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The application of whole-genome sequencing (WGS) to problems in clinical microbiology has had a major impact on the field.
Clinical laboratories are now using WGS for pathogen identification, antimicrobial susceptibility testing, and epidemiological
typing. WGS data also represent a valuable resource for the development and evaluation of molecular diagnostic assays, which
continue to play an important role in clinical microbiology. To demonstrate this application of WGS, this study used publicly
available genomic data to evaluate a duplex real-time PCR (RT-PCR) assay that targets mapA and ceuE for the detection of Cam-
pylobacter jejuni and Campylobacter coli, leading global causes of bacterial gastroenteritis. In silico analyses of mapA and ceuE
primer and probe sequences from 1,713 genetically diverse C. jejuni and C. coli genomes, supported by RT-PCR testing, indi-
cated that the assay was robust, with 1,707 (99.7%) isolates correctly identified. The high specificity of the mapA-ceuE assay was
the result of interspecies diversity and intraspecies conservation of the target genes in C. jejuni and C. coli. Rare instances of a
lack of specificity among C. coli isolates were due to introgression in mapA or sequence diversity in ceuE. The results of this
study illustrate how WGS can be exploited to evaluate molecular diagnostic assays by using publicly available data, online data-

bases, and open-source software.

Accurate and timely diagnosis of infectious diseases is a corner-
stone of clinical microbiology. Notwithstanding the ongoing
importance of conventional culture in many settings, molecular
diagnostics have markedly improved pathogen detection and
identification (1). The most recent development in this area is the
application of whole-genome sequencing (WGS) to problems in
clinical microbiology (2-5). Although WGS is transforming the
field, genomics and rapid molecular tests have complementary
roles to play in diagnostic microbiology, particularly in resource-
limited environments.

Since their introduction in the 1980s, nucleic acid amplifica-
tion tests (NAATs), including multiplex assays that facilitate
syndrome-driven diagnosis, have come to be widely used in
bacteriology laboratories (1). In particular, multiplex NAATSs
are becoming increasingly popular for the identification of gas-
trointestinal pathogens, which include a wide range of viruses,
bacteria, and parasites (6, 7). Many NAATSs have, however, been
designed by using representative nucleotide sequences from a lim-
ited number of isolates. During the pre-WGS era, the performance
of NAATS could not be examined at the population level because
the requisite large isolate collections were challenging to assemble
and primer sequences were difficult to determine by Sanger se-
quencing.

The recent increase in WGS has generated an abundance of pub-
licly available genomic data that have the potential to improve the
development and evaluation of NAATs and other molecular diag-
nostics (8). At the time of writing of this work, growing numbers
of assembled bacterial genomes were becoming available in public
repositories, such as the NCBI (https://www.ncbi.nlm.nih.gov
/genomes/MICROBES/microbial_taxtree.html); however, the major-
ity of WGS data were available only as unassembled short reads. This
limited their use to laboratories with bioinformatics expertise and
resources. The PubMLST databases (http://pubmlst.org) address
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this issue by making large numbers of de novo assembled bacterial
genomes publicly available through a web interface with analysis
tools (9, 10). As of September 2016, the Ribosomal Multilocus
Sequence Typing (rMLST) Database (http://pubmlst.org/rmlst/)
(11) contained over 180,000 assembled bacterial genomes, which
corresponded to more than 4,500 bacterial species. Similarly, an
increasing number of species-specific PubMLST databases are
also being populated with WGS data.

This study demonstrates how WGS data can be exploited to
evaluate diagnostic assays. Campylobacter bacteria, a leading
cause of bacterial gastroenteritis (12), were used as an exem-
plar. As Campylobacter bacteria are difficult to culture and iden-
tify, NAATSs have become a popular tool for the diagnosis of cam-
pylobacteriosis (7, 13, 14); however, the extent to which existing
assays are affected by the high levels of genetic diversity common
among clinical isolates (15), or introgression, that is, the transfer
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of DNA between Campylobacter species (16—18), is unknown. The
case study presented here is a duplex TagMan real-time PCR (RT-
PCR) for identification of Campylobacter jejuni and Campylobac-
ter coli (19). Developed in the pre-WGS era using single gene se-
quences, the assay and variations thereof have been used for
routine isolate identification to the species level (19-21); studies of
Campylobacter isolates from humans (22-25), animals (26-35),
and the environment (36); and outbreak investigations (37). For
C. jejuni, the RT-PCR target is mapA, which encodes a putative
outer membrane lipoprotein (38) shown to be immunogenic in
chickens (39, 40). For C. coli, the target is ceuE, which encodes a
periplasmic binding protein involved in iron scavenging (41). As
mapA and ceuE are present in both organisms, the species speci-
ficity of the assay is contingent on the conservation of primer- and
probe-binding sequences. Accordingly, the mapA-ceuE RT-PCR
provided an opportunity to explore the utility of genomics and
population genetics approaches for in silico evaluations of diag-
nostic assays.

MATERIALS AND METHODS

WGS data. Best and colleagues (19) validated the mapA-ceuE assay by
using clinical Campylobacter isolates from the United Kingdom. As Cam-
pylobacter genotypes circulating in Oxfordshire are representative of the
United Kingdom (15, 25, 42, 43) and other high-income countries (http:
/Ipubmlst.org/campylobacter/), the Oxfordshire sentinel surveillance
collection (15) was identified as an appropriate source of WGS data for
this study. WGS data from 1,724 Campylobacter isolates were accessed via
the Campylobacter jejuni/coli PubMLST database (http://pubmlst.org
/campylobacter/). These Campylobacter bacteria comprised all of the sin-
gle patient isolates recovered in Oxfordshire between June 2011 and June
2013.

Genome annotation and data extraction. The autotagger functional-
ity within the PubMLST Bacterial Isolate Genome Sequence Database
(BIGSdb) software (9) was used to identify mapA (PubMLST locus id
CAMP0952), ceuE (CAMP1271), and the 7 multilocus sequence typing
(MLST) (44, 45) and 52 rtMLST (11) loci. Sequences with =98% identity
and =98% alignment with existing alleles were annotated automatically.
Using curation tools available in PubMLST, predicted sequences with 70
to 98% identity to existing alleles were aligned at the nucleotide and
amino acid sequence levels with the closest match in the database. Follow-
ing visual inspection of the alignments, complete coding sequences were
added to the database. Those with internal stop codons were “flagged,”
that is, highlighted in the database, and marked as “visually checked.”
Allelic data and corresponding nucleotide sequences, MLST-defined se-
quence types (STs), clonal complexes, and ribosomal STs (rSTs) were
exported from the database by using the BIGSdb data export plugin (9).

Isolate diversity and species identification. The allelic diversity of the
MLST and rMLST data was determined by using the bias-corrected ver-
sion of Simpson’s index of diversity (D) (46, 47) with 95% confidence
intervals (CIs) (48). Possible values of D ranged from 0 (no diversity) to 1
(maximum diversity). The distribution of MLST clonal complexes was
compared to that observed for 3,349 human disease isolates recovered in
Oxfordshire between 2003 and 2009 (42). Study isolates were assigned to
species groups by using rMLST (11). For this analysis, concatenated nu-
cleotide sequences of unique rSTs (~20,780 bp) were aligned with
MAFFT version 7.037b (49). The memory requirements for maximum-
likelihood (ML) analysis of the study data set exceeded that of a standard
installation of MEGA version 5.05; therefore, an ML phylogeny was gen-
erated on a Linux server with MEGA-CC version 7.0 (50) by using the
general time-reversible model with gamma-distributed rates plus invari-
ant sites with 500 bootstrap replicates (51). This analysis required knowl-
edge of the command line and took 9 days. As usability and computational
speed were considered important factors in this study, the ML phylogeny
was compared to a neighbor-joining tree (52) reconstructed in MEGA
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version 5.05 (51) with the Kimura two-parameter model (53) by using
1,000 bootstrap replicates. At the population level, C. coli segregates into
three clades (54), and additional rMLST analyses were carried out to re-
solve the assignment of a subset of isolates to these groups. The approach
described above was used to compare rSTs of interest to a reference set of
15 C. coli genomes representative of the three clades, with the ML phylog-
eny generated with the Tamura-Nei model with gamma-distributed rates
plus invariant sites with 500 bootstrap replicates (see Table S2 in the
supplemental material) (16, 55, 56).

In silico assay evaluation. Nucleotide sequence alignments of unique
mapA and ceuE alleles were generated as for the rMLST phylogeny, and
regions corresponding to the forward primer, probe, and reverse primer
(19) were extracted. Primer and probe nucleotide sequence fragments
were aligned and concatenated, and unique combinations were assigned
allele numbers in the order of discovery.

RT-PCR confirmation of in silico evaluation results. Archived
genomic DNA and bacterial cultures were available for the study isolates
(15), which facilitated RT-PCR confirmation of the in silico evaluation
results. Representative isolates (n = 124) were chosen for RT-PCR such
that each unique mapA and ceuE forward primer, probe, and reverse
primer combination was tested at least once, with the subset also repre-
sentative of the genetic diversity of the study data set. For isolates with
insufficient archived genomic DNA (n = 5), glycerol stocks of single-
colony cultures were inoculated onto Columbia agar with horse blood
(Oxoid Ltd., Basingstoke, United Kingdom) and incubated in a mi-
croaerobic atmosphere at 42°C for 48 h. Boiled cell lysates were prepared
from single colonies as previously described (19). RT-PCR was carried out
according to the method of Best et al. (19), and positive results were
defined as those with cycle threshold (C;) values ranging from 12 to 30.

Genetic diversity, introgression, and selection in RT-PCR targets.
Individual mapA and ceuE nucleotide sequence alignments and gene phy-
logenies were generated as described for rMLST. The mapA ML phylogeny
was constructed with the Tamura three-parameter model with gamma
distributed rates with 500 bootstrap replicates, and the same parameters
were used for ceuE, with the addition of invariant sites. Nucleotide se-
quences were translated with MEGA version 5.05 (51), and allele numbers
were assigned to unique protein sequences. STRUCTURE (57), a Bayesian
clustering algorithm, was used to characterize introgression in mapA and
ceuE as previously described (17, 18). Isolates were probabilistically as-
signed to species with the linkage model, which adjusts for linkage dis-
equilibrium between nucleotides (58). The model was run with default
settings for 10,000 burn-in iterations and 10,000 additional iterations,
assuming a population number (k) of 2. Putative mosaic alleles were iden-
tified as those with a =0.75 probability of belonging to either C. jejuni or
C. coli (18). Site-by-site frequencies generated by STRUCTURE were used
to identify nucleotide sequence fragments with different ancestries in pu-
tative mosaic alleles (18, 58). After putative recombinant alleles were ex-
cluded, within- and between-group p distances were calculated for C.
jejuni- and C. coli-specific gene and protein sequences with DnaSP version
5.10 (59). Species-specific synonymous and nonsynonymous substitution
rates (dN/dS) were calculated for mapA and ceuE alleles encoding full-
length protein sequences with SNAP version 2.1.1 (www.hiv.lanl.gov)
(60).

RESULTS

Isolate diversity and species identification. Complete nucleotide
sequences of mapA and ceuE and the MLST and rMLST loci were
obtained from 1,713/1,724 (99.4%) isolates (see Table S1 in the
supplemental material), excluding those with: incomplete MLST
and/or rMLST profiles (n = 8), misassembled mapA or ceuE se-
quences (1 = 1), or multiple alleles at any of the rMLST loci (n =
2), which is an indicator that a mixed culture may have been se-
quenced. The isolates included can be accessed via the Campylo-
bacter jejuni/coli PubMLST isolate database and are grouped in the
mapA-ceuE evaluation project. The collection comprised 293 ST's
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FIG 1 Genetic diversity and species identification of 1,713 Campylobacter
genomes from Oxfordshire human disease isolates (2011 to 2013). (A) Fre-
quency distribution of major clonal complexes (n = =10) among 3,349 Cam-
pylobacter isolates from human disease cases in Oxfordshire (2003 to 2009)
typed by MLST (white) (42) and the 1,713 genomes included in this study
(black). UA, STs unassigned to a clonal complex; Cj, C. jejuni (blue); Cc, C. coli
(yellow). (B) Neighbor-joining tree based on concatenated nucleotide se-
quences of unique rMLST profiles (n = 597) identified among the study iso-
lates. A, putative clade 3 C. coli. (C) Neighbor-joining tree based on concate-
nated nucleotide sequences of rMLST profiles of 15 representative isolates
belonging to C. coli clades 1 (yellow), 2 (orange), and 3 (pink) and three
putative clade 3 isolates identified in this study (A).

(D = 0.974 [95% CI, 0.972 to 0.976]) and 597 rSTs (D = 0.989
[95% CI, 0.988 to 0.991]). The STs were assigned to 33 clonal
complexes, with proportions similar to those observed previously
in Oxfordshire (Fig. 1A) (15, 42). Species designations were in-
ferred from the ML and neighbor-joining rMLST phylogenies
(11), which aggregated rSTs into identical species groups. As the
same was true for all paired phylogenies, only the neighbor-join-
ing trees are presented here. C. jejuni accounted for 1,521 (88.8%)
isolates, and C. coli accounted for the remaining 192 (11.2%) (Fig.
1B). Two C. coli rSTs, rST398 (n = 2) and rST4701 (n = 1), were
distinct from the other C. coli sequences and occurred at the tip of
a long branch (Fig. 1B). Further rMLST analyses indicated that
these isolates belonged to C. coli clade 3 (Fig. 1C).

In silico assay evaluation. There were 72 mapA alleles of 645
bp and 126 ceuE alleles of 990 to 994 bp represented in the isolate
collection. Differences in ceuE allele lengths were due mainly to
variation in three homopolymeric tracts, which resulted in inter-
nal stop codons in 11 C. jejuni-specific alleles (n = 20) (Table 1).
These alleles were flagged and marked as visually checked in the
database. To evaluate assay specificity, primer- and probe-binding
sequences were extracted from mapA and ceuE and analyzed in
detail.

mapA. Twenty-three unique mapA primer-and-probe combi-
nations were identified among the study isolates. Twelve were
present only in isolates designated C. jejuni, nine were in C. coli,
and two were in both species. Two distinct groups, consistent with
microbiological species, were evident from the nucleotide se-
quence alignment of these unique combinations (Fig. 2A). Primer
and probe sequences were conserved among C. jejuni isolates. The
predominant primer-and-probe combination was detected in
1,166 (76.7%) isolates and was identical to the published se-
quences (19). Sequence variation among divergent C. jejuni com-
binations was limited to between one and five polymorphisms
across the three regions. C. coli sequences were also conserved but
were divergent from C. jejuni combinations, differing from the
published sequences (19) at up to 18 sites (Fig. 2A); however, four
C. coliisolates carried nonspecific primer-and-probe combina-
tions (Table 2). Two combinations, each present in a single C.
coli isolate, corresponded to predominant C. jejuni-specific al-
leles 1 and 2 (Fig. 2A). The remaining two nonspecific combi-
nations were composites of C. coli and C. jejuni sequences (Table
2; Fig. 2A).

TABLE 1 Details of ceuE alleles with internal stop codons identified among C. jejuni isolates

Polymorphism Nucleotide position Putative effect on protein PubMLST gene allele ST/CC?/tST (n)
T(8 —7) 34 Truncation 288 5756/UA"/263 (1)
290 2844/ST460/325 (2)
291 48/ST48/106 (2), 48/ST48/98 (1),
48/ST48/99 (1), 520/ST21/377 (1)
293 2274/UA/123 (1)
294 443/ST443/221 (1)
296 5707/UA/3509 (1)
298 1932/ST460/4596 (2)
300 464/ST464/7025 (1)
T(8 —9) 34 Truncation 295 21/ST21/538 (1)
A5 —4) 202 Truncation 289 47/ST21/510 (3), 3633/ST21/510 (1)
T(6 —5) 483 Truncation 292 53/ST21/460 (1)
Deletion (C) 675 Truncation 297 257/ST257/186 (2)

@ CC, MLST-defined clonal complex.
b UA, ST not assigned to a clonal complex.
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FIG 2 Genetic diversity of mapA (A) and ceuE (B) primer and probe sequences. Published primer (cream) and probe (orange) sequences (19) are shown above
concatenated nucleotide sequence alignments of unique combinations identified in genomes from campylobacteriosis cases in Oxfordshire (2011 to 2013). Dots
represent conserved nucleotides. Numbers above the published primers and probes indicate nucleotide positions relative to the complete gene, with breaks
between regions marked (V). Adjacent histograms indicate frequencies of combinations in C. jejuni (blue) and C. coli (yellow). *, complete C. jejuni-specific
combination detected in a single C. coli isolate; @, composite nonspecific combination detected in a single C. coli isolate.

ceuE. The 26 ceuE primer-and-probe combinations identified
among the study isolates were all species specific. Twenty-one
were present only in C. jejuni, and five were present only in C. coli.
Primer-and-probe combinations were also stratified by species at
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the nucleotide sequence level (Fig. 2B). C. coli sequences were
highly conserved, with 186 (96.9%) isolates identical to the pub-
lished primer and probe sequences (19). Nucleotide variation was
limited to between one and eight polymorphisms per primer-and-
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TABLE 2 Details of C. coli isolates with atypical mapA/ceuE primer and probe sequences

Gene allele/primer and probe combination
(RT-PCR result)”

Atypical target and isolate ST (CC)* mapA ceull mapA/ceuE RT-PCR result
mapA

0XC7352 6973 (ST1150) 20/2 (+) 136/22 (+) Mixed

0OXC6987 825 (ST828) 88/1 (+) 3/22 (+) Mixed

0XC6395 1487 (ST1150) 19/227 () 17/22 (+) C. coli

0OXC7615 6760 (UA) 111/23¢ (late +) 139/22 (+) Inconclusive
ceuE

0OXC7241 6698 (UA) 96/19 (— 153/25 (late +) Inconclusive

OXC7243 6698 (UA) 96/19 (—) 153/25 (late +) Inconclusive

OXC7653 6975 (UA) 114/21 (=) 183/26 (late +) Inconclusive

@ CC, clonal complex.
+, target detected; —, target not detected; late +, target detected after cycle 30.
¢ UA, ST not assigned to a clonal complex.
4 Forward primer C. jejuni specific, probe and reverse primer C. coli specific.
¢ Forward primer and probe C. jejuni specific, reverse primer C. coli specific.

probe combination, the majority of which occurred in alleles 25
(n = 2) and 26 (n = 1), which were present in the clade 3 C. coli
isolates (Table 2; Fig. 2B). In contrast, C. jejuni combinations were
divergent from the published sequences (19), containing between
10and 13 nucleotide sequence differences across the three regions.
C. jejuni isolates were also more evenly distributed across primer
and probe sequences, with eight combinations accounting for
96.3% of the isolates, in contrast to a single combination account-
ing for 96.9% of the C. coli isolates (Fig. 2B).

Predicted assay performance and RT-PCR confirmation.
Predicted species designations based on the results of the in silico
evaluation were consistent with rMLST species assignments for
1,707/1,713 (99.7%) isolates, corresponding to 1,521 (100%) of
the C. jejuni and 186 (96.9%) of the C. coli isolates. These results
were confirmed by RT-PCR testing of 124 representative isolates.
C. coli isolates with complete C. jejuni-specific mapA primer and
probe sequences were mapA positive/ceuE positive (Table 2). RT-
PCR results for the C. coli isolate carrying C. jejuni-specific mapA
forward primer and probe sequences and the three clade 3 C. coli
isolates were inconclusive, as the C; values for mapA and ceuE,
respectively, ranged from 32 to 37, exceeding the assay cutoff of 30
(19) (Table 2; see Table S3 in the supplemental material). Al-
though this study was not designed to quantify the effects of
primer and probe mismatches on target detection, there was a
correlation between the number of polymorphisms and Cvalues
(see Table S3).

Introgression, diversity, and selection in RT-PCR targets.
Additional analyses were carried out at the whole-gene level to
explore the impact of introgression, diversity, and selection on
assay specificity. Individual gene phylogenies confirmed that
mapA and ceuE alleles were species specific (Fig. 3), with the ex-
ception of mapA alleles 20 and 88, which were present in the
mapA-positive/ceuE-positive C. coli isolates (Fig. 3A; Table 2).
Clade 3 C. coli mapA and ceuE alleles clustered with the other C.
coli sequences; however, they were distinct from clade 1 sequences
and were at the end of a long branch in both phylogenies, indica-
tive of genetic divergence (Fig. 3). Also noteworthy were five C.
coli alleles that occupied intermediate positions on the mapA phy-
logeny (Fig. 3A). Taken together with the interspecies transfer of
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alleles 20 and 88, these findings indicated introgression in mapA,
which supported the results of the in silico evaluation.

Drawing on population genetics approaches, introgression
in the RT-PCR target genes was formally characterized with
STRUCTURE, with mixed ancestry detected only in the mapA
gene of 17 (8.9%) C. coli isolates. In addition to the two previously
identified complete gene transfers, five putative mosaic alleles
were detected (n = 15) (Fig. 4A). All imported DNA was identical
to the predominant C. jejuni sequence. Recombination break-
points occurred within the amplified region in four introgressed
alleles, of which alleles 19 and 111 corresponded to composite
primer and probe sequences (Fig. 4B). Alleles 22 (n = 11) and 93
(n = 1) were notidentified as introgressed sequences during the in
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FIG3 Nelghbor joining trees showing relationships among 72 mapA (A) and
126 ceuE (B) unique gene sequences from Campylobacter genomes from cases
of human disease in Oxfordshire (2011 to 2013). Adjacent Venn diagrams
indicate the numbers of species-specific and shared alleles. X —, C. jejuni-
specific allele detected in C. coli, where X is the allele number; @, putative

introgressed alleles; A, putative clade 3 C. coli alleles. C. jejuni, blue; C. coli,
yellow; shared alleles, gray.
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FIG 4 Characterization of introgression in mapA with STRUCTURE. (A)
Probabilistic assignment of study isolates to species based on analysis of mapA
nucleotide sequences with the linkage model. Putative mosaic sequences (de-
lineated by a horizontal bar and marked “m”) were identified as those with a
=0.75 probability of belonging to either C. jejuni or C. coli. Each isolate is
represented by a vertical line, with shading indicative of the proportion attrib-
uted to C. jejuni (black) or C. coli (gray) ancestry. The dashed white line
indicates the species boundary as determined by rMLST. (B) Recombination
breakpoints in putative mosaic alleles were inferred by using site-by-site nu-
cleotide ancestries generated by STRUCTURE. Bar plots represent individual
putative mosaic sequences, with whole-gene allele numbers and correspond-
ing primer-and-probe combinations shown in bold and in parentheses, re-
spectively. Vertical lines represent individual nucleotides with shading indic-
ative of ancestry as in panel A. Dashed white lines demarcate the region
amplified by mapA primers (19).

o

silico evaluation because the putative breakpoints occurred at the
5" end of the forward primer (Fig. 4B).

For both mapA and ceuE, between-species p distances were at
least an order of magnitude greater than those within species, and
lower levels of diversity were observed for the targeted species
(Table 3). Analyses carried out at the allele level indicated that
gene and protein diversity was primarily due to an abundance of
rare alleles (see Fig. S1 in the supplemental material). The average
dN/dS ratios for mapA and ceuE were <1 (0.077 to 0.14) in C.
jejuni and C. coli, consistent with both genes being under stabiliz-
ing selection; however, the distribution of synonymous and non-
synonymous substitutions suggested species-specific differences
in mapA and ceuE evolution (see Fig. S2 in the supplemental ma-
terial).

DISCUSSION

This study demonstrates how bacterial WGS data can be used
indirectly to support diagnostic laboratory activities. In silico anal-
yses of primer and probe sequences, in conjunction with RT-PCR,
confirmed that the mapA-ceuE assay was robust. Overall, 1,707
(99.7%) isolates were correctly identified, which was similar to the
97.7% level of accuracy reported during test validation by conven-
tional approaches (19). Assay specificity was attributable to a
combination of interspecies diversity and marked intraspecies
conservation within primer- and probe-binding regions, in addi-
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tion to overrepresentation of sequences identical to published
primers and probes (Fig. 2).

Experimental evidence suggests that the products of mapA and
ceuE play roles in colonization (39) and iron acquisition (61),
respectively, in Campylobacter species. Whole-gene analyses indi-
cated that intraspecies diversity was low at the gene and protein
levels and that both targets were under stabilizing selection (Table
3). One possible explanation for these findings is that mapA and
ceuE encode essential cellular components in C. jejuni and C. coli.
This is supported by the results of experimental studies in which
mapA and ceuE mutants showed a reduced potential for chicken
colonization (39, 62). Species-specific differences in the distribu-
tion of synonymous and nonsynonymous substitutions in mapA
and ceuE suggest divergent evolution in C. jejuni and C. coli post-
speciation (see Fig. S2 in the supplemental material), perhaps be-
cause of host niche differences (35, 54, 63-65). Interestingly, the
predicted protein sequences of 11 C. jejuni-specific ceuE alleles
(n = 20) were truncated because of variation in three homopoly-
meric tracts, one of which occurred at the 5" end of the gene (Table
1). Sequencing of NCTC 11168 demonstrated that homopoly-
meric tracts are common in the C. jejuni genome, with multiple
variants detected in clones that were otherwise indistinguishable.
These hypervariable sequences regulate gene expression through
phase variation (66). It is possible that ceuE is also phase variable,
although confirmation of homopolymeric tract lengths was be-
yond the scope of this study.

Although a small proportion of Campylobacter isolates could
not be identified to the species level with the mapA-ceuE assay,
both targets were universally present and no isolates were incor-
rectly identified. Only six (3.1%) C. coli isolates could not be iden-
tified, including two mapA-positive/ceuE-positive isolates and
four isolates with inconclusive results due to late detection of
mapA (n = 1) or ceuE (n = 3) (Cy values, 32 to 37) (Table 2; see
Table S3 in the supplemental material). Introgression by horizon-
tal gene transfer (HGT) was the underlying cause of mapA detec-
tion among C. coli isolates (Fig. 4). HGT can result in the transfer
of complete genes (whole-allele replacement) or the generation of
mosaic alleles. While whole-allele replacements were relatively
uncommon (1%), they accounted for the mapA-positive/ceuE-
positive C. coli isolates. Mosaic alleles were more prevalent (7.8%)
but resulted in only one inconclusive RT-PCR result. The appar-
ent lack of introgression in ceuE may be due to functional and
combinatorial epistasis, as the gene is part of the ceu BCDE operon,

TABLE 3 Intra- and interspecies diversity of mapA and ceuE gene and
protein sequences”

p distance
Parameter and species mapA ceuE
Gene sequence diversity
C. jejuni 0.014 0.018
C. coli 0.023 0.005
C. jejuni/C. coli 0.232 0.13
Protein sequence diversity
C. jejuni 0.009 0.015
C. coli 0.020 0.009
C. jejuni/C. coli 0.232 0.089

“ Putative recombinant sequences and alleles encoding truncated peptide sequences
were excluded.

jcm.asm.org 2887


http://jcm.asm.org

Jansen van Rensburg et al.

the products of which form an inner membrane ABC transporter
system (41). Those isolates that could not be conclusively identi-
fied because of late detection of ceuE corresponded to clade 3 C.
coli. While clade 1 C. coli strains account for the majority of hu-
man disease and agricultural isolates, strains belonging to clades 2
and 3 are generally from environmental sources (54). Phyloge-
netic analyses showed that clade 3 ceuE sequences were divergent
from other C. coli-specific alleles (Fig. 3B). An accumulation of
mutations in the forward primer region reduced the amplification
efficiency (Fig. 2B; see Table S3), indicating a lack of assay speci-
ficity for clade 3 C. coli.

Taken together, the results of the in silico evaluation showed
that the mapA-ceuE RT-PCR assay reliably identifies C. jejuni and
C. coli, while whole-gene analyses provided insights into underly-
ing reasons for the specificity of the assay. The value of these find-
ings also extends to other diagnostic assays that use mapA or ceuE
as a target (20, 21, 67-70). In the United Kingdom and other
high-income countries, the impact of RT-PCR failures observed
in this study would be limited because (i) C. coli accounts for a
small proportion of human campylobacteriosis cases (12), (ii) the
RT-PCR result was unaffected for the majority of isolates with
introgressed mapA alleles, and (iii) clade 2 and 3 C. coli strains
rarely cause human disease (54). Given that signals of host associ-
ation are more marked than geographic signals (35), itis likely that
the assay will perform well in other regions where food animals
similar to those consumed in the United Kingdom are consumed;
however, laboratories in regions with discernible differences in
Campylobacter epidemiology should exercise caution and validate
the assay prior to use.

The in silico approach to assay evaluation used here could be
extended to other NAATSs or molecular diagnostic tests. Com-
pared to Sanger sequencing, WGS represents an attractive al-
ternative for studying primer sequences, particularly those
with mismatches that adversely affect amplification efficiency.
The approach outlined in this study could be used to evaluate
existing assays, or it could be applied in conjunction with primer
design software during assay development, requiring only a per-
sonal computer with internet access and publicly available soft-
ware.
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