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Abstract

Dysregulation of cell morphology and cell-cell interaction results in cancer cell growth,

migration, invasion, and metastasis. Besides, a balance between the extracellular matrix

(ECM) and matrix metalloprotease (MMP) is required for cancer cell morphology and angio-

genesis. Here, we determined gene signatures associated with the morphology and micro-

environment of primary central nervous system lymphoma (PCNSL) to enable prognosis

prediction. Next-generation sequencing (NGS) on 31 PCNSL samples revealed gene signa-

tures as follows: ACTA2, ACTR10, CAPG, CORO1C, KRT17, and PALLD in cytoskeleton,

CDH5, CLSTN1, ITGA10, ITGAX, ITGB7, ITGA8, FAT4, ITGAE, CDH10, ITGAM, ITGB6,

and CDH18 in adhesion, COL8A2, FBN1, LAMB3, and LAMA2 in ECM, ADAM22,

ADAM28, MMP11, and MMP24 in MMP. Prognosis prediction formulas with the gene

expression values and the Cox regression model clearly divided survival curves of the sub-

groups in each status. Furthermore, collagen genes contributed to gene network formation

in glasso, suggesting that the ECM balance controls the PCNSL microenvironment. Finally,

the comprehensive balance of morphology and microenvironment enabled prognosis pre-

diction by a combinatorial expression of 8 representative genes, including KRT17, CDH10,

CDH18, COL8A2, ADAM22, ADAM28, MMP11, and MMP24. Besides, these genes could

also diagnose PCNSL cell types with MTX resistances in vitro. These results would not only

facilitate the understanding of biology of PCNSL but also consider targeting pathways for

anti-cancer treatment in personalized precision medicine in PCNSL.
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Introduction

The interaction of cytoskeleton with proteins involved in cancer progression or regression

contributes to tumor initiation and progression, or anticancer mechanisms [1], which are

associated with various signaling pathways including integrin [2], Wnt/APC [3,4], Notch [5],

PI3K/AKT/mTOR [6], Ras/MAPK [7], p53 [4], and hypoxia [8]. Furthermore, various mole-

cules and their biological functions are also required for tumor growth, such as mitotic check-

point complex [9], cytoskeleton organization [10], cell surface morphology [11], reactive

oxygen species activity [12], and ICAM-1 as a master regulator of cancer immunity and

inflammation [13]. Dysregulation of intercellular connections and cell-extracellular matrix

(ECM) interactions in the tumor microenvironment promotes cancer cell migration, invasion,

and metastasis [14–17]. Thus, cancer cells grow in the primary lesion and spread to distant

organs and lymph nodes through fluid circulation [1].

Primary central nervous system lymphoma (PCNSL) is an aggressive lymphoma of the

brain with poor prognoses, which is classified as diffuse large B-cell lymphoma (DLBCL), a

type of non-Hodgkin’s lymphoma (NHL) [18]. DLBCLs are divided into germinal center B-

cell-like (GCB) and activated B-cell-like (ABC) types. Most PCNSLs are assigned to the non-

GCB and ABC types [19]. PCNSL accounts for approximately 4% of primary brain tumors and

approximately 1% of NHLs in adults [20]. The median overall survival (OS) is 30–45 months

and the 5-year survival rate is 30–40% [20]. Standard treatments include high-dose methotrex-

ate (HD-MTX)-based polychemotherapies deferred radiotherapy, but recurrence with MTX

resistance is observed in most cases [21,22]. Therefore, it is necessary to determine reliable fac-

tors for prognosis prediction in PCNSL.

Although there are some similarities in morphology and molecular behaviors, microarray

gene expression profiling has revealed the difference between PCNSL and non-CNS DLBCL

[23]. A previous pathological study has also clarified differential expression of integrin and

adhesion molecules between them [24]. In addition, a recent study has demonstrated that

integrin-α, CD44, PTEN, cadherin-11, and lactoferrin as non-heme Fe2+-binding glycoprotein

are potential biomarkers in PCNSL [25]. Hepatoma-derived growth factor, CD31, and Ki-67

are also correlated with angiogenesis, proliferation, and clinical outcome in PCNSL [26].

Moreover, a few studies have been reported on the morphology and microenvironment of

PCNSL [27]. However, comprehensive analyses of PCNSL morphology and microenviron-

ment based on gene expression profiling and statistics have not yet been performed.

In this study, we performed global expression analysis using next-generation sequencing

(NGS) and multivariate analyses on 31 PCNSL samples to determine the prognostic factors

associated with PCNSL morphology and microenvironment. Selected genes were further vali-

dated by combinatorial expression and survival analyses. Consequently, promising prognosis

prediction factors were determined as gene signatures of cancer morphology and microenvi-

ronment, such as those related to cytoskeleton organization, cell adhesion, ECM, and matrix

metalloprotease (MMP), in PCNSL. Therefore, these results would help understand the impor-

tant modulator of cancer cell shapes and matrix conditions, respectively, in PCNSL.

Materials and methods

Clinical samples

Patients were diagnosed and treated at Toyama Prefectural Central Hospital (Toyama, Japan),

Wakayama Medical University School of Medicine (Wakayama, Japan), Chiba University

(Chiba, Japan), and Yamaguchi University (Ube, Yamaguchi, Japan), as described [28].

Inclusion criteria were histology-proven CNS lymphomas without the evidence of systemic
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lymphomas, and no evidence of HIV-1 infection, opportunistic infections, or other immuno-

deficiency. All tumors were derived from DLBCL in brain but not in eyes, retina, and vitreous.

Of these, 24 samples were diagnosed as non-GCB DLBCL (S1 Table). The pathological charac-

teristics including focal lesion and deep location were also presented in S1 Table. In addition,

27 samples of these were clarified copy number variations (CNVs) and cancer-associated exon

mutations with the Ion Ampliseq Comprehensive Cancer Panel including representative 409

genes using the semiconductor-based Ion Proton Sequencer (Thermo Fisher Scientific)

(JGAS000258). Tumor contents derived from biopsy and resected tumor tissues were more

than 95%. The study was approved by the Ethics Committee of Kyoto Prefectural University of

Medicine, which covered recruitments of patients from other centers (RBMR-G-146). Written

informed consent was obtained from all the patients prior to enrollment. Biopsies and resected

tumors were immediately snap-frozen. All experiments were performed in accordance with

the institutional guidelines.

Cells

DLBCL-type PCNSL cell lines TK and HKBML were purchased from JCRB Cell Bank

(National Institutes of Biomedical Innovation, Health and Nutrition) and RIKEN Cell

Bank (RIKEN BioResource Center), respectively [29]. TK is characterized in ABC-DLBCL,

whereas ABC and GCB subtypes of HKBML are unknown. TK and HKBML were cultured in

RPMI1640 (Nacalai Tesque) with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific)

and Ham’s F-12 (Nacalai Tesque) with 15% FBS, respectively, according to the standard proto-

col in 5% CO2 at 37˚C. MTX-resistant PCNSL cells were generated, as described [29–32]. In

brief, TK and HKBML were pre-cultured with lower concentrations of MTX for 9 weeks and 4

weeks, respectively, thereafter cultured with 1.0 × 10−6 mol/L MTX and 1.0 × 10−7 mol/L

MTX, respectively, for 6 weeks. MTX-resistant PCNSL cells were kept exposing with the opti-

mal concentration of MTX during the experiments.

Next-generation sequencing (NGS)

Total RNA was extracted from cells and tumor biopsies or resected tissues using Isogen II

(Nippongene). RNA quality was verified using the Bioanalyzer System (Agilent Technologies)

with RNA Pico Chips (Agilent Technologies). NGS was performed using the Illumina

HiSeq2000/2500 platform with a standard 124 bp paired-end read protocol, as described

[33,34]. Genes were annotated online at GOstat [35] and Database for Annotation, Visualiza-

tion, and Integrated Discovery (DAVID) [36]. Pathways were searched using DAVID and

Kyoto Encyclopedia of Genes and Genomes (KEGG) [37]. The fragments per kilobase of exon

per million mapped reads (FPKM) values were used for analyses (S1 Appendix).

Survival analysis

Variable importance factors distinguishing gene expression associated with patient survival

were determined by random survival forest analysis using the randomForestSRC package in R

(S2 Table) [28]. The variable importance values reflected the relative contribution of each vari-

able to the prediction of survival time, which was estimated by randomly permuting the values

and recalculating the predictive accuracy of the model. Associations between the survival time

of patients and other variables were evaluated with the Cox proportional-hazards regression

model using the JMP built-in module (SAS Institute) [38]. Survival time distributions of the

patients were calculated with the Kaplan-Meier estimator, a non-parametric statistical model

based on the patient’s overall survival data, using the JMP built-in module (SAS Institute) [39].

Tree-structured survival analysis was performed to determine how the largest differences
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among survival curves were divided into the most appropriate subgroups with variable spaces

according to the patient’s overall survival and interval censoring, using the rpart package in R

[40].

Clustering

Gene expression patterns were clustered into subgroups using a two-way hierarchical method

using the JMP built-in module (SAS Institute) [38].

Pairs plot

Pairs plot analysis was performed to estimate the distribution of single variables and relation-

ships between two variables, using the scatterplot package in R [41].

Graphical lasso (glasso)

Gene associations in module hub networks among variables were analyzed with the graphical

lasso estimation of Gaussian graphical models, a sparse inverse covariance matrix using a lasso

(L1) penalty, using the glasso package in R [42].

Receiver operating characteristic (ROC) analysis

Samples were randomly divided into training data and test data at a ratio of 3:1. A regression

equation was estimated for the training data with the Cox regression, and a time-dependent

ROC analysis was carried out for the test data with the regression score and area under the

curve (AUC). The 2-year and 5-year survivals were evaluated. The process was repeated 10,000

times, and the average of AUC was calculated using the timeROC package in R, as described

[43].

Statistics

Statistical analyses were performed using R, Bioconductor [44], JMP10 (SAS Institute), and

Excel (Microsoft). p< 0.05 was considered statistically significant.

Results

Risk factors in univariate analyses

In this study, we tried to determine the gene signatures of cancer morphology and microenvi-

ronment in 31 PCNSL samples (S1 Table), since intercellular and cell-matrix interactions are

essential for cell growth, migration, invasion, and metastasis. The 204 genes involved in cell

morphology and microenvironment were selected after removals of indirect auxiliary structure

genes and regulatory genes, based on Kyoto Encyclopedia of Genes and Genomes (KEGG)

and gene ontology (GO). Genes associated with cytoskeleton (32 genes), cell adhesion (67

genes), ECM (39 genes), and MMP (66 genes) were constituted of clusters of several molecular

types (S3 Table). A classical clustering method was difficult to divide the genes into distinct

subgroups with differential expression clusters (S1 Fig). In the univariate analysis, lower

expression of ACTR10, ACTA2, and ADAM22 (Fig 1a–1c) and higher expression of ADAM28,

COL11A2, COL8A2, MMP11, and MMP19 (Fig 1d–1h) showed poor prognoses (p< 0.05). In

addition, lower expression of CDH10, CLSTN1, and MMP15 (S2a–S2c Fig) and higher expres-

sion of COL7A1, ITGA10, ITGAL, ITGB7, and KRT17 (S2d–S2h Fig) also slightly indicated

poor prognoses (p< 0.1). These results suggest that several genes associated with the cytoskel-

eton, cell adhesion, ECM, and MMP enable prognosis prediction in PCNSL.
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Survival prediction using multivariate analysis

Next, we wanted to determine the whole balance among the genes in the subset of PCNSL

samples, and then a random survival forest analysis was performed. A random forest model

selected the top variables for each status (S3a–S3d Fig). Furthermore, a Cox proportional haz-

ard regression analysis was used to estimate patient survivals (S4 Table). Coupled with these

results, prognosis prediction formulas were constituted as the sum of integral of coefficient val-

ues and normalized expression values (Fig 2a–2d). The subgroups with higher scores than the

median with the formulas indicated poor prognoses (p< 0.05). These results indicate that

proper selection of the variable factors and their coefficients generates the prognosis prediction

formulas for evaluating cancer morphology and microenvironment.

Survival tree estimation with significant genes

To easily predict patient survival, the significant genes in each status were examined with a sur-

vival tree analysis. In the cytoskeleton, CFL2high and CFL2lowACTA2low showed good progno-

ses, but CFL2lowACTA2high indicated a poor prognosis, suggesting that lower expression of

ACTA2 is more important than CFL2 expression for survival in PCNSL (Fig 3a). In addition,

the training data set randomly divided from the total samples was also validated with the Cox

regression and time-dependent receiver operating characteristic (ROC) analyses. In the inter-

nal validation, the ROC analysis returned area under the curve (AUC) 0.72 at 2-year survival

and 0.81 at 5-year survival. In cell adhesion, ITGADlowITGA2low and ITGADmiddle showed

good and poor prognoses, respectively. However, ITGADhigh showed a moderate result, sug-

gesting that ITGA2 expression is more significant than ITGAD expression (Fig 3b). In similar,

the AUC values were 0.85 at 2-year survival and 0.95 at 5-year survival. In ECM, FBN1low and

FBN1highCOL9A1low showed good and poor prognoses, respectively, and FBN1highCOL9A1-
high indicated a moderate result (Fig 3c). The AUC values were 0.71 at 2-year survival and 0.78

Fig 1. Survival distributions of the subgroups with the expression of the genes in PCNSL. (a) ACTR10. (b) ACTA2. (c) ADAM22. (d) ADAM28. (e) COL11A2.

(f) COL8A2. (g) MMP11. (h) MMP19. HR; hazard ratio, OS; overall survival. Log-rank test; p< 0.05.

https://doi.org/10.1371/journal.pone.0251272.g001
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at 5-year survival. In MMP, ADAM28low and ADAM28highMMP19high showed good and poor

prognoses, respectively, and ADAM28highMMP19low indicated moderate results, suggesting

that lower expression of ADAM28 basically determines survival in PCNSL (Fig 3d). The AUC

values were 0.82 at 2-year survival and 0.82 at 5-year survival. Summarized these results, the

Fig 2. Survival analyses with defined prognosis prediction formulas. Survival distribution of the PCNSL subgroups were divided by the formulas from the study.

OS; overall survival, HR; hazard ratio. HRs with 95% confidence interval (CI) were shown with p-values in the log-rank test. (a) Cytoskeleton. (b) Cell adhesion. (c)

Extracellular matrix (ECM). (d) Matrix metalloprotease (MMP). HR; hazard ratio, OS; overall survival.

https://doi.org/10.1371/journal.pone.0251272.g002
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Fig 3. Survival regression tree model for the genes related to cancer morphology and microenvironment in PCNSL. (a) CFL2 and ACTA2 in cytoskeleton. (b)

ITGAD and ITGA2 in cell adhesion. (c) FBN1 and COL9A1 in extracellular matrix (ECM). (d) ADAM28 and MMP19 in matrix metalloprotease (MMP).

Representative tree models and Kaplan-Meier curves are presented. HR; hazard ratio, OS; overall survival.

https://doi.org/10.1371/journal.pone.0251272.g003
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tree-structured survival analysis and ROC analysis demonstrated that the significant genes are

involved in OS in PCNSL.

Comprehensive analysis of morphology and microenvironment status

Genetic interactions as module hub networks among the genes were estimated using a graphi-

cal lasso model in each status. A few genetic interactions were found in the cytoskeleton, cell

adhesion, and MMP (Fig 4a). On the other hand, ECM-related genes comprised a complex

genetic interaction module (Fig 4a). Thus, these results suggest that it is difficult to assess the

status of cancer morphology and microenvironment. In addition, status correlation analysis

revealed that the cytoskeleton-cell adhesion correlation (edge weight = 0.66) and the

ECM-MMP correlation (edge weight = 0.37) were distinguished, whereas no connection

between the two correlations was observed (Fig 4b). Status score correlation was also analyzed

in the pairs plot with Pearson correlation coefficient (r). Cytoskeleton and cell adhesion were

correlated (r = 0.70, p = 6.39 × 10−5), ECM and MMP were slightly correlated (r = 0.43,

p = 0.079), and the others were weakly correlated with no significance (r< 0.28, p = 0.53) (Fig

5a), consistent with the glasso results.

We also constructed an improved formula as a combined status formula using the four sta-

tuses for prognosis prediction. The subgroup with a higher score than the median calculated

with this formula clearly indicated a poor prognosis (HR = 23.6, 95% CI = 3.1–182.2,

p = 1.8 × 10−5) (Fig 5b). The results demonstrated that multivariate analyses using the gene

expression values in cancer morphology and microenvironment generated an advanced for-

mula and thereby enabled prognosis prediction in PCNSL, whereas it was hard to detect glasso

modules and status correlations.

Differential expression of the gene signature candidates in MTX-resistant

PCNSL cells

The resistances to MTX therapies are serious problems to substantially affect the PCNSL

prognosis. In addition, tumor microenvironment has a critical role in the acquisition of

Fig 4. Gene correlations with graphical lasso model in PCNSL. (a) Score correlations within each status including cytoskeleton, cell adhesion, extracellular

matrix (ECM), and matrix metalloprotease (MMP). (b) Score correlations among the statuses. Numbers in the parentheses indicated the edge weights of the nodes.

https://doi.org/10.1371/journal.pone.0251272.g004
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refractoriness to chemotherapies. Hence, comprehensive analyses in morphology and micro-

environment-related genes are of extreme interest and useful for the development of prognosis

factors and the understanding of PCNSL. Therefore, we investigated expression changes of the

gene signature candidates associated with cancer morphology and microenvironment by NGS

in MTX-resistant PCNSL cells in vitro. The two MTX-resistant PCNSL cell lines, TK-MTX

and HKBML-MTX, derived from TK and HKBML, respectively, were examined for the 204

genes focused on this study. Differential expression genes (DEGs) in MTX-resistant PCNSL

cells compared with control PCNSL cells were designated by |log2(fold change)| > 1. DEGs

were divided into the four patterns. Thirteen genes indicated similar expression patterns in

TK-MTX and HKBML-MTX (Fig 6a), and nine genes showed reciprocal expression patterns

in each (Fig 6b). Interestingly, the genes with cell-type specific differential expression were 26

and 57 in TK-MTX and HKBML-MTX, respectively (Fig 6c and 6d), which could be suggestive

of clonal expression. Simultaneously, it also suggests a possibility that appropriate marker set

for morphology and microenvironment enables a personalized precision medicine, tailored

medicine in PCNSL.

Furthermore, the differential expression in the MTX-resistant PCNSL cells was compared

with the results of the above-mentioned survival analyses and construction of prognostic pre-

diction formulas. The high expression of COL11A2 in TK-MTX and HKBML-MTX showed

poor prognoses in PCNSL (Fig 6a, S5 Table). The high expression of ITGB7 and the low

expression of ITGA2 in TK-MTX showed poor and good prognoses, respectively (Fig 6c, S5

Table). The high expression of ADAM28, MMP11, and KRT17 in HKBML-MTX showed poor

prognoses (Fig 6d, S5 Table). The low expression of ITGAD indicated a good prognosis (Fig

6d, S5 Table). Furthermore, ADAM28, ITBG7, KRT17, and MMP11 were also applied to the

Fig 5. Multiscore-based survival prediction model for the statuses of cancer morphology and microenvironment in PCNSL. (a) Status score correlation with

Pearson correlation coefficient among the statuses of cytoskeleton, cell adhesion, extracellular matrix (ECM), and matrix metalloprotease (MMP). The 95% CIs are

presented in the parentheses. ���p< 0.01, �p< 0.1 (b) The Kaplan-Meier analysis from the multiscore-based survival prediction formula.

https://doi.org/10.1371/journal.pone.0251272.g005
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prognosis prediction formulas (Fig 6d, S5 Table). However, the low expression of COL8A2 in

TK-MTX and the high expression of CDH18 in HKBML-MTX were not consistent with sur-

vival estimation and the input to prognostic prediction formulas (Fig 6c, S5 Table). Therefore,

COL8A2 and CDH18 could diagnose PCNSL cell-types, such as TK-type or HKBML-type,

and would be prognosis marker candidates, but not pivotal factors with MTX resistances in

PCNSL.

Discussion

Immunohistochemistry and immunoelectron microscopy in PCNSL, secondary CNSL, and

systemic DLBCL have demonstrated that ITGA10, CD44, PTEN, CDH1 (E-cadherin), CDH2
(N-cadherin), CDH3 (P-cadherin), CDH11, CDH12, and LTF (lactoferrin) are considered

potential biomarkers of CNS tropism in adhesion, migration, and inflammatory response [25].

Perivascular lymphocytes reside within the reticulin network, which is immunopositive for

collagen types III and IV, laminin, and fibronectin. These matrix components collaborate with

invasion of malignant lymphocytes to CNS lymphoma in response to identical spreading

mechanisms in both primary and metastatic lymphomas [45]. Therefore, adhesion molecules

and ligands participate in the spreading of malignant lymphocytes within the CNS paren-

chyma. The expression of FN1, in addition to LMO2, BCL2, BCL6, CCND2 (cyclin D2), and

SCYA3 is effective in estimating OS using polymerase chain reaction and microarray in

Fig 6. Expression patterns of the genes associated with cell morphology and microenvironment in MTX-resistant PCNSL cells. (a) Similar pattern of the

differential expression in TK-MTX and HKBML-MTX compared with the control cells. (b) Reciprocal pattern of the differential expression in TK-MTX and

HKBML-MTX compared with the control cells. (c-d) Cell-type specific differential expression in (c) TK-MTX and (d) HKBML-MTX. Gene expression was

verified with NGS. DEGs in MTX-resistant PCNSL cells compared with control PCNSL cells were designated by |log2FC|> 1. The gene symbols highlighted into

graphs contributed to prognosis prediction formulas and Kaplan-Meier survival estimation (see S5 Table). DEG; differential expression gene, FC; fold change,

TK-MTX; MTX-resistant TK, HKBML-MTX; MTX-resistant HKBML.

https://doi.org/10.1371/journal.pone.0251272.g006
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DLBCL [46]. In addition, laminin receptor 2 is a PCNSL-specific gene detected by principal

component analysis on DNA arrays in a small sample size [47]. Furthermore, genes with

altered promoter DNA methylation can be used as biomarkers for cancer detection and

assessment of prognosis. The promoter methylation of FBN1 is observed at 23% in NHL [48].

Although PCNSL was treated with HD-MTX-based chemotherapies, most cases recur with

MTX resistance [21,22]. MMP19 is highly expressed in the MTX-resistant PCNSL cell lines,

HKBML-MTX and TK-MTX in vitro [29–32].

In this study, the gene expression associated with cancer morphology and microenviron-

ment was assessed using univariate and multivariate analyses of the RNA-seq data and clinical

information in PCNSL. Univariate analysis detected a correlation between differential expres-

sion of the genes related to cancer morphology and microenvironment and patient survivals

with poor progoses in PCNSL. From the random forests and Cox hazard analyses, a combina-

torial expression of the significant 8 genes, including KRT17, CDH10, CDH18, COL8A2,

ADAM22, ADAM28, MMP24, and MMP11, selected at mixed statuses, clearly divided survival

curves of the subgroups in the Kaplan-Meier estimation. A glasso model revealed genetic inter-

action with module hub networks. However, status correlation analyses with glasso and pairs

plot did not connect the morphology status with the microenvironment status. Interestingly,

survival tree analyses demonstrated poor prognoses of the subgroups with CFL2lowACTA2high

(cytoskeleton), FBN1highCOL9A1low (ECM), and ADAM28highMMP19high (MMP). The result

of ADAM28highMMP19high was consistent with the results of ADAM28high and MMP19high in

univariate analysis, suggesting that it is important to estimate OS with combinatorial expres-

sion of the determinant factors in multivariate analysis. Moreover, the tree analysis also pro-

posed the possibility that COL9A1 would be a stabilizer for FBN1 and that MMP19 would be

an accelerator for ADAM28, to modulate the expression of the determinant genes for PCNSL

survival. Besides, a part of genes examined were also suggestive of clonal expression in MTX-

resistant PCNSL cells including TK-MTX and HKBML-MTX, and personalized diagnosis and

precision medicine, so called tailored medicine in PCNSL. Therefore, these results suggest a

possibility that immunohistochemistry of the cell morphology and ECM proteins on the clini-

cal samples could be applied diagnosis of PCNSL cell-types, such as TK-type or HKBML-type,

and prognosis prediction in the PCNSL patients. These results are limited due to the small

sample size and the status of interest, but the results described above would help understand

cancer morphology and microenvironment with patient survival and develop de novo molecu-

lar target therapy in PCNSL.
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