treatment is limited by the fact that there is still a high rate of misdiagnosis associated
with MDD, which is based on subjective criteria. Hence, it is important to identify reliable
diagnostic biomarkers and identify potential drug candidates to prevent or treat MDD [5].

A movement sequence is often characterized by a stereotypical rhythm or structure
that can be called a “temporal rhythm”. It is a ubiquitous mechanism used by organisms to
coordinate endogenous biochemical processes with the ambient environment [6]. Temporal
rhythms (TR) govern almost every aspect of biology [7–9], and disruptions in TR are
associated with human morbidities including cancer, sleep [10], mental disorders [11],
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and neurodegeneration [7,12]. Accumulating evidence has revealed a correlation between
transcription factor (TF) and the pathogenesis of MDD. For example, patients with seasonal
affective disorders experience the onset or worsening of depression during fall and winter
months [13]. Accurate identification of this phenotype could be clinically valuable, as
strategies targeting the circadian rhythm may potentially relieve depressive symptoms
and stabilize the disease course [13]. However, the TF-associated genes that are key to
the development of MDD remain unclear, and the relationship between MDD and TR-
associated genes is not fully known. Therefore, identifying TR-associated genes that are
associated with MDD is urgently needed so that new biomarkers and therapeutic targets
can be developed for MDD treatment.

In the present study, we downloaded two reliable datasets (GSE44593 and GSE54566 [14])
from the Gene Expression Omnibus (GEO) database, and a list of TR-related genes (TRRGs)
has been compiled from GeneCards. (https://www.genecards.org/, accessed on 1 March
2022) to identify reliable TF-associated differentially expressed genes (DEGs) in MDD. The
CIBERSORT (https://cibersortx.stanford.edu/, accessed on 1 March 2022) [15] algorithm
was used to estimate differences in the immune microenvironment between patients with
MDD and controls using whole blood samples. In addition, the association between diagnos-
tic markers and the molecular immune mechanisms underlying MDD were examined by
examining infiltrating immune cells.

2. Results
2.1. Data Preprocessing and Identification of DEGs

Samples from the GSE44593 and GSE54566 datasets were combined, followed by
homogenization and normalization. Boxplots were acquired (Figure 1) before and after
homogenization, and based on the results, we found that the homogeneity of the two sets of
samples was good after the pretreatment. After data preprocessing, the heat (Figure 2A,C)
and volcano map (Figure 2B,D) of the GSE44593 and GSE54566 datasets were analyzed
using R software. Among these, the GSE44593 dataset included 62 upregulated genes
and 58 downregulated genes, whereas the GSE54566 dataset contained 65 upregulated
and 70 downregulated genes. Subsequently, 53 common differential genes were extracted
from the GSE44593 and GSE54566 datasets (Figure 3A). Next, we compiled a list of TRRGs
that contained 3014 from GeneCards and displayed the two parts of genes in a Venn
diagram to obtain the TRRDEGs associated with temporal rhythm in the GSE44593 and
GSE54566 datasets. Six TR-related differentially regulated genes were identified as follows:
Chromogranin A (CHGA), TEF, CCDC47, FK506 binding protein 11 (FKBP11), ACKR1, and
ASPHD2 (Figure 3B).
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(A) Common genes in GSE44593 and GSE54566. (B) TRRDEGs were analyzed by developing Venn
diagrams of DEGs. Common genes in DEGs and the significant differentially expressed TR-related
genes were analyzed by developing Venn diagrams of TRRDEGs.

2.2. Correlational Functional Analysis of TRRDEGs

GO enrichment revealed TRRDEGs to be predominantly involved in the regulation of
heart contraction, heart process, muscle relaxation, and blood circulation (Figure 4A–D).
Detailed outcomes are displayed in Table 1. KEGG enrichment (Table 1) showed that TR-
RDEGs enriched pathways mainly participated in cardiac muscle contraction and calcium
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signaling pathways. Supplementary Table S1 presents the results in detail. The GSEA-
enriched pathways mainly participated in allograft rejection, asthma, spinal cord injury,
reactome neutrophil degranulation, PID ap1 pathway, and pancreatic adenocarcinoma
pathway (Figure 5 and Supplementary Table S1).
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Table 1. GO/KEGG analysis.

Ontology ID Description GeneRatio p-Value

BP GO:0008016 regulation of heart contraction 2/6 0.003
BP GO:0060047 heart contraction 2/6 0.003
BP GO:0003015 heart process 2/6 0.003
BP GO:1901077 regulation of relaxation of muscle 1/6 0.004
BP GO:1903522 regulation of blood circulation 2/6 0.004
CC GO:0071782 endoplasmic reticulum tubular network 1/6 0.006
CC GO:0042629 mast cell granule 1/6 0.007
CC GO:0033017 sarcoplasmic reticulum membrane 1/6 0.012
CC GO:0016529 sarcoplasmic reticulum 1/6 0.021
CC GO:0016528 sarcoplasm 1/6 0.024
MF GO:0019957 C-C chemokine binding 1/5 0.007

MF GO:0003755 peptidyl-prolyl cis-trans isomerase
activity 1/5 0.012

MF GO:0016859 cis-trans isomerase activity 1/5 0.013
MF GO:0008307 structural constituent of muscle 1/5 0.013
MF GO:0051213 dioxygenase activity 1/5 0.025

KEGG hsa05144 Malaria 1/2 0.012
KEGG hsa04260 Cardiac muscle contraction 1/2 0.021
KEGG hsa04020 Calcium signaling pathway 1/2 0.049
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Figure 5. The results of the GSEA analysis. (A). KEGG_ALLOGRAFT_REJECTION, p value using
the Kolmogorov-Smirnov test. (B). KEGG_ASTHMA. (C). WP_SPINAL_CORD_INJURY. (D). REAC-
TOME_NEUTROPHIL_DEGRANULATION. (E). PID_AP1_PATHWAY. (F). WP_PANCREATIC_ADE
NOCARCINOMA_PATHWAY.

2.3. Selection of PPI Hub Genes and Construction of PPI Networks

To investigate the relationship between the six TRRDEGs, PPI analysis was performed
using the STRING database. The results are presented in Figure 6. Predicted relationships
between the TRRDEGs and miRNAs are displayed in Figure 7A, and the transcription
factor interactions are shown in Supplementary Figure 7B. Finally, the network of TRRDEGs
and drugs were analyzed, and the results are displayed in Figure 8, which revealed that
CHGA and ASPH were multidrug-resistant (resistant to three or more drug classes). For
example, CHGA had a drug resistance relationship with elesclomol (Cor = 0.510, p < 0.001),
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and ASPH had a drug resistance relationship with arsenic trioxide (Cor = 0.508, p < 0.001).
This indicates that CHGA and ASPH may be potential therapeutic targets.
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The association between the TRRDEG gene and miRNA network, as shown in Figure 7,
predicted several possible miRNAs. Analysis of the relationship between the TRRDEGs
and the transcription factor network is shown in Figure 7, and the potential transcription
factors were predicted.

The association between CHAG and elesclomol was 0.510 (p < 0.01), and the association
between ASPH and arsenic trioxide was 0.508 (p < 0.01). The association between ASPH and
dimethylaminoparthen was 0.507 (p < 0.01), and that between ASPH and exons was 0.485
(p < 0.01). The association between CHGA and fulvestrant use was 0.477 (p < 0.01), and that
between CHGA and hydrazine HCI was 0.473 (p < 0.01). Further, the association between
CHGA and dexrazoxane was 0.462 (p < 0.01), between ASPH and fulvestrant use, was 0.462
(p < 0.01), between ASPH and carmustine treatment, was 0.444 (p < 0.01), between ASPH
and Irofulven, was 0.438 (p < 0.01), between ASPH and pipamperone, was 0.436 (p < 0.01),
between ASPH and raloxifene, was 0.421 (p < 0.01), between CHGA and raloxifene, was
0.416 (p < 0.01), between ASPH and halide use, was 0.411 (p < 0.01), between ASPH and
estramustine, was 0.399 (p < 0.01), and that between ASPH and cyclophosphamide was
0.399 (p < 0.01) (Figure 8).
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Figure 7. PPI analysis of target gene. (A). Target gene-miRNA network analysis. Purple represents
the predicted miRNA and yellow represents the target gene. (B). Target gene-transcription factor; and
pink represents the target gene analysis. Green represents the predicted gene-transcription factors.
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2.4. A Receiver Operating Characteristic (ROC) Curve and Hub Gene Expression

The expression of TRRDEGs in the GSE44593 and GSE54566 datasets was analyzed,
and the diagnostic efficacy was predicted using the ROC curves. The results revealed that
the expression of ACKR1, CHGA, and CCDC47 were lower in the MDD group than that
in normal controls for both datasets (p < 0.05), whereas CCDC47 expression was higher
in the MDD group than that in normal controls for the GSE44593 and GSE54566 datasets
(p < 0.05). The ROC curve results also indicated that the diagnostic efficacy of ACKR1,
CHGA, and CCDC47 was higher in the MDD group, and the area under the AUC curve
was higher than 0.7. In addition, the area under the AUC curve of FKBP11 was also higher
than 0.7 in both datasets (Figure 9).
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Figure 9. Expression analysis and the ROC curve predicted diagnostic efficacy of TRRDEGs molecules
in the GSE44593 and GSE54566 datasets. (A–F) Group comparison of TRRDEGs molecules. (G–L) ROC
curve diagnostic efficacy of TRRDEGs molecules. * represents p < 0.05.

2.5. Analysis of Immune Cell Infiltration and Its Association with Hub Gene Diagnostic Markers

The immune cell infiltration in the GSE44593 and GSE54566 datasets was analyzed
separately. The results suggested that 15 potential immune cells were enriched in the
GSE44593 dataset, for which the correlations are shown in Figure 10B. Moreover, 19 po-
tential immune cells were enriched in the GSE54566 dataset, for which the correlations
are shown in Figure 10D. MDD appears to be strongly influenced by immune cells, as
evidenced by these results.
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Figure 10. Evaluation and visualization of immune cell infiltration in the GSE44593 and GSE54566
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analysis of enriched immune cells in the GSE44593 dataset. (C) Heat map of enriched immune
cell distribution in the GSE54566 dataset. (D) Correlation analysis of enriched immune cells in the
GSE54566 dataset.

3. Discussion

Dysregulation of TR is associated with numerous neurodegenerative and mental
disorders [9,16]. MDD is a severe, chronic, and highly prevalent disease with a high
incidence that affects 120 million people worldwide. MDD is a heterogeneous and accurate
method for diagnosis and assessment. Undoubtedly, the investigation of neurological
biomarkers for diagnosing and treating MDD has the potential to improve the treatment
outcomes of patients with MDD.

To date, it has been reported that TR genes are strong diagnostic and prognostic mark-
ers in cancers such as glioma [17], prostate cancer [18], and stomach adenocarcinoma [19].
However, studies that investigate whether TR genes can act as specific diagnostic biomark-
ers for psychiatric disorders to further explore relevant therapeutic targets for psychiatric
disorders, especially MDD, are lacking. This creates an urgent need to enhance our under-
standing of TR in MDD through extensive validation.

In this study, we identified six potential TRRDEGs (CHGA, TEF, CCDC47, FKBP11,
ACKR1, and ASPHD2) in MDD using bioinformatics analysis. Moreover, the hidden
biological roles of these TRRDEGs were determined by GO and KEGG enrichment analyses,
which suggested a core effect of TR on the pathophysiological mechanisms of MDD.

To illustrate the diagnostic power of the TRRDEGs in MDD, ROC curve analysis was
performed, and the outcomes displayed a satisfactory diagnostic value. The four genes
(CHGA, CCDC47, ACKR1, and FKBP11) showed that they may be reliable in diagnosing
patients with MDD with high specificity and sensitivity. Some diagnostic biomarker
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signatures have been reported in previous studies. For instance, using machine learning
approaches, Zhao et al. [20] found that classifiers for SVM, RF, CNN, and NB, as well as the
AUC for SVM, RF, CNN, and NB were 0.84, 0.81, 0.73, and 0.83, respectively. Linna et al. [21]
applied four immune-related genes (CD1C, SPP1, CD3D, and CAMKK2), and it has shown
a good diagnostic value in discriminating MDD from controls based on immune-related
genes, with an AUC of 0.861. In contrast, we found four TRRDEGs with an AUC of >0.7 in
two datasets. Our observations indicated that the performance of the combined biomarkers
was superior to that of the individual markers.

Of these four biomarkers, CHGA has been reported to have a clear relationship
with MDD [22,23]. CHGA is a protein-coding gene [23] and a member of the chromo-
granin/secretogranin family of neuroendocrine secretory proteins [24], which may in-
fluence the exocytotic release of neurotransmitters, including 5-hydroxytryptamine and
dopamine—neurotransmitters that are involved in the sleep-wake cycle as well as im-
plicated in depression. One study that investigated sectional CHGA levels in 40 male
university students indicated an inverse association between salivary levels of CgA and
the intensity of depressive symptoms [25]. Another recent retrospective study reported
an inverse association between serum CgA levels and HRSD-24 score [22]. These results
are similar to those of the present study. In contrast, the expression level of CCDC47 was
greatly increased in patients with MDD in both datasets. CCDC47, also known as calumin,
binds Ca2+ with a low affinity and high capacity. In mice, CCDC47 deficiency can result
in delayed growth, atrophic neural tubes, heart defects, a shortage of blood cells in the
dorsal aorta, and embryonic lethality, indicating that CCDC47 is key to early growth. Prior
studies have indicated that chronic antidepressant treatment may promote behavioral
benefits by alteringastrocyte intracellular Ca2+ dynamics and TrkB mRNA expression in
the hippocampus [26]. These results support the results of our bioinformatics analysis and
indicate that CCDC47 may be a potential biomarker of MDD.

FKBP11 is a member of the FK506 binding protein family. It participates in the
regulation of mTOR—a signaling pathway in the prefrontal cortex that is compromised
in MDD [27]. Therefore, we speculated that FKBP11 may play a role in MDD, partly by
affecting mTOR. Another gene, ACKR1, binds more than 20 inflammatory CC and CXC
chemokines and is expressed specifically in erythrocytes, venular endothelial cells, and
cerebellar Purkinje neurons [28]. It is known that ACKR1 is involved in neuroinflammation
in the brain [29]. Notably, inflammation is also involved in the pathogenesis of MDD, hence,
we speculated that ACKR1 might participate in the progression of MDD by regulating
neuroinflammation. However, the specific regulatory mechanisms of FKBP11 and ACKR1
require further investigation.

Pathway-based enrichment analysis confirmed the GO results related to malaria, car-
diac muscle contraction, and the calcium signaling pathway. Although past research has
shown a relationship between malaria and mental disorders [30], the role of malaria in
MDD remains unclear. The current outcome indicates that these phenotypic interrelation-
ships may share a genetic base and common pathophysiological mechanisms. Further,
this finding also suggests a shared underlying pathophysiological mechanism. The high
prevalence of comorbidity between depression and cardiovascular disease (CVD) is well-
recognized [31,32]. However, epidemiological studies have suggested that TR disruption
in specific settings could confer an increased risk of CVD [33]. Further, the findings of this
study were consistent with this notion.

However, this study had several notable limitations. First, it focused entirely on the
secondary mining and analysis of a previously published benchmark dataset, and the
results were not verified by experimental data. This research will be used to conduct more
experimental studies in the future. Second, the present results were based on a relatively
small sample size. Therefore, these results need to be confirmed by a larger cohort of
participants. In order to understand how MDD develops and progresses, we must identify
more DEGs and explore whether they are directed at specific genes. Third, it is unknown
whether the diagnosis of the four TRRDEGs reported in this study is specific only to MDD,
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and it is unclear whether these biomarkers can be used to differentiate patients with MDD
from those with bipolar disorders (BD). Finally, further studies are needed to elucidate the
mechanism and interrelationships of TRRDEGs in gene signatures.

4. Materials and Methods
4.1. Research Design

Figure 11 demonstrates the workflow of the research process.
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4.2. Data Acquisition and Processing

Tow microarray datasets of MDD (GSE44593 and GSE54566 [14]) were downloaded
from GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed on 22 March 2022) and prepro-
cessed using the R package GEO query (version 3.6.5, http://r-project.org/, accessed on
22 March 2022) [34]. These two datasets were derived from Homo sapiens and contained
14 MDD brain specimens and 14 normal brain tissue specimens based on the GPL570
platform [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. Each dataset
was imported, the background was corrected, and data were normalized using the Robust
Multichip Average algorithm with the ‘affy’ [35] package. Inter-sample correction effects
were demonstrated by box plots that were created using the ggplot2 package (R package
version 3.5.2.) [36].

4.3. Identification of Differentially Expressed Genes (DEGs)

Analysis of differentially expressed genes (DEGs) between patients with and without
MDD was performed using R software via the limma package [37]. The heatmap package
was employed to construct the expression heat map of the differential distribution of DEGs.
Further, volcano plots presented the differential expression, which was produced with the
ggplot2 package in R v3.5.2. Significant DEGs were identified using the cut-off criterion of
a p-value of < 0.05 and log fold change (|logFC|) ≥ 0.2.

https://www.ncbi.nlm.nih.gov/geo/
http://r-project.org/
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4.4. Data Acquisition and Temporal Rhythm-Related Differentially Expressed Genes (TRRDEGs)

TRRGs were downloaded from GeneCards [38] and converted into a gene list. There-
after, the temporal rhythm-related differentially expressed genes (TRRDEGs) of the DEGs
were identified using a Venn diagram.

4.5. Functional Analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment for the TRRDEGs were performed by comparing the cluster function of the clus-
ter profile R package [39] (v3.10.1), and a p-value of ≤0.05 was considered significant. Gene
set enrichment analysis (GSEA) was performed for pathways enriched by GO and KEGG.

4.6. Identification of Protein-Protein Interaction (PPI) Networks of TRRDEGs

The STRING [40] (https://string-db.org/, accessed on 5 April 2022) database was
used to construct PPI networks of TRRDEGs to forecast protein functional relationships
and protein-protein interactions. A network model visualized using Cytoscape [41] (v3.7.2)
was built by selecting genes with a score of ≥0.4. Hub genes were screened from the PPI
network using the cytoHubba [42] plugin.

4.7. Construction of miRNA and TRRDEGs Networks

We used the R package miRNAtap (https://bioconductor.org/packages/release/bioc/
html/miRNAtap.html, accessed on 5 April 2022) to predict the possible TRRDEGs miRNAs.
The multiMiR [43] package was adopted to select the miRtarbase [44] database information.
Next, we chose the luciferase reporter assay with the most rigorous experimental grade to
verify the results. The related TRRDEGs miRNAs were predicted through visualization by
CyTargetLinker plugin of Cytoscape [41] software (version 3.8.2).

4.8. Correlation Analysis of TRRDEGs and Transcription Factors (TFs)

The NetworkAnalyst database [45] (http://www.networkanalyst.ca, accessed on
10 April 2022) was used to analyze the interactions between candidate transcription factors
(TFs) and TRRDEGs genes. We used Gene Regulatory Networks to select TF-gene interac-
tions based on TF and gene target data downloaded from the ENCODE ChIP-seq data. The
prediction criteria were as follows: the BETA Minus algorithm predicted a peak density
signal of <500 and a prediction score of <1. Target genes were predicted using the MCODE
plugin and Cytohbba plugin of Cytoscape [41] software.

4.9. Relationship between Target Genes and Drug Response

Processed data, including the RNA (RNA-se data) and chemical compound activity
(DTP NCI-60 data), were obtained from CellMiner [46] (https://discover.nci.nih.gov/
cellminer/home.do, accessed on 10 April 2022). Next, a drug sensitivity analysis was
performed using the R limma and R impute package22.

4.10. Assessment of Immune Cell Infiltration

CIBERSORT [15] (https://cibersortx.stanford.edu/, accessed on 5 April 2022), which
is a bioinformatics algorithm that precisely calculates immune cell compositions based
on gene expression profiles, was adopted to estimate different immune cell subtypes.
Correlation analysis was performed using the R package e1071 [47], parallel package, and
preprocess core package. We also plotted a bar plot and the correlation heat map.

4.11. Statistical Analysis

All analyses were performed using the R statistical software (version 4.0.2). A Student’s
t-test was used when constant variables between groups were normally distributed, while
the Mann-Whitney U test or Wilcoxon signed-rank test was used when constant variables
were not normally distributed. Categorical variables were compared using the chi-square
test or Fisher exact test. Pearson correlation coefficients were calculated for correlation

https://string-db.org/
https://bioconductor.org/packages/release/bioc/html/miRNAtap.html
https://bioconductor.org/packages/release/bioc/html/miRNAtap.html
http://www.networkanalyst.ca
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
https://cibersortx.stanford.edu/
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analysis between different genes. All p-values were two-sided, and p-values of ≤0.05 were
considered statistically significant.

5. Conclusions

In summary, this study involved a novel approach to identify six TRRDEGs that
were primarily involved in malaria, cardiac muscle contraction, and the calcium-signaling
pathway. Furthermore, four genes (CHGA, CCDC4, ACKR1, and FKBP11) with an AUC of
>0.70 were considered TRR-DEGs hub genes for ROC curve analysis. Moreover, outcomes
showed that there was a higher ratio of T cells, gamma-delta T cells, monocytes, and
neutrophils, lower degrees of CD8+ T cells, and memory resting CD4+ T cells in TRRDEGs.
Thus, this led to the suggestion that TR is involved in MDD. The integrated functional an-
notations showed that these genes may be involved in immune or inflammatory responses
or signaling pathways that contribute to MDD pathogenesis, which paves the foundation
for identifying novel biomarkers and treatment targets for mood disorders.
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