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S100A8 and S100A9 (also known as MRP8 and MRP14, respectively) are Ca2+ bind-
ing proteins belonging to the S100 family. They often exist in the form of heterodimer, 
while homodimer exists very little because of the stability. S100A8/A9 is constitutively 
expressed in neutrophils and monocytes as a Ca2+ sensor, participating in cytoskeleton 
rearrangement and arachidonic acid metabolism. During inflammation, S100A8/A9 is 
released actively and exerts a critical role in modulating the inflammatory response by 
stimulating leukocyte recruitment and inducing cytokine secretion. S100A8/A9 serves 
as a candidate biomarker for diagnosis and follow-up as well as a predictive indicator of 
therapeutic responses to inflammation-associated diseases. As blockade of S100A8/A9 
activity using small-molecule inhibitors or antibodies improves pathological conditions 
in murine models, the heterodimer has potential as a therapeutic target. In this review, 
we provide a comprehensive and detailed overview of the distribution and biological 
functions of S100A8/A9 and highlight its application as a diagnostic and therapeutic 
target in inflammation-associated diseases.
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Inflammation is a basic defense mechanism in the human body. Various immunocytes and mol-
ecules form an enormous regulatory network during inflammation, eliminating endogenous and 
exogenous pathogenic substances to protect the body. However, imbalance of the network, such 
as excessive inflammatory reactions and prolonged inflammatory status, may lead to further tissue 
damage. S100A8 and S100A9 have already been confirmed to play a decisive role in the develop-
ment of inflammation. They belong to the S100 family, members of which were first extracted as 
neural proteins from the bovine brain in 1965. These approximately 10,000 Da proteins were named 
S100 because of their solubility in 100% saturated ammonium sulfate. Human S100A8 and S100A9 
consist of 93 and 113 amino acid residues, respectively, and S100A9 has a truncated isoform with 
110 amino acids. S100A8 and S100A9 are released by neutrophils and monocytes, and they can 
form a stable heterodimer or homodimer both in vitro and in vivo. Both S100A8 and S100A9 have 
a helix-loop-helix motif with charged amino acid residues, which is a common feature among S100 
family members, resulting in their high affinity for divalent ions, such as Ca2+ and Zn2+. The combi-
nation with divalent ions changes the conformation of S100A8/A9, which is a basis for exerting its 
corresponding functions. Moreover, S100A8/A9 has dual but related functions in intracellular and 
extracellular microenvironments. In view of its vital role in the physiology of inflammation, S100A8/
A9 is a valuable candidate as both a diagnostic biomarker and therapeutic target for inflammation-
associated diseases, and its potential in clinical applications is worthy of further exploration.

eXPReSSiON AND DiSTRiBUTiON OF S100A8/A9

S100A8 and S100A9 are mainly derived from immunocytes, such as neutrophils and macrophages, 
which contain abundant S100A8/A9 and participate in inflammatory process. S100A8 and S100A9 
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proteins comprise approximately 45% of the cytoplasmic proteins 
in neutrophils. Under physiological conditions, there is sufficient 
storage of S100A8/A9 in neutrophils and myeloid-derived 
dendritic cells, while low levels of S100A8/A9 are constitutively 
expressed in monocytes. S100A8/A9 is intensely upregulated 
during trauma, infection, heat, stress, and many other inflam-
matory processes.

infection-induced inflammation
Infection-induced inflammation is one of the main resources 
for S100A8/A9 secretion. After being infected with bacteria, 
neutrophils, macrophages, and monocytes intensely express and 
secrete S100A8/A9 to modulate inflammatory processes with the 
induction of inflammatory cytokines, reactive oxygen species 
(ROS), and nitric oxide (NO). S100A8 and S100A9 also have 
antibacterial potential via their ability to bind Zn2+.

The accumulation of S100A8 and S100A9, which are mainly 
expressed by mononuclear cells in red pulp, has been observed 
in mice infected with plasmodium (1). In HIV-1 infected 
patients, serous S100A8/A9 levels are upregulated and corre-
lated with disease progression and low CD4+ T cell counts (2). 
Influenza A virus (IAV) activated toll-like receptors (TLRs) via 
pathogen-associated molecular patterns and damage-associated 
molecular patterns, where S100A9 acted as a pro-inflammatory 
factor. During IAV infection, S100A9 is increasingly released 
via DDX21–TRIF signaling from undamaged macrophages, 
resulting in an exaggerated inflammatory response and cell 
death (3). Lipopolysaccharide (LPS) activates the caspase-4/5 
inflammasome to promote S100A8 secretion from macrophages. 
A marked increase in the S100A8/A9 level, which is correlated 
with the duration of fever before admission in acute phase 
plasma and feces, was observed in typhoid fever patients (4). 
S100A9 expression is significantly upregulated in the early stage 
of Klebsiella pneumoniae infection-induced sepsis. In septicemia-
induced septic shock, the expression of S100A9 is continuously 
increased until the patient’s death (5). Deficiency of S100A8/A9 
in mice could promote the progression of pneumonia caused by 
Staphylococcus aureus infection (6). There are other types of cells 
that can release S100A8 and S100A9 upon infection; for example, 
during hidradenitis suppurativa infection, keratinocytes are one 
of the most important sources of S100 proteins (7).

The early expression of S100 proteins during infection-induced 
inflammation suggests that S100A8 and S100A9 participate in 
innate immunity and mediate the inflammatory response. By 
triggering TLR4- or RAGE-mediated multiple inflammatory 
pathways, S100A8/A9 plays an important role in protecting the 
body from pathogenic infection (8). S100A8/A9 also participates 
in cytosol tubulin polymerization and cytoskeleton rearrange-
ment, which are essential prerequisites for cell migration and may 
somehow explain why S100A8/A9 can recruit neutrophils during 
inflammation.

The expression and secretion of S100A8/9 during infection-
induced inflammation are restricted by a negative feedback 
regulatory mechanism (9). Excessive expression of S100A8/A9 
magnifies the inflammatory response and accelerates neutrophils 
and macrophages to release more cytokines, which induces a 
vicious cycle and aggravates the disorder. During an infection 

with Gram-negative bacteria, as a ligand for TLR4, S100A8 is 
strongly induced in endotoxic shock. High levels of S100A8 and 
S100A9 activate RAGE signaling and result in inflammatory 
damage in septic shock patients (10). Although the excessive 
expression of S100 proteins reveals a strong connection with 
exacerbation of disease, none of S100A9 is observed increasing 
in patients with unstable chronic obstructive pulmonary disease 
(COPD) resulted from infection. The decreasing of S100A9 might 
indicate the insufficient immunity, which explains the exacerba-
tion induced by infection. However, the severe COPD patients 
induced by other factors have a high expression of S100A9, which 
implies the uncontrolled immune reaction. Hence, the proper 
levels of S100 proteins may contribute to both defense capabilities 
and immunity homeostasis (11).

Metabolic inflammation
In metabolic inflammatory diseases, such as gout, diabetes, and 
obesity, S100A8/A9 is secreted and distributed in a disease-specific 
manner, and elevated levels of S100A8/A9 have been detected in 
sera and inflammatory sites. In gout patients, neutrophils migrate 
to gout-affected joints and secrete S100A8/A9, which accelerates 
inflammation (12–14). S100A8/A9 expression is significantly 
increased in synovia, tophi, and sera of gout patients and is cor-
related with disease progression. Monosodium urate (MSU), or 
uric acid, is the etiological agent of gout, an acute inflammatory 
condition. MSU crystals promote neutrophils and macrophages 
that express and secrete S100A8/A9, and these S100 proteins 
enhance MSU-induced activation of the NLRP3 inflammasome 
in macrophages and neutrophils, which release IL-1β and mediate 
gout pain. S100A9 was intensely induced in omental adipose tis-
sue in patients with gestational diabetes (15). S100A8/A9 not only 
extends the damage but also participates in inflammation mainte-
nance. Obesity is a form of metabolic inflammation because it is 
hard to remove excess fat from the body. Fat-derived S100A8/A9 
stimulates the TLR4–MyD88 cascade to enhance the expression 
of IL-1β mRNA in macrophages, provoking myelopoiesis (16). 
Higher S100A9 expression in epicardial stromal cells is associated 
with lower adipocyte sizes in patients with cardiovascular diseases 
(CVDs). Moreover, smaller epicardial adipocytes produce higher 
oxidative stress than subcutaneous adipocytes (17). Both cell types 
and metabolites influence the S100 protein levels. Expression 
of S100 is promoted in type I diabetes patients, and high levels 
of expression have been observed in retinal vascular endothe-
liocytes, white blood cells, fibroblasts, and vitreous of patients 
with proliferative diabetic retinopathy (PDR) (18–20). S100A9 
is highly expressed in glial cells and promotes amyloidosis and 
amyloid-β (Aβ) aggregation. There is positive feedback between 
S100A8 and Aβ, as upregulated levels of S100A8 promotes the 
expression of Aβ2 by interfering with amyloid precursor protein 
(APP) metabolism, and Aβ contributes to S100A8 translation. At 
the same time, it is also observed a striking decrease in the expres-
sion of S100A8 and S100A9 in CD11c+ cells which surround the 
amyloid plaques and might play a beneficial immune-modulatory 
role in Alzheimer’s disease (AD). These changes suggest the dis-
order in the expression of S100A8 and S100A9 among different 
cells might be critical to explain how the plaques form (21). In 
addition to its aggressive functions in metabolic inflammation, 
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in some cases, S100A8/A9 plays a defensive role. In diabetic foot 
ulcer patients, S100 proteins in wound exudates resist bacterial 
infection. In AD, S100A9 secretion from macrophages is signifi-
cantly inhibited by Aβ1-42 monomers, which leads to the loss of 
monocyte function (21–23).

As mentioned earlier, the locations at which S100A8/A9 
is elevated vary with the disease. S100A8/A9 is increased in 
synovial fluid (SF), serum, and tophi of gout patients, while it is 
increased in the vitreous of PDR patients, which underlines the 
importance of appropriate specimen selection for the application 
of S100 proteins as biomarkers.

inflammation Caused by immune System 
Dysfunction
Dysregulated and excessive immune responses result in autoim-
mune diseases and hypersensitivity reactions, such as inflamma-
tion. Upregulation of S100A8/A9 occurs in multiple immune 
system dysfunction diseases.

In psoriatic arthritis patients, S100A8/A9 is intensely expressed 
in the synovial sublining layer, suggesting the importance of 
S100A8/A9 in mediating leukocyte migration across the endothe-
lium. S100A8/A9 is upregulated not only in the serum and SF but 
also in psoriatic arthritis plaque. In rheumatoid arthritis (RA), 
S100A8 is mostly released from activated macrophages, and its 
expression level is correlated with traditional parameters, such 
as C-reactive protein (CRP), erythrocyte sedimentation rate, and 
rheumatoid factors, which implies that the amount of S100A8 may 
be a good parameter for evaluation. In psoriasis patients, S100A8 
is mainly derived from keratinocytes and infiltrating mononu-
clear cells, and S100A9 is derived from neutrophils (24–26).  
In systemic lupus erythematosus (SLE) patients, the serum levels 
of S100A8/A9 released from polymorphonuclear (PMN) cells 
are elevated and are particularly increased in patients with anti-
dsDNA antibodies and glomerulonephritis. Serum S100A8/A9 
levels may be used to monitor the disease activity, as higher levels 
of S100A8/A9 have been detected in patients with active SLE (27, 
28). In addition, high levels of S100A8/A9 have been observed in 
type I hypersensitivity reactions. In human neutrophils, S100A8/
A9 presents its capability of binding arachidonic acid (AA), which 
are significant mediators of asthma. S100A9 is overexpressed in 
asthma and may be a potential regulator that reveals the role of 
neutrophils in amplifying airway inflammatory responses (29). In 
food allergies, S100A8/A9 in the feces and TLR4, NF-κB, IL-1β, 
and IL-6 in the liver and jejunum are elevated, which indicates 
that S100A8/A9 regulates the balance of Th1/Th2 and amplifies 
the allergic cascade (30).

S100A8/A9 contributes to multiple immune-associated diseases 
via various pathways. S100A8/A9, a TLR4 ligand, is abundant, 
and its level has a marked correlation with IL-6 and IL-7 levels in 
SF of RA patients. As the most abundant protein in RA SF, S100A8 
has a crucial role in promoting IL-6 expression in fibroblast-like 
synoviocytes via TLR4/PI3K/NF-κB and MAPK signaling (31, 
32). S100A8/A9 participates in the progression of psoriasis. The 
high expression of S100A8/A9 in psoriasis epidermis induces C3/
CFB complement activation, which subsequently leads to uncon-
trolled immunocyte activation, angiogenesis and keratinocyte 
hyperproliferation. Barrier-to-autointegration factor 1 (BANF1) 

is an essential component of nuclear lamina, and strong nuclear-
dominant immunostaining of BANF1 was seen in the epidermal 
keratinocytes of psoriatic lesions. Activation of BANF1 sup-
presses S100A9 expression and inactivates c-Jun, resulting in the 
suppression of cutaneous inflammation (33). In fact, the level of 
S100A8/A9 is related to skin barrier dysfunction; in specific der-
matitis, upregulated S100A8/A9 expression exacerbates immune-
induced damage, while the condition is improved with defects in 
MyD88. In addition, IL-6–STAT–SOCS3 is a negative feedback 
axis mediating epidermal repair and inflammatory homeostasis. 
With SOCS3 deficiency, IL-6 strongly induces S100A8/A9 
expression, resulting in excessive epidermal proliferation and 
angiogenesis (24–26).

inflammation Caused by Degenerative 
Diseases
Degenerative diseases are chronic and progressive inflammation-
related disorders that have multiple pathophysiological factors, 
especially age. A shift in the abundance of S100A8/A9 is a robust 
feature of aging in mammalian tissues, involving a range of cell 
types, including the central nervous system, which suggests that 
S100A8/A9 may be involved in age-related inflammation (34). 
In patients with osteoarthritis (OA), S100A8/A9 mainly exists 
in GM-CSF-derived macrophages of the synovial membrane. 
Stimulated by IL-1, chondrocytes express and release large 
amounts of S100A8 and S100A9, and extracellular S100A8 then 
stimulates the synovial membrane to generate pro-inflammatory 
cytokines, such as IL-1β, IL-6, IL-8, TNF-α, and MMPs, which 
facilitates an inflammatory environment and promotes cartilage 
degradation (35–37). Influx of ox-LDL in the joint promotes 
monocytes and neutrophils to release S100A8/A9, resulting in 
joint injury via the TGF-β signaling pathway, and OA should thus 
be associated with cholesterol (38). In an experimental OA mouse 
model, high-cholesterol food induced ApoE−/− mice to highly 
express S100A8/A9, leading to synovial activation and cartilage 
degradation.

Immunocytes (macrophages, neutrophils, etc.) and cells 
in local lesions are the main sources of S100A8/A9, which are 
consistently elevated in degenerative diseases related to inflam-
mation. SPI/PU.1 is reportedly an S100A9 transcription driver, 
and SATB1 is a transcription inhibitor. In inflammation caused 
by degeneration, SPI/PU.1 promotes S100A9 sustained expres-
sion via a positive feedback mechanism, inducing inflammation 
by activation of RAGE, NF-κB, and other signaling pathways 
(34). Therefore, the imbalance of S100A8/A9 expression may be 
one of the most significant mechanisms of degeneration related 
to inflammation.

BiOLOGiCAL FUNCTiONS OF S100A8/A9

The unique structures of S100A8/A9 endow them with the 
potential to play multiple roles, which depend on concentra-
tions, posttranscriptional modifications, and oligomeric forms 
as well as proximal microenvironments. Intracellular S100A8/A9  
complexes participate in cytoskeleton modulation, AA metabo-
lism, and protection against pathogens. In addition to the ability 
to stimulate leukocyte recruitment and cytokine secretion, 
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extracellular S100A8/A9 also exhibits anti-inflammatory prop-
erties under specific conditions, suggesting that these proteins 
contribute to homeostasis during inflammation. Moreover, 
S100A8/A9 exerts antimicrobial function and participates in the 
modulation of cell proliferation, differentiation, and apoptosis. 
This section will provide a comprehensive overview on the intra-
cellular and extracellular functions of S100A8/A9.

intracellular Activities of S100A8/A9
Intracellular S100A8/A9 is suggested to be a Ca2+ sensor; binding 
to Ca2+ changes its conformation and modulates Ca2+-dependent 
signaling. Moreover, S100A8/A9 exerts both regulatory and 
protective functions in the cytosol.

Cytoskeleton Modulation
S100A8 and S100A9 mediate the rapid rearrangement of cytoskel-
eton, which is a prerequisite for successful cell migration, phago-
cytosis, and exocytosis. Translocation of the cytosolic S100A8/
A9 complex to the plasma membrane is Ca2+ dependent and so 
is the interaction between S100A8/A9 and cytoskeletal proteins, 
including tubulins, microfilaments, and keratin intermediate 
filaments in activated phagocytes and epithelial cells (39–42). 
S100A8/A9 complex plays a significant role in microtubule 
polymerization and stabilization in resting phagocytes, while 
S100A8 directly binds to tubulin and S100A9 functions as a regu-
latory subuint. The phosphorylation of S100A9 through Ca2+ and 
p38 MAPK signaling during inflammation reverses microtubule 
formation and leads to rearrangement cytoskeleton, resulting 
in effective leukocyte migration (41). Leukocyte migration in 
S100A9-knockout mice is deficient, and there is a reduction in 
polymerized microtubulin in S100A9−/− neutrophils, in which 
impaired activation of small GTPases Cdc42 and Rac is detected, 
supporting an indispensable role for intracellular S100A8/A9 
complex in cytoskeletal modulation (41). Remarkably, Ca2+-
induced (S100A8/A9)2 heterotetramer, but not heterodimer, 
seems to play a crucial role in stabilizing microtubule network 
as disturbed tetramerization is associated with impaired micro-
tubule formation (43). It is assumed that the tetramer of S100A8 
and S100A9, in which there are more binding sites for tubulin, 
is superior to dimer in bundling and crosslinking microtubules.

Transfer of Polyunsaturated Fatty Acids and 
Activation of Nicotinamide Adenine Dinucleotide 
Phosphate (NADPH) Oxidase
The intracellular S100A8/A9 complex is implicated in respiratory 
burst. In the presence of Ca2+, S100A8/A9 binds to polyunsatu-
rated fatty acids in the cytosol, such as AA and α- and γ-linolenic 
acid, in a saturable and reversible manner (44, 45). The binding of 
Ca2+ to each EF hand within S100A8/A9 is a prerequisite for AA 
binding, whereas Zn2+ or Cu2+ binding induces conformational 
changes different from that of Ca2+ binding, affecting the formation 
of the AA binding pocket in the protein complex and abrogating 
its capacity to transfer AA (46). The delivery of AA to the mem-
brane-bound gp91phox subunit boosts the activation of NADPH 
oxidase, generating ROS in phagocytes (47). The activation may 
be further enhanced by S100A8/A9 acting as a scaffold between 
NADPH oxidase and AA to facilitate their interaction (48, 49).  

Furthermore, the binding capacity of S100A8/A9 facilitates 
AA transcellular transport during inflammation. The S100A8/
A9–AA complex may be internalized by infiltrated cells at inflam-
matory foci for the synthesis of inflammatory mediators, such as 
leukotriene B4, which can trigger leukocyte degranulation as well 
as cellular damage to vascular endothelium, contributing to the 
initiation and regulation of inflammatory responses (50).

Resistance to Pathogens
One-third of bacteria bind to S100A8/A9-expressing cells, in 
which only one-tenth of intracellular microorganisms exist, 
demonstrating that S100A8/A9 in the cytosol attenuates bacte-
rial adherence and invasion (51). Similarly, transfection with 
S100A8/A9 expression vectors into epithelial cells augments 
cellular resistance to invasion by Listeria and Salmonella (52). For 
neighboring keratinocytes, S100A8/A9-dependent resistance to 
Listeria could be provoked by IL-1α from infected epithelial cells 
in a paracrine manner (53). However, by inducing the transloca-
tion of intracellular S100A8/A9 to microtubules, Listeria appears 
to weaken antimicrobial activity of S100A8/A9, leading to an 
increased amount of bacteria in keratinocytes (51). Notably, Ca2+-
binding loops I and II in S100A9 are essential for keratinocyte 
resistance to bacterial invasion and intermolecular stability, as 
mutations in these loops cause a complete loss of the intracellular 
antibacterial activity of the S100A8/A9 complex (54).

extracellular Activities of S100A8/A9
Leukocyte Recruitment
Mouse S100A8 is the first S100 family member found to have 
potent chemokine-like activity to murine phagocytes both in vitro 
and in vivo and was once termed chemotactic protein 10 kDa to 
reflect its function. Injection of mS100A8 stimulates the early 
recruitment of neutrophils followed by monocytes over 24  h, 
with kinetics similar to delayed-type hypersensitivity responses 
elicited by antigen injection into a sensitized host (55). In contrast 
to classical chemokines, mS100A8 leads to actin polymerization 
and profound shape changes in phagocytes at picomolar levels via 
a pertussis toxin-sensitive, G-protein coupled pathway with no 
influence on the intracellular Ca2+ level or integrin or L-selectin 
expression (47).

The treatment of neutrophils with S100A9 enhances transen-
dothelial migration, while blockage with anti-S100A9 antibod-
ies diminishes leukocyte infiltration in the joints of a murine 
arthritis model. Blockage of RAGE but not TLR4 inhibits the 
S100A9-mediated recruitment of macrophages and leukocytes 
in  vitro (56). In response to chemokines, mS100A9−/− neutro-
phils have reduced Ca2+ influx and migration, indicating that 
abnormal cytoskeletal dynamics may be responsible for altered 
chemotaxis (57). Treating mS100A9−/− mice with G-CSF reverses 
impaired neutrophil recruitment into infected lungs in response 
to pneumococcal infection, suggesting that mS100A9 regulates 
chemotaxis by driving the production of G-CSF (58). The 
chemotactic activity of S100A8 may be modulated by oxidation, 
as S100A8 is inactivated by hypochlorous acid treatment with 
the formation of intermolecular sulfonamide-linked complexes. 
However, S100A9 expressed by epithelia in healthy mucosal 
tissue exerts a chemo-repulsive effect on peripheral leukocytes, 
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which is abrogated by the oxidation of methionine 63 and 83, sug-
gesting a role of S100A9 as a molecular switch of inflammation 
in oxidative conditions (59). Conversely, human S100A8 exerts 
contentious leukocyte chemotactic activity, as there is only a 21% 
identity of amino acids between hS100A8 and mS100A8 within 
the hinge region and neighboring α-helix, which is responsible 
for chemotaxis (41, 60).

In addition to chemotactic function, mS100A8 as well 
as hS100A8 and hS100A9 stimulate leukocyte migration by 
upregulating the expression of adhesion molecules and enhanc-
ing leukocyte–endothelial cell interaction. Moreover, these 
proteins alter the intercellular contacts between endothelial 
cells and increase vascular permeability, facilitating leukocyte 
extravasation. S100A8 and S100A9 induce neutrophil adhesion 
to fibrinogen in  vitro via upregulating Mac-1 (a heterodimer 
of CD11b and CD18) expression and increasing L-selectin 
shedding, which is also associated with an elevated intracellular 
Ca2+ level (61), while S100A9−/− neutrophils exhibit impaired 
Mac-1 expression and a reduced capacity to migrate through 
endothelial cells (62). Cellular interaction during neutrophil 
rolling triggers S100A8/A9 secretion. The release of S100A8/A9 
induces VCAM-1 and ICAM-1 expression in endothelial cells 
and augments the capacity of leukocyte Mac-1 to bind endothelial 
ICAM-1 in a TLR4-mediated, Rap1-GTPase-dependent pathway, 
resulting in reduced rolling velocity and fastened adhesion for 
transendothelial migration (63, 64).

In bleomycin-induced lung injury, mS100A8 in the inflam-
matory microenvironment contributes to leukocyte recruitment 
in the early stage of lung damage (65). Similarly, acute migration 
of neutrophils into the vagina is mediated by mS100A8 and 
mS100A9 released from vaginal epithelial cells in a Candida 
infection mouse model (66). In mice undergoing tibial fracture 
surgery, upregulated mS100A8 induces neutrophil infiltra-
tion and microglia activation in the hippocampus, promoting 
the occurrence and development of neuroinflammation and 
postoperative cognitive dysfunction via TLR4/MyD88 signaling 
(67). For type 1 diabetic patients, increased S100A8/A9 upregu-
lates CD11b expression of monocytes and induces adhesion to 
fibrinogen, facilitating the accumulation of monocyte-derived 
cells in pancreatic islets (68). S100A9−/− mice are less sensitive 
to LPS stimulation and more resistant to LPS-induced septic 
shock (69). Pretreatment with anti-mS100A8 and anti-mS100A9 
antibodies reduces migration of neutrophils and macrophages to 
the alveoli by 70 and 80%, respectively, in mice with streptococcal 
pneumonia infection, without impairing leukocyte blood count 
or neutrophil sequestration in the lung vasculature (70). Thus, 
blocking S100A8 and S100A9 might represent a novel modality 
for inhibition of leukocyte recruitment in treating inflammation-
associated diseases.

Cytokines
The release of S100A8 and S100A9 can induce the secretion of 
multiple cytokines in inflammatory cells to sustain and exacer-
bate inflammation. As endogenous ligands of TLR4, S100A8, 
and S100A9 enhance MSU crystal-induced IL-1β secretion in 
phagocytes, both in vitro and in vivo (13). During septic shock, 
S100A8 induces translocation of MyD88, hyperphosphorylation 

of IRAK-1, and activation of NF-κB, resulting in elevated expres-
sion of TNF-α in phagocytes (69). Increased levels of S100A8/A9 
in gingival crevicular fluids of periodontitis patients induce IL-6 
production of gingival fibroblasts via TLR4 signaling involving 
MAPK and NF-κB (71). In BV-2 microglia, S100A8/A9 stimulates 
the production of TNF-α and IL-6 through ERK/NF-κB and JNK/
NF-κB signaling (72). Blockage of S100A8/A9 or downstream 
signaling reduces pro-inflammatory cytokine secretion and 
ameliorates excessive inflammation. However, S100A9 is not a 
direct activator of cytokine expression in human neutrophils, but 
it potentiates IL-8 secretion induced by other neutrophil activa-
tors including fMLP and GM-CSF, following NF-κB, CREB-1, 
and STAT3/STAT5 activation (73). In addition, treating human 
monocytes with S100A9 increases the secretion of IL-1β, IL-6, and 
TNF-α in a process intimately linked to ROS generation (74). In 
a murine arthritis model, treatment with anti-S100A9 antibodies 
diminishes pro-inflammatory cytokine levels both in joints and 
in serum and preserves bone/collagen integrity (75). In response 
to TLR4 stimulation, S100A9-deficient neutrophils exhibited 
impaired production of cytokines (75). S100A9 and S100A8/
A9 significantly upregulated IL-6 and IL-8 expression in human 
gingival fibroblasts via the S100A9 subunit (76). (Figure 1 demon-
strates the S100A8/A9-induced inflammation signaling pathway 
involved in TLR4, MyD88, and MAPKs.) The above observation 
clearly revealed the significance of S100A8 and S100A9 in promot-
ing cytokine secretion under inflammatory conditions.

Anti-Inflammatory Function
Although much attention has been paid to the pro-inflammatory 
functions of S100A8/A9, the complex also exhibits anti-
inflammatory properties under specific conditions to avoid 
tissue damage caused by overwhelming inflammation. S100A8, 
S100A9, and S100A8/A9 have been demonstrated to modulate 
production of pro-inflammatory mediators, including cytokines, 
chemokines, ROS, and NO. S100A8, in  vitro, reduces mast 
cell degranulation and secretion of IL-4, IL-6, and GM-CSF in 
response to IgE-crosslinking by inhibiting intracellular ROS pro-
duction. In the lungs of acute asthma mice, S100A8 suppresses 
mast cell degranulation, eosinophil chemoattractant production, 
and eosinophil infiltration (77). Prestimulation of both murine 
and human monocytes with S100A8 attenuates IL-6 and TNF-α 
production in response to LPS and bacteria via downregulation 
of phosphorylated p38, thus protecting the host against lethal 
sepsis (9). Moreover, non-covalent and high-affinity binding 
of S100A8/A9 with pro-inflammatory IL-1β, IL-6, and TNF-α 
suggests the capacity of S100A8/A9 to trap cytokines (78, 79). 
S100A8/A9 inhibits oxidative metabolism of PMNs in  vitro 
and scavenges released ROS, ameliorating oxidative damage 
in lungs and livers of LPS-treated mice (80). S100A8 promotes 
anti-inflammatory IL-10 expression in airway epithelial cells, 
resulting in impaired LPS-induced neutrophil infiltration and 
reduced pro-inflammatory cytokine induction (81).

S100A8 also negatively regulates leukocyte adhesion and 
transmigration through reducing p38 MAPK phosphorylation 
(41). S100A9 inhibits B7 expression to reduce antigen presenta-
tion by dendritic cells and subsequent T cell priming, preventing 
hyperactivation of the adaptive immune system (82). In addition, 
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S100A8/A9 exerts regulatory activity in inflammation through 
its growth-inhibiting and apoptosis-inducing potentials. In the 
resolution phase of inflammation, apoptotic cells are cleared 
through phagocytosis, and phagocytosis in turn generates inhibi-
tory signals for the pro-inflammatory activation of macrophages. 
The phagocytic activity of macrophages is restored when cultured 
in conditioned medium of neutrophils previously depleted of 
S100A9, indicating that S100A9 is a key player in suppression 
of pro-inflammatory activation of macrophages (83). In conclu-
sion, S100A8, S100A9, and S100A8/A9 participate in modulation 
and restoration of homeostasis during inflammation, but their 
excessive expression and secretion may lead to an imbalance of 
inflammatory processes.

Antimicrobial Function
Once released into the extracellular space from infiltrating 
phagocytes or after cell necrosis, the S100A8/A9 complex exhibits 
broad-spectrum antimicrobial activity against numerous micro-
organisms. This activity is mediated by the ability of S100A8/A9 
to bind and control the levels of essential trace metals such as 
Zn2+ and Mn2+, which are required for bacterial growth (84, 85). 
Both binding sites for Zn2+ and Mn2+ in S100A8/A9 are necessary 
for its antimicrobial function, as recombinant the S100A8/A9 
complex with mutations in either site has impaired antimicrobial 
function (86). Since local levels of Zn2+ and Mn2+ could modulate 

the affinity between S100A8/A9 and its targets including bacteria, 
the antimicrobial potential may be diverse in various pathological 
states.

Purified hS100A8/A9 has been described to inhibit the growth 
of multiple species in vitro, including Escherichia coli, Candida 
albicans, S. aureus, K. pneumoniae, Salmonella typhimurium, and 
Listeria monocytogenes (51, 87, 88). S100A8/A9 in mucosal fluids, 
airway secretions, gingival crevicular fluid, and tissue abscesses 
contribute to the limitation of commensal microorganism growth 
and prevention against the intrusion of pathogens (89).

In addition to its metal chelating property, S100A9 has been 
found to enhance the efficiency of human neutrophil phagocyto-
sis in a Syk-, Erk1/2-, and PI3K/Akt-dependent manner, thereby 
augmenting its antimicrobial activity toward K. pneumoniae as 
well as E. coli (90). Lack of S100A8/A9 in mice leads to a signifi-
cant increase in the bacterial burden in blood, liver, and spleen 
(91). Hence, S100A8/A9 inhibits the growth of pathogens at 
infectious sites during the initial phase of infection, allowing time 
for the recruitment of phagocytes, and then, S100A9 enhances 
the phagocytic activity of infiltrating leukocytes, accelerating the 
clearance of pathogens.

Alzheimer’s Disease
Alzheimer’s disease, in which neuroinflammation plays a funda-
mental role, is characterized by extracellular amyloid plaques and 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


7

Wang et al. S100A8/A9 in Inflammation

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1298

intraneuronal neurofibrillary tangles (92). Significant upregula-
tion of S100A8 and S100A9 is detected within amyloid plaques 
and neighboring activated microglia in the brains of AD mice 
as well as AD patients (93, 94). S100A8/A9 induces extensive 
activation of microglia and expression of multiple inflammatory 
factors including TNF-α and IFN-γ, which induce the transcrip-
tional activity of BACE1 (β-secretase 1) and BACE2 promoters, 
resulting in increased production of β-CTF (β-secretase-cleaved 
C-terminal fragment of APP, the direct precursor of Aβ) and 
subsequently, increased Aβ generation (95). The interaction 
between Aβ and S100A9, which is triggered by Aβ binding to 
the S100A9 hinge region, accelerates the formation of fibrillar 
amyloid structures and reduces S100A9-mediated cytotoxicity 
(96). Moreover, aggregation of S100A8 is seen before Aβ deposi-
tion in mouse AD models, suggesting the existence of positive 
feedback between S100A8 and Aβ expression (94). In Tg2576 
mice, there is improved memory function and neuropathology, 
accompanied by reduced Aβ and amyloid plaque burden after 
S100A9 was knocked out (77). In the amyloid precursor protein/
presenilin1 (APP/PS1) mouse model, loss of S100A9 ameliorates 
amyloid burden by increasing microglial phagocytosis of fibrillar 
amyloid and modulating APP processing (95). Analogously, anti-
bodies of S100A9 reverse impaired passive avoidance learning in 
C57BL/6 mice caused by chronic intranasal administration (97). 
Thus, S100A9, together with S100A8 to a lesser extent, serves as a 
strong link between inflammatory cascades and amyloid plaques 
and has a considerable therapeutic potential for AD patients.

Modulation of Cellular Proliferation, Differentiation, 
and Apoptosis
S100A8/A9 exerts proliferative activity at lower protein concen-
trations. S100A8/A9 at 10 µg/ml induces significant growth-pro-
moting activity in MCF-7, MDA-MB231, and SHEP breast cancer 
cell lines, whereas the S100A8/A9 protein at higher concentra-
tions does not enhance cellular proliferation (98). At 100 ng/ml, 
S100A8/A9 stimulates the growth of NHK cells, but 10  µg/ml 
S100A8/A9 suppresses it (26). S100A8/A9 at low concentrations 
promotes tumor cell growth through RAGE signaling and activa-
tion of NF-κB (98). In the colitis-associated cancer mouse model, 
colonic chitinase 3-like 1 (CHI3 L1) can bind to RAGE, and thus 
disrupt the S100A9-associated expression positive feedback loop 
during early immune activation, creating a S100A9 low colonic 
environment, especially in the later phase of colitis. Low concen-
trations of S100A9 promote cell proliferation/survival of both 
normal intestinal epithelial cells and tumor cells in this mouse 
model (99). S100A8/A9 treatment rapidly induces phosphoryla-
tion of p38 and p44/42 MAPKs in MCF-7 and MDA-MB231 cells 
with an increase in NF-κB activity, although p38 MAPK inhibitor 
and p44/42 MAPK inhibitor can reverse the proliferative effect of 
S100A8/A9 on these cell lines (98). Therefore, S100A8/A9 binds 
to RAGE and subsequently induces phosphorylation of p38- and 
p44/42 MAPK as well as activation of NF-κB.

S100A8 and S100A9 are regulators of myeloid differentiation 
in leukemia (100). S100A9 induces acute myeloid leukemia 
(AML) cell differentiation through TLR4–MAPK/ERK–JNK 
signaling, whereas S100A8 prevents differentiation induced by 
S100A9 activity and maintains the AML immature phenotype. 

Recombinant S100A9 significantly diminishes symptoms and 
prolongs survival of AML mice. Interestingly, anti-S100A8 anti-
body treatment had effects similar to those of S100A9 therapy 
in  vivo, suggesting that high ratios of S100A9 to S100A8 are 
required to induce AML differentiation.

S100A8/A9 has the capacity to induce apoptosis in various 
cells under inflammatory conditions. It has been described previ-
ously that S100A8/A9 suppresses the growth of yeast and fungi, 
and the minimum effective concentration is between 10 and 
20 mg/ml (87, 101). This growth-inhibitory activity is also found 
in mammalian cells such as macrophages, bone marrow cells, 
lymphocytes, and fibroblasts (102–105). The ability to induce 
apoptosis is regulated by the concentration of S100A8/A9 and 
other proteins. For example, a high concentration (10 µg/ml) of 
S100A8/A9 induces apoptosis in NHKs but exerts cell growth at a 
low concentration (10 ng/ml) (26). Synthesis of apoptosis cascade 
proteins and the release of ROS may be essential elements in the 
death-inducing function of S100A8/A9. (Figure 2 demonstrates 
the S100A8/A9-induced mitochondrial apoptosis pathways.) 
In addition, Zn2+ exclusion from the target is one of the most 
significant mechanisms employed by S100A8/A9 because Zn2+ 
effectively inhibits apoptosis (106). The other mechanism may be 
the binding of S100A8/A9 to the target cell surface in a ligand–
receptor manner (107, 108).

These modulatory capacities of S100A8, S100A9, and S100A8/
A9 suggest that they play a regulatory role in inflammation via 
their effect on the survival state of various cells. Specifically, their 
presence at local inflammatory sites might cause either tissue 
proliferation/repair at low concentrations or deleterious effects 
on the inflammatory tissue at high concentrations.

S100A8/A9 AS A BiOMARKeR

S100A8/A9 could be used as a biomarker in many inflammatory 
diseases, such as juvenile RA (109), inflammatory arthritis disease 
(110), skin stresses (111), transplantation (112), inflammatory 
bowel disease (IBD) (113), islet inflammatory response, severe 
forms of glomerulonephritis (68), cystic fibrosis (114), periodon-
titis, autoimmune synovitis (115), inflammation of the uterine 
cervix (116), peritonitis (117), microcirculatory defects in diabetic 
nephropathy (118), infections (119, 120), CVDs (121, 122), and 
autoimmune diseases such as juvenile dermatomyositis (123).

The serum S100A8/A9 level of patients with systemic inflam-
matory response syndrome and sepsis showed a significant 
increase compared with healthy controls; S100A8/A9 can be 
an independent predictor of 28-day mortality and a promising 
biomarker in early diagnosis, evaluation of prognosis and risk 
stratification (124). S100A8 and S100A12 in amniotic fluid from 
pregnant women were found to be the strongest predictor of 
increased early-onset sepsis incidence in neonates of pregnant 
women (125, 126).

A large number of inflammatory molecules are found in 
diabetes, including S100A8/A9 (19). S100A8/A9 has been used 
as a biomarker of diabetes mellitus (68), and high levels of this 
protein complex may be associated with atherosclerosis in diabetic 
patients (127). In addition, the level of S100A8/A9 indicates the 
inflammatory environment of type 2 diabetic nephropathy and 
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varying degrees of microvascular lesions in the glomeruli and 
retina, becoming a potential new biomarker for microcirculation 
defects in diabetic nephropathy (118). Moreover, compared with 
non-obese healthy individuals, the level of plasma S100A8/A9 in 
obese individuals is higher, which suggests that S100A8/A9 can also 
be a new marker of obesity in non-type 2 diabetes mellitus (128).

S100A8/9 is used as a marker of inflammation activity and as 
a predictor of the subsequent course of IBDs; in particular, fecal 
calprotectin testing has been applied to revolutionize IBD clinical 
practice with a role in differentiating IBD from functional gut 
disorders (129).

The level of S100A8/A9 in SF and serum is obviously higher in 
patients with RA than in those with OA or miscellaneous inflam-
matory arthritis (32). Concentration changes of S100A8/A9 in 
serum may be a meaningful prognostic and diagnostic biomarker 
for RA. Furthermore, S100A8/A9 is considered a potential marker 
to evaluate the responsiveness of patients with RA to biologic 
disease-modifying anti-rheumatic drug treatment (130).

The level of fecal S100A8/9 in infants with food allergy is twice 
as high as that of infants without food allergy, and S100A8/A9 
may be a key contributor in promoting food allergy development 
in children (30). More clinical tests are still needed to prove that 
S100A8/9 would be a potential biological marker in hypersen-
sitivity caused by the autoimmune system. In addition, as the 
serum level of S-calprotectin in patients with psoriatic arthritis 
increased, S100A8/9, which is associated with psoriatic arthritis 
pathogenesis, became a better predictor of ongoing disease than 
CRP or other pro-inflammatory cytokines (131).

Compared with routine inflammation indexes, including CRP, 
S100A8/A9 is becoming a more sensitive biomarker for inflam-
mation activity and response to therapy (132), especially for RA, 
juvenile idiopathic arthritis, SLE, and a few other inflammatory 
diseases (8, 133, 134). The application of S100A8/9 can lead to 
new possibilities for diagnosis in clinical practice. Increasingly, 
researchers are exploring the link between S100A8/9 and other 
inflammatory diseases. By optimizing the detection method and 
practice environment, the clinical significance of S100A8/9 as a 
biomarker will be established.

S100A8/A9 AS A POTeNTiAL TARGeT FOR 
TReATMeNT

S100A8 and S100A9, as well as the S100A8/A9 complex, appear to 
be crucial molecules during the process of inflammation, which 
indicates that therapies targeting these proteins may be superior 
to traditional ones in inflammation-associated diseases.

Tasquinimod, an oral quinoline-3-carboxamide, binds to 
S100A9 and the S100A8/A9 complex in the presence of Zn2+ and 
Cu2+ and thus blocks the interaction of S100A9 with TLR4 or 
RAGE, inhibiting TNF-α release in an S100A9-dependent model 
in  vivo (135). Quinoline-3-carboxamide has been used with 
encouraging outcomes in inflammatory diseases such as type 1 
diabetes (136), SLE (137), and multiple sclerosis (138).

Blockade of soluble S100A8/A9 or S100A8/A9 secretion dur-
ing sepsis could represent an enlightening therapeutic strategy, 
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as surviving patients were shown to have decreased S100A8/A9 
levels compared with non-survivors (139). Targeting S100A8/A9 
can also prevent liver injury as well as bacterial dissemination 
at an early phase during human sepsis and endotoxemia (119). 
However, what is different is that low-dose-S100A8-induced self-
tolerance and cross-tolerance may provide a potential strategy 
for attenuating overwhelming pro-inflammatory cascades and 
enhancing antimicrobial responses during microbial sepsis (9).

Targeting S100A8/A9 relieves organ injury by decreasing 
tissue damage in the lung during tuberculosis (140). Similarly, 
targeting S100A9 could control lung inflammation and associ-
ated lung disease during IAV infection (3). In addition, in 
biofilm-infected recalcitrant wounds, local S100A8/A9 could 
be a latent pivotal molecular target in individualized adjunctive 
immunotherapy (141).

For RA patients, there is evidence that S100 proteins can be tar-
geted in therapeutic approaches. S100A8 may provide an effective 
therapeutic strategy for reducing inflammation and preventing 
cartilage and bone destruction (31). Treatment with anti-S100A9 
antibody improves the clinical score by 50% in RA patients 
(75). In murine models of arthritis, blockade of S100A8/A9  
ameliorates inflammatory processes, and there is evidence that 
S100 proteins could also be potential targets in human arthritis 
patients (142).

Both of the results demonstrate that S100A8, as well as S100A9, 
may exert considerable influence on human hypersensitivity and 
could be considered a potential target. S100A9 participates in the 
processes of asthma by initiating and amplifying neutrophilic 
inflammation (143), and S100A8 plays a protective role in airway 
hyperresponsiveness by inhibiting airway smooth muscle con-
traction in asthma (144).

Furthermore, the expression of S100A8 and S100A9 in eosino-
phils is highly upregulated in colonic inflammation, and these 
proteins participate in tissue repair, which means that eosinophil-
mediated effector pathways may provide new curative targets in 
colonic inflammation and repair, especially in IBD (145). In a 
previous study, we provided strong evidence that different key 
pathways such as NF-κB and STAT3 signaling are specifically 
involved in different phases, which bridge the gap between 
inflammation and cancer, and revealed a novel mechanism in 
which inflammation-induced S100A8 promoted colorectal tum-
origenesis by acting upstream to activate the Akt1–Smad5–Id3 
axis. We also found a protective effect of neutralizing anti-S100A9 
antibody against DSS-induced colitis and AOM/DSS-induced 
colitis-associated cancer in a mouse model, which suggests that 
anti-S100A9 antibody may provide a novel therapeutic approach 
to treat ulcerative colitis (146–148).

In psoriasis and psoriatic arthritis, both S100A8 and S100A9 
may represent good therapeutic targets (24) by regulating com-
plement component C3 (149). However, psoriasis-like inflamma-
tory phenotypes in the K14-Angptl6 Tg mice were not rescued by 
S100A9 deletion, which means decreasing S100A9 levels may not 
ameliorate all cases of psoriasis (150). The reason may because 
not all mechanisms associated with psoriasis are governed by 
S100A9.

S100A8 would be a good target for a new line of therapeutics 
against obesity-induced chronic inflammation via blocking the 

initial trigger and halting the very early events of the vicious 
cycle (151). In addition to targeting S100A8 and S100A9 directly, 
inflammation in adipose tissues is also decreased by inhibit-
ing the TLR4 ligand and NLRP3–IL-1β signal axis (152, 153). 
Furthermore, S100A8 and S100A9 are able to serve as potential 
therapeutic targets during the inflammatory state following 
bariatric surgery (154).

Due to its potential involvement in atherogenesis, plaque 
vulnerability, ischemia-associated myocardial inflammation, and 
heart failure, S100A8/A9 might serve as a therapeutic target in 
CVD (155). S100A8/A9 can be a novel therapeutic target candi-
date for ruptured intracranial aneurysm (156), acute coronary 
syndrome (157) and so on. For example, quinoline-3-carboxamide 
mentioned in the preamble has been demonstrated to reduce ath-
erosclerotic plaque size, inflammation, and vulnerability features 
in S100A12 transgenic hyperlipidemic ApoE−/− mice (158). It is 
supposed that relative concentrations and posttranslational modi-
fications of calgranulins may have distinct functional outcomes 
that are protective at different stages of atherogenesis in particular 
microenvironment (159). In addition, regulating the S1008A–
SAA3–LOX-1 cascade in the disease may improve the stability of 
atherosclerosis and decrease clinical cardiovascular events (160).

From another aspect, in diabetes-related CVDs, targeting 
RAGE (161), one of the receptors of S100A8/A9, and using ABR-
215757 (paquinimod) (162) both show an ability of vascular 
protection. As a consequence, targeting S100A8/A9 has been 
demonstrated to be effective, and the drugs associated with 
S100A8/A9 are approved for clinical testing.

In AD, upregulation of the S100A9 gene plays an important 
role in neuropathology and memory impairment, which can serve 
as a link between AD amyloid and neuroinflammatory cascades 
and has the potential to be a prospective therapeutic target. Thus, 
the reduction of S100A9 in the chronic inflammatory phase of 
AD may be a treatment opportunity (23, 95, 163).

It is worth mentioning that in type 1 diabetes, a chronic 
inflammatory disease characterized by autoimmune destruction, 
both S100A8 and S100A9 may be targets for therapeutics as they 
participate in the processes of inflammation, metabolic regula-
tion, and autoimmunity during disease development (164).

In OA, targeting S100A8 and S100A9 could be an interesting 
option for future OA therapies to avoid bone loss, considering 
the longtime expression of these proteins in the synovium during 
OA (35, 165).

Since S100A8, S100A9, and the S100A8/A9 complex are all 
involved in the pathogenesis of most of the inflammatory dis-
eases, it is hypothesized that targeting S100A8 and S100A9 can 
be used as a treatment for these diseases. Some animal experi-
ments and clinical trials have proved this conjecture, but more 
evidence is needed before its widespread application in clinical 
practice. Therefore, there is an urgent need to understand their 
specific biological functions at various stages and exact molecular 
mechanisms in different inflammatory diseases.

SUMMARY

As an alarmin of inflammation, S100A8 and S100A9 are 
significantly increased in almost all types of inflammation. 
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S100A8/A9 induces not only bacteriostatic but also cytokine-
like effects in the local environment. Despite the substantial 
amounts of evidence showing the importance of S100A8/A9 in 
the biological functions of inflammatory disease, the defense 
mechanisms of calprotectin are still not very clear. With respect 
to functional studies, only a few detailed characterizations 
exist related to S100A8/A9, while there are adequate studies 
on S100A8 and S100A9 separately. This condition requires 
researchers to carry out more experiments in the future to 
facilitate our understanding of the S100A8/A9 heterodimer. 
However, purification and observation of the complex is very 
challenging.

Currently, S100A8/A9 has been found to play an important 
role in many diseases, such as inflammation, cancer, and can 
even be used as a typical or atypical marker to diagnose diseases 
or predict the progress of diseases (Table S1 in Supplementary 
Material). These discoveries motivate researchers to explore 
whether S100A8/A9 could be used as a biomarker or therapeutic 
target in diseases beyond inflammation and cancer.
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