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The adaptive branch of the immune system learns pathogenic patterns and remembers
them for future encounters. It does so through dynamic and diverse repertoires of T- and
B- cell receptors (TCR and BCRs, respectively). These huge immune repertoires in each
individual present investigators with the challenge of extracting meaningful biological
information from multi-dimensional data. The ability to embed these DNA and amino acid
textual sequences in a vector-space is an important step towards developing effective
analysis methods. Here we present Immune2vec, an adaptation of a natural language
processing (NLP)-based embedding technique for BCR repertoire sequencing data. We
validate Immune2vec on amino acid 3-gram sequences, continuing to longer BCR
sequences, and finally to entire repertoires. Our work demonstrates Immune2vec to be
a reliable low-dimensional representation that preserves relevant information of immune
sequencing data, such as n-gram properties and IGHV gene family classification. Applying
Immune2vec along with machine learning approaches to patient data exemplifies how
distinct clinical conditions can be effectively stratified, indicating that the embedding space
can be used for feature extraction and exploratory data analysis.

Keywords: biological sequence embedding, word2vec, NLP, BCR repertoire, computational immunology
INTRODUCTION

Antibodies, the secreted form of BCRs, play a crucial role in the adaptive immune system, by
binding specifically to pathogens and neutralizing their activity (1). The BCR repertoire in humans
is estimated to include at least 1011 different BCRs, and potentially several orders of magnitude
greater (2). High Throughput Sequencing (HTS) is a powerful platform that enables large-scale
characterization of BCR repertoires (3). With the advancements of HTS technologies, the amount of
sequencing data is continuously growing (4). These technologies present investigators with the
challenge of extracting meaningful statistical and biological information from high-dimensional
data. The mathematical and statistical properties of high-dimensionality are often poorly
understood or overlooked in data modeling and analysis (5). The ability to embed these textual
sequences in a vector-space is an important step towards developing effective analysis methods. One
possible approach to do so is to use existing embedding methods from the natural language
processing (NLP) world, and adapt them to immunological sequences.
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In NLP, the term “embedding” refers to the representation of
symbolic information in text at the word-level, phrase-level, and
even sentence-level, in terms of real number vectors. “Word
embedding” was first introduced by (6). Since then, vector space
models for semantics are gradually developing and gaining
popularity compared with traditional distributed representations.
In 2013, (7) brought word embedding to the fore by presenting the
“word2vec”method, which is an NLP-embedding method based on
an artificial neural networks, and became the basis for many of
today’s NLP applications. While there are countless different
applications using the above methods, only few published works
have implemented them for biological data analysis. The main ones
are ProtVec (8), seq2vec (9) and dna2vec (10), all use the word2vec
concept introduced by (7). These studies demonstrate the feasibility
of sequence embedding. dna2vec provides experimental evidence
that the arithmetic of the embedded vectors is akin to nucleotides’
concatenation, while ProtVec shows that tasks like protein family
classification and disordered protein detection are not only feasible
using the proposed representation and feature extraction method,
but also outperform existing classification methods. This approach
opens the door for countless exciting opportunities for
future developments.

Here, the described line of work is continued, with a focus on
developing an embedding technique for B/T cell receptor HTS
data, and using this embedding, along with machine learning
abilities, to answer real-life questions in computational
immunology. To do so, we created an initial word2vec model
for immune system sequence embedding. This model will be
referred to as Immune2Vec. We use a bottom-up approach,
starting from validating the proposed model on short 3-gram
amino acid sequences, continuing to longer, complementary
determining region 3 (CDR3) sequences, and finally to the
full-scale problem of entire immune receptor repertoire
representation. Such an approach can pave the way to a wide
field of computational immunology applications, which can also
exploit the countless on-going developments in the field of
machine learning and NLP methods, for different types of
high-dimension immunological data analyses.
THE PROPOSED APPROACH
AND APPLICATIONS

The overall goal of this research is to develop a methodology to
embed BCR sequences in a real vector space using methods from
NLP. We rely on the evident analogy between immune receptor
sequences and natural language, and the applicability of natural
language processing methods to immune receptor sequences, to
address open questions. The above analogy is illustrated in
Figure 1A. In this context, the smallest units in natural
language are the letters, which correspond to amino acids in
immune receptor data. The letters compose words, and several
amino acids compose an n-gram. Multiple words produce a
sentence, whose parallel in immunology is a receptor sequence.
Texts are parallel to repertoires. The main differences between
the two are that first, in NLP words have varying lengths, and
second, the text level in NLP assumes that sentences are ordered
Frontiers in Immunology | www.frontiersin.org 2
whereas in immune receptor repertoires, there is no such order.
The model generation phase, described in Figure 1B, takes as an
input a large corpus of “text”, in our case AIRR-Seq data, and
produces the “Immune2vec”model. This enables transformation
of the data to vector space. Based on the described diagram, here
we use a bottom-up approach to test immune2vec following the
representations in three levels:

1. Word: we consider a word as a three amino acids sequence,
aka 3-gram. The first step focuses on showing how the
embedding approach manages to represent and capture
some of the biochemical and biophysical properties of the
3-gram, as described in high-level in Figure 1C.

2. Sentence: as mentioned, sequences are analogous to
sentences in natural language. As Figure 1D shows, CDR3
sequences are considered as sentence-level representations.
As a proof of concept of the ability to embed sequences inRN,
the real-space vectors that represent the CDR3 sequences are
used as input to classification algorithms, with the aim of
classifying the sequences according to their corresponding
IGHV families of the adjacent sequences.

3. Text: representing an immune system repertoire of a subject
is a major challenge. It requires finding a proper way to
represent a complete immune receptor repertoire, which
allows answering complex questions about an individual.
For example, stratification of repertories according to a
given clinical condition. Here, we provide promising proof
of concept results for this, as seen in Figure 1E.
METHODS

Data Sets and Models
The data sets used in this research are:

• DS1 contains 28 individuals from a study about HCV: 7
healthy individuals as a control group (C), 10 chronically
infected (CI) individuals, and 11 spontaneous clearers (SC) of
the virus (11). Total number of sequences: 1.3 million BCRs
and 1.7 million TCRs.

• DS2 contains 100 individuals. It is the largest data set, to date,
of naive B cell receptor repertoires. It contains 48 healthy
control (HC) individuals and 52 patients with Celiac disease
(CD). Total number of sequences: 2.96 million (12).

• DS3 contains the BCR repertoires of three Personal Genome
Project volunteers (G.M.C., I.B., and F.V.), at 10 time points
along their seasonal influenza vaccination, in order to test the
immune response to this vaccine (13). The data set contains
30 samples and 1.64 million sequences.

• DS4 is a combinatorial synthetic data set of all possible amino
acid 3-grams combinations of the 20 common amino acids,
producing a total number of 320 = 8000 sequences.

• DS5 contains BCR repertoires from 13 individuals. Three
healthy individuals and 10 infected with COVID-19. Total
number of sequences is 7.9 million (14).

• DS6 contains 1.77 million sequences randomly sampled
from DS5.
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The above data sets were used for data analyses, classification
processes, and to create the following models:

• IVM1 - An Immune2vec embedding model constructed from
a corpus of BCR CDR3s from DS1.

• IVM2 - An Immune2vec embedding model constructed from
a corpus of BCR CDR3s from DS2.

• IVM3 - An Immune2vec embedding model constructed from
a corpus of BCR CDR3s from DS5.

• IVM4 - An Immune2vec embedding model constructed from
a corpus of BCR CDR3s from DS6.

• IVM5 - An Immune2vec embedding model constructed from
a corpus of TCR CDR3s from DS1.
Immune2vec Model Generation
The workflow of model generation is shown in Figure 2A.

• Data set

The first step in creating the model is building an adequate
corpus for word2vec training. Selecting the data set is critical
to the context analysis, and must be chosen carefully to reflect
the type of data we plan to analyze, but not to over-fit it. All
our models are generated from amino acid sequences.
Building a model based on nucleotide sequences is also
possible, but is beyond the scope of this study.
Frontiers in Immunology | www.frontiersin.org 3
• Preprocess CDR3 sequences and translate to amino acids
CDR3 sequences were extracted from the data set, and translated
to amino acids using the Python Bio.Seq package (16). CDR3
falls at the joint between the V and J segments, and in the heavy
chain it is partly encoded by the D gene segment. The diversity of
CDR3s is significantly increased by addition and deletion of
nucleotides in the formation of the junctions between the gene
segments. The final CDR3 begins and ends with a short almost-
constant sequence (see Figure 2B). In models 1-3, the common
amino acids are ignored by trimming 2 amino acids from the
beginning of the sequence and 3 from the end.

• Split all sequences to non-overlapping n-grams

As suggested by (9) in seq2vec, two ways of processing can be
employed on the sequences, overlapping and non-overlapping.
A non-overlapping method was used throughout this research.
Compared to the structure of natural languages, each n-gram
now represents a word, and each sequence is a sentence (as
described in Figure 1A).

• Corpus file

The term “corpus” refers to the collection of words extracted
from all documents. In our case, the corpus is a file containing
all the sequences generated by the non-overlapping method.

• Adapt word2vec to BCR CDR3 amino acid sequences

An unsupervised training method composed of a shallow
two-layer neural network was used, as described in (17). The
A B

C D E

FIGURE 1 | The research structure and workflow. (A) The analogy between natural language and the immunological language, on which we base our research.
(B) The steps of Immune2vec model generation, described in details in the Methods section. (C) Word-level implementation of Immune2vec on amino acid 3-grams
(D) Sequence-level classification on CDR3 embedded vectors, classifying them according to the IGHV family of the adjacent IGHV sequence. (E) Repertoire-level
classification approach based on a nearest neighbors approach presented here. Created using the Weblogo tool (15).
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algorithm has two options of continuous bag-of-words
(CBOW) or skip-gram. CBOW predicts the targeted word
given the context, while skip-gram predicts the context given
the targeted word. Here, we used skip-gram for all presented
results. The model is trained to predict the “context”
surrounding a given word, on a corpus built only from the
CDR3 amino acid sequences, completely independent of
the labels of the data. The labels are only used during the
classification part.

• Model hyper-parameters
The model contains several hyper parameters that affect the
result and must be taken into account. In particular:

• Window size: determines the window surrounding a word for
context analysis. Since our method is based only on CDR3
sequences, which are relatively short, we chose a large window
of 25 words such that an entire CDR3 sequence is
incorporated into the context window.

• Dimensionality: the number of dimensions representing each
word in the corpus. The typical number of dimensions
embedded by the model is between 50 and 600, as suggested
by (7) who show the impact of the vector’s size on accuracy
for the following values: 50, 100, 300, 600. Here, we used a
vector size of 100, with additional reduction techniques in the
different downstream analyses of each section.

• n-grams size: the n-grams size determines the length of the
constant n-grams that the data is split into. The value we
Frontiers in Immunology | www.frontiersin.org 4
chose is 3 amino acids, composed originally of 9 nucleotides.
This number affects the vocabulary size, which is 20n=3 =
8000. Choosing a large number causes data loss, since the
model does not observe all existing combinations, and
sequences that contain these combinations are not
embedded. In our case of 3-grams, less than 1% of the data
is not present in all corpora.

• Sequence trimming: indicates whether to trim the sequences
from one or both ends before training the model. We use the
same sequence trimming values while building the model as
while applying it to sequences. The trimming values used for
each part are indicated above.

• Minimal frequency: words that appear fewer times than this value
are ignored in the model training. We used a value of 2, meaning
the n-gram has to appear at least twice to be part of the model.

• Trained model

The trained model includes the key function called
“model.to_vec()”. This function allows conversion of any
sequence to its n-dimension vector, assuming all 3-grams
composing the sequence appeared in the training data set. For
a sequence composed of several n-grams, the vector is a weighted
average of n vectors. Meaning, n new sequences are generated
from a given sequence by shifting the starting point n times from
the beginning of the sequence. For example, for the sequence

Seq : ASLEMATIEDAA
A B C

D

FIGURE 2 | Work flows applied to the different levels. (A) Training Immune2Vec. (B) Applying Immune2Vec for sequence level classification. (C) Applying
Immune2Vec to repertoire level representation. (D) CDR3 sequence logo for 17 amino acids. Created using the Weblogo tool (15).
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and n = 3, three new sequences are generated and translated to
vectors:

Sub − seq1 : ASLEMATIEDAA ! vec1

Sub − seq2 : SLEMATIED ! vec2

Sub − seq3 : SLEMATIEDA ! vec3

These vectors are summed and normalized by the number of
words of all 3 sequences, so:

Vec(Seq) =
vec1 + vec2 + vec3

11

• Fitting hyper parameters of the ML classification model
• Logistic regression (sections Stratifying HCV-Specific B-Cell

Repertoires Using Immune2vec and Corpus Effect). The logistic
regression classifier is implemented with the l2 penalty.
Repeated cross validation on the train set was used for
selecting the optimal regularization parameter С = 0.003.

• k-Nearest neighbors (see the section BCR CDR3 Sequence-
Level Representation Enables Inference of the IGHV Gene
Family of the Adjacent Sequence) - k- nearest neighbors
algorithm is implemented with the number of neighbors
k = 3.

• Decision Tree (see the section BCR CDR3 Sequence-Level
Representation Enables Inference of the IGHV Gene Family of
the Adjacent Sequence) - we did not optimize the model hyper
parameters and used the defaults provided by the python
sklearn package.

• Random forest (see the section BCR CDR3 Sequence-Level
Representation Enables Inference of the IGHV Gene Family of
the Adjacent Sequence) - we did not optimize the model hyper
parameters and used the defaults provided by the python
sklearn package.
Word-Level Representation
Obtaining Amino Acids Properties
The first building block of the research is validation of the word-level
representation model. This validation includes an analysis of 3-grams
representation. The vector representation in 2-dimensional space is
compared to known properties of these sequences, and spatial auto-
correlation methods are applied to validate that the vector
representationmanages to capture some biologicallymeaningful data.

Multiple amino acid biophysical and biochemical properties
can be obtained using the “alakazam” package in R (18). The
following properties were extracted and are used in this section:

• “Gravy”: grand average of hydrophobicity.
• “Bulkiness”: average bulkiness.
• “Polarity”: average polarity.
• “Aliphatic”: normalized aliphatic index.
• “Charge”: normalized net charge.
• “Acidic”: acidic side chain content.
• “Basic”: basic side chain residue content.
• “Aromatic”: aromatic side chain content.
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Clustering in 2-Dimensional Space
Several clustering methods on the 2-dimensional space with
Euclidean distance were implemented in this section. The first
is k-means unsupervised clustering. The clustering was done
with a depth of 2, using n = 20, meaning that the space is divided
into 20 clusters, and each cluster is divided again to 20 sub-
clusters, creating a total of k=400 clusters. There are a total of
8000 points, thus, on average, each cluster consists of 20 data
points (with a standard deviation of 8.5). The centers of these
clusters are shown in Figure 3A. The second method is k-means
with different parameters, dividing the space to 6 clusters
followed by another divide to 30 sub clusters, creating a total
of 180 clusters. The 6 and 30 parameters were selected based on
silhouette score optimization.
Variance Calculation
After clusters are defined, our goal is to understand the
correlation between the clusters and the biological properties.
From Figure S1 there appears to be a visual correlation, such that
clusters tend to have a small in-cluster variance. To quantify this
observation, two methods were used based on pooled variance
comparison or distance distribution comparison. In the first
method, a comparison between the within-cluster variance and
the general variance is performed. The within-cluster variance is
calculated using the pooled variance method. The pooled
variance is a method of estimating variance of different
populations, when the populations may vary in size and mean,
but share the same variance. Pooled variance computation: if the
populations are indexed i = 1,.,k, then the pooled variance s2pcan
be computed by the weighted average

s2p =
Sk
i=1(ni − 1)s2i
Sk
i=1(ni − 1)

=
(n1 − 1)s21 + (n2 − 1)s22 +⋯+(nk − 1)s2k

n1 + n2 +⋯+nk − k

where ni is the sample size of population i and the sample
variances are

s2i =
1

ni − 1o
ni

j=1
(yj − yi)

2

In the second method distances in terms of biophysical or
biochemical properties are calculated between all vectors within
each cluster, and this distribution is compared to the distribution
of the same distances between all the vectors in the data. For each
property we show a box plot of the distance of this property
between all data points vs. the distance of the property within
each cluster. Use of (ni – 1) weighting factors instead of ni comes
from Bessel’s correction.
Spatial Auto-Correlation Quantification Using
Moran’s Index
Spatial auto-correlation is characterized by a correlation in a
signal among nearby locations in space. Using this method, we
dismiss the clustering effect on the results, by calculation the
spatial auto-correlation in the entire 2D embedding space.
Moran’s Index, or Moran’s I, (19, 20) quantifies the global
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spatial auto-correlation in an attribute y measured over n spatial
units, and is given as:

I =
n
S0

SiSjziwijzj
Sizizj

where wij is the spatial weight matrix, zi = yi − ŷ, and S0 = Si Sj
wij. Moran’s I is used here to evaluate the spatial auto-correlation
between amino acids biophysical and biochemical properties
relative to their location in the 2-dimensional space. The
implementation includes several steps:

1. Choosing a list of distances d1,d2, …,dm that represents the
whole range of distances between points in space.

2. Constructing the spatial weights matrix wij. In our case, a
weight of 1 was given to two points with a distance smaller
than dx, and 0 otherwise.
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3. Calculating Moran’s index for each property and each
distance.

4. Analyzing the results, where the expected value under the null
hypothesis of no spatial auto-correlation is 0 for large sample sizes
as in our case. Positive values indicate positive auto-correlation.

The implementation of this section was done using the
python pysal package by (21).

Sequence-Level Representation Using
V-Family Analysis
In this part we focus on one application of sequence-level
representation in a classification problem. We chose to classify
IGHV families using CDR3 sequences. The models used in the
analysis are IVM1 and IVM2. As illustrated in Figure 2C, the
work flow for IGHV family classifier is composed of:
A B

C D

FIGURE 3 | 3-gram embedding analysis using several tools (A) 3-grams embeddings divided to clusters using k-means clustering (B) The same embedding
whereeach point is colored according to its basic property value. (C) A box plot describing the distribution of basic property distances among all the points, vs. its
distancedistribution in each cluster. Comparing distances between all data to the distances within clusters using the Mann Whitney test yielded a p value <10-20.
(D) Moran’s index spatial auto-correlation analysis of properties in the embedding space.
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1. Data preparation – the required output is one file containing
(at least) the trimmed CDR3 translated to amino acids, and
the V Call. The 3 most common IGHV families were chosen
from the data - IGHV1, IGHV3 and IGHV4. To avoid bias, the
same number of samples was chosen from each family.
As indicated, the sequences were trimmed from both ends.
As can be seen in the sequence logo images in Figure 2B,
the three first amino acids of most sequences are “AR”, and the
four last acids are “FD-”, these sub-sequences were removed.

2. Generate vectors from the data set by applying the trained
Immune2vec model.

3. Reduce vector dimensions – PCA was used in this section.
4. Use R to extract IGHV family labels using the “getFamily”

function from the “alakazam” package by (18).
5. Split the data to test and train data sets. In the train set,

each CDR3 sequence was labeled with the corresponding
IGHV family of its original VDJ sequence. The size of the train
set is 75% of the data, and the size of test set is the remaining 25%.

6. Use different classifiers to distinguish between families and
show the results. In this case, the two classification
methods used were decision tree and k-nearest neighbors.
The classifiers are optimized to the train set, and tested on
the independent test set. The classifiers are applied using
the python “Scikit-learn” package (22).
Repertoire-Level Representation
Work Flow Description
The general work flow for this part is shown in Figure 2D, with
each block in the diagram described below.

• Input data

For the repertoire-level classification we used 10 CI and 10 SC
samples from DS1. For the sequence embedding step we tested
the model with the following corpora: data sets DS1, DS2, DS5,
and DS6, as described in the section Data Sets and Models.

• Data Preprocess and CDR3 sequence extraction

Raw reads were filtered in several steps to identify and remove
low quality sequences, as described in (23). From each
sample, CDR3 sequences were extracted and translated into
amino acids using the Python Bio.Seq package by (16). Then,
common amino acids from the sequences were trimmed as
described.

• CDR3 sequence embedding

At this point, Immune2vec was applied to the CDR3 sequences,
producing a d-dimensional vector representation for each
sequence, with d = 100.

• CDR3 vectors

The output of applying the model to all sequences, is a matrix of
[numberofsequences×d] size, where each row ri represents a
sequence i and each column Сj represents the value of the
embedding in dimension j.

• Clustering of Vectors Across all Samples

Vectors were first grouped according to their V-gene, J-gene, and
CDR3 length. For each group, the difference between each
Frontiers in Immunology | www.frontiersin.org 7
pair of vectors was calculated by Euclidean distance.
Hierarchical clustering by a complete linkage method was
applied and sequences were clustered by a distance threshold.
Setting this threshold for the complete linkage presented a
new free variable of the model. In (11) and (24) the distance
threshold was 85% similarity in hamming distance. In the
embedded vector space we used Euclidean distance, and for
determining the threshold distance we used the following
heuristic: for each set of vectors grouped by their V-gene, J-
gene, and CDR3 length, we computed standard deviations for
each dimension independently yielding an “std vector”. The
threshold used was 0.65 times the Euclidean norm of the “std
vector”. As an additional quality control step, sequence
clusters for which more than 90% of sequences came from
a single sample or clusters containing less than 10 sequences
were removed.

• Extracting features

As described in (11), the relative frequency of all clusters was
calculated for each sample. The sum of frequency squares was
calculated for each clinical group. B-cell clusters containing
vectors for which the sum of frequencies in SC was greater
than the corresponding sum for CI by more than 0.5 were
selected. Only clusters with sequences originating from more
than one sample, and sequences that were observed in more
than one raw read were used.

• Building feature tables

Once the features are selected, the information is processed to a
feature table, a basic [N×M] structure with each raw
representing a subject and each column representing a
cluster number. The value of each cell in the table is the
square of the number of sequences belonging to each subject in
each cluster. This structure can be used for standard machine
learning approaches for the purpose of data classification.

• Feature elimination

Feature elimination was performed by a random forest model,
choosing the most informative 18 features.

• Classification model

Logistic regression with an L2 regularization penalty was applied
to these 18 remaining features.

The source code for the implementation can be found in
https://bitbucket.org/yaarilab/immune2vec_model/src/master/.
RESULTS

Word-Level Representation of 3-Grams
The first step we took to evaluate Immune2vec’s performance on
immunological data was to show that the embedding captures
immunological properties of the data, as these properties are not
part of the model’s training. In general, the analyses presented
throughout the manuscript are divided into three steps:

1. Pre-processing AIRR-seq data and extracting the core of the
amino acids’ CDR3s.
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2. Constructing an embedding model (Immune2Vec), and
using it to embed AIRR-seq data.

3. Analyzing the RN vectors embedded by Immune2Vec at the
n-gram, sequence, and whole repertoire levels, using machine
learning (ML) methods.

The goal of this section is to test whether unsupervised
training of the embedding step (Immune2Vec) preserves the
biological properties of all possible amino acid n-grams. As can
be seen in this section, vectors corresponding to different n-
grams cluster in the embedded space according to the bio-
physico-chemical properties of their amino acid n-grams.

The first dataset analyzed was DS1, containing Hepatitis C Virus
(HCV) infected individuals and healthy controls (11). It was pre-
processed, and relevant CDR3 sequences were extracted, translated
to amino-acids and split to n-grams using the “non-overlapping”
method. IVM1 is the embedding model that was constructed from
this data and that was used in this section. More details about the
model creation flow can be found in the Methods section (section
Immune2vec Model Generation). To test the described model, a
combinatorial data set of 3-grams, DS4, was used (see details in the
section Data Sets and Models). Immune2vec was applied to all 8000
3-grams, embedding them to a 100 dimensional space reduced to
two dimensions using t-SNE (25). The result of this process is
plotted in Figure 3A, where each point in the 2-dimensional space
represents one of the 8000 3-grams in DS4. Independently, the
following biochemical and biophysical properties of each 3-gram
were extracted: hydrophobicity, average bulkiness, aliphatic index,
average polarity, net charge, basic, acidic, and aromaticity (see the
section Obtaining Amino Acids Properties in Methods). Then, all
3-grams composing DS4 were projected into 2-dimensions using
t-SNE, and were colored according to the value of each property. An
example of the “basic” property colored plot is shown in Figure 3B.
The other properties plots can be found in Supplementary Figure
S1. This visualization demonstrates several interesting observations.
First, it shows that the 2-dimensional space can be divided into
dense clusters, where the values of the properties are similar
(Figure 3C). Second, it shows that spatial auto-correlation, i.e., a
correlation between properties and their location in the 2-
dimensional space, exists (Figure 3D).

Biophysiochemical Properties Are Homogeneous
Within Clusters
The t-SNE dimension reduction method does not preserve
distance or density between points, thus tends to cluster points
with high affinity during the process. The 3-grams 2 dimension
representations were assigned to clusters by k-means
unsupervised clustering, as explained in the section Clustering
in 2-Dimensional Space. All points were divided to 400 clusters,
each cluster consisted of an average of 20 n-grams (with a
standard deviation of 8.5). These clusters are shown in
Figure 3A. After clusters were defined, we sought to explore
the level of property homogeneity within and between the
clusters. To calculate property-specific variance we used the
property measurements from the pre-embedded n-grams.
The property extraction method is explained in detail in the
section Obtaining Amino Acids Properties. Figure 3B and
Frontiers in Immunology | www.frontiersin.org 8
Supplementary Figure S1 visualize this within cluster
homogeneity. To quantify this effect, two methods were applied:

1. A comparison between within cluster and between cluster
variability. The within cluster variability is calculated using the
pooled variance method (see Variance Calculation). The
results of this method are shown in Table 1. Figure 3C
shows box plots of the distances between n-grams, once for
n-grams within the same cluster and once for all n-grams in
the data. Supplementary Figure S2 shows analog plots for all
the examined properties. This confirms that 3-grams cluster
into groups, and that the similarity of the properties within
each cluster is relatively high. This result indicates that the
suggested embedding successfully captures meaningful
features of the data, such as the bio-physico-chemical
properties of the n-grams. We also tested different clustering
approaches and obtained similar outcomes, strengthening our
confidence in the robustness of these results.

2. Spatial auto-correlation. To ensure that the clustering parameters
did not affect our results, we quantified the spatial auto-
correlation of the entire 2D space using Moran’s Index. As
explained in the section Spatial Auto-Correlation Quantification
Using Moran’s Index in Methods, spatial auto-correlation is
characterized by a correlation in a signal among nearby
locations in space. In this case, the signal is the value of the
property of each n-gram. Figure 3D shows the results ofMoran’s
Index analysis for each chosen property, with distances between
points varying between 1 and 160. A positive auto-correlation
exists between nearby n-grams, and as the distance increases, the
correlation decreases to 0. In other words, a short distance in the
[x, y] space is translated to a small variance in the 3-gram
property.When using word2vec on natural language, words with
similar meanings have similar vectors and are represented near
each other in space. Correspondingly, we show that in terms of
biological meaning, similar n-grams are also preserving the same
space similarity.
BCR CDR3 Sequence-Level
Representation Enables Inference
of the IGHV Gene Family of
the Adjacent Sequence
We examined a sequence-level classification problem, as an
intermediate step between word-level and whole immune
repertoire analysis. As shown schematically in Figure 4A,
CDR3 falls at the junction between the V and J segments, and
in the heavy chain it is partly encoded also by the D segment. It
has no overlap with the V segment, thus being able to classify
IGHV family based on its corresponding CDR3 sequence will be
a novel observation.

First, we extracted CDR3 sequences, trimmed and embedded
them in real-space by immune2vec. We assigned a label to each
sequence with its IGHV family as inferred from the adjacent 5’
sequence. We then split the data to test and train sets. The
training process included optimizing the model parameters on
the train set, and the resulting model was assessed on the test set.
Table 2 summarizes the results of IGHV family classification
July 2021 | Volume 12 | Article 680687
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using two types of common classifiers - decision tree and k-NN,
on 10-dimensional data. The classification was done on the three
most common IGHV families in the data set: IGHV1, IGHV3,
IGHV4. In order to avoid biases caused by unbalanced data,
an equal amount of sequences from each data set were
sampled, without replacement (see right column in Table 2).
The IGHV family distribution of all the data sets is shown in
Supplementary Table 1.

An association between the trimmed CDR3 and its adjacent
V-family exists, and this association is preserved after
Frontiers in Immunology | www.frontiersin.org 9
Immune2vec embedding. IVM2 shows slightly better results,
most likely since it is based on a much larger corpus file. The
effect of the number of dimensions used by Immune2vec on
the classification process was tested by using IVM2 with DS3.
The same classification process was performed on a varying
number of dimensions. The results for IGHV family
classification are shown in Figure 4B. From this analysis we
conclude that for the task of sequence level classification, it is
sufficient to use 30 dimensions. The analysis of this part
demonstrates that our representation successfully captures
TABLE 2 | IGHV family classification based on CDR3 sequence using Decision Tree (DT), Random Forest (RF) and K-nearest neighbor (KNN).

Model (corpus) Data set DT f1-scoree RF f1-score KNN f1-score Number of samples per family

IVM1 DS1 0.65 0.67 0.58 150K
IVM1 DS2 0.50 0.51 0.46 300K
IVM1 DS3 0.67 0.69 0.61 100K
IVM2 DS1 0.65 0.66 0.64 150K
IVM2 DS2 0.50 0.52 0.46 300K
IVM2 DS3 0.67 0.69 0.59 100K
July 20
A B

FIGURE 4 | (A) A description of the trimmed CDR3 sequences from the Ig heavy chain germline locus, used for the research. (B) F1-score of IGHV family
classification based on CDR3 sequences using decision tree and kNN methods.
TABLE 1 | Amino acids properties distribution.

Property name General variance K-means (400 clusters) K-means (180 clusters)

In-cluster variance Ratio In-cluster variance Ratio

Gravy 2.83 1.08 1.37 2.1 2.3
Bulkiness 6.8 3.6 1.9 4.06 1.7
Polarity 2.29 0.91 2.5 1.14 2.0
Aliphatic 0.55 0.24 2.3 0.3 1.8
Charge 0.6 0.25 2.5 0.33 1.8
Acidic 0.03 0.01 2.2 0.02 1.8
Basic 0.04 0.01 3.0 0.02 1.9
Aromatic 0.05 0.02 2.3 0.03 1.8
21 | Volume 12 | Article 6
The table compares the general variance of each property for all sequences with the in-cluster variance, and the ratio between them, for three kinds of clustering methods. A high ratio
indicates a strong similarity of the property within the cluster.
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meaningful biological data not only at the word level, but also at
the sequence level, which is analogous to sentences in
natural language.

Stratifying HCV-Specific B-Cell
Repertoires Using Immune2vec
After gaining confidence in the word and sentence level
representations, the next step is repertoire-level representation.
The challenge here is to represent accurately an entire immune
repertoire, and to use it as an input for machine learning
applications such as classification. To investigate whole
immune repertoires, we embedded all CDR3 amino acid
sequences of a repertoire using Immune2vec. To this end we
used IVM3 (see Data Sets and Models), and applied it to DS1, a
data set composed of three clinically distinct cohorts: healthy
controls (HC), chronically infected (CI) individuals with HCV,
and spontaneous clearers (SC) of hepatitis C virus. Since there
are only seven HC samples, here we applied a two class
classification for the CI and SC cohorts. CDR3 sequences were
embedded into R100, yielding a matrix of size [number of
sequences × 100] where each row ri represents a sequence i and
each column Cj represents the value of the embedding in
dimension j(j ∈ {1…100}). To characterize whole repertoires
using CDR3 embedded vectors we applied an analogous
clustering approach to the one used in (11) and (24). Vectors
were first grouped according to their V-gene, J-gene, and CDR3
length. For each such group, the difference between each pair of
vectors was calculated using a Euclidean distance in the
embedded space. Hierarchical clustering by a complete linkage
method was then applied and clusters were defined by a
maximum distance. Given these clusters, each repertoire was
characterized using the relative usage of each cluster in it.
Following this, a feature selection step was applied using random
forest to select the most informative 18 features. These were the
input of a logistic regression step with L2 regularization penalty (for
more details see methods Repertoire-level representation).
Frontiers in Immunology | www.frontiersin.org 10
To evaluate the above approach we used repeated cross
validations with 100 repeats, leaving in each instance two different
samples, one of each label, as the test set. The results of this binary
classification are shown in Figure 5 for BCR data and TCR data.
These results are significant compared to random assignments of
labels on the same data (p-value < 2.2e-16 according to a two tailed
Welch t test), and are comparable to the results in (11), which
obtained 91% accuracy for the BCR based predictions and 79%
accuracy for the TCR based predictions. In (11), the amino acid
CDR3 sequences were clustered using the conventional non-
embedding approach, while the other details of the classification
model and the way it was tested remained the same. The comparison
to random labels supplies additional evidence that there was no over-
fitting during the process. These results provide a proof of concept
showing that BCR and TCR IGHV family gene sequence embedding
can lead to meaningful representations, as can be seen in the high
classification results. It is the first demonstration of using word
embedding for BCR and TCR repertoire classification.

Corpus Effect
To examine the effect of the corpus on Immune2vec, we constructed
Immune2vec embedding models using CDR3 sequences from
different data sets and of different sizes. The results for
classification of patients’ clinical status are shown in Figure 6A.
As can be expected, the size of the corpus affects the accuracy of the
model. The best result (89%) was obtained with the DS2 corpus. All
models were tested using the same 100 train-test splits, and same
ML model. Figure 6B shows the size of the different corpora. To
examine the effect of the corpus chain, i.e., IGH or TCRb, on the
model, we compared TCR repertoire classification results, once
using a TCR corpus (DS1) for constructing the embedding, and
once using a BCR corpus (DS2). As shown in Supplementary
Figure S3 using a BCR corpus for classifying TCR repertoire had an
accuracy of 56% compared to 70% when using a TCR corpus. The
higher accuracy when using a TCR corpus can be explained by
1) The characteristics of the embedding corpus - in this case using
FIGURE 5 | Accuracy of the SC-CI BCR and TCR repertoires classification. For validation purposes, the model was trained and applied on randomly labeled data.
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TCR sequences for both the embedding construction and the
classification step, 2) The embedding corpus and classification use
samples from the same population (DS1) and/or, 3) The embedding
step uses the whole DS1, which consists of the training and test
TCRs in the classification step. Since in the case of BCR, using DS2
as the embedding corpus leads to a higher prediction accuracy than
using DS1 (Figure 6A), it implies that the first confounding factor
has a stronger effect on the prediction accuracy than the later two.
DISCUSSION

Biology and medicine are data-rich disciplines. The high throughput
measurements used in these fields are complex and require profound
knowledge to understand. For this reason, deep learning is well
suited to solve problems in these fields, as it is capable of combining
raw inputs into features. New deep learning algorithms were
developed for a variety of biomedical problems such as patient
classification, biological process analysis and treatment methods
(26). This study conducts a thorough literature review and claims
that although promising advances have been made in the field of
deep learning, it has yet to revolutionize bio-medicine or definitely
resolve any of the most pressing challenges. Several recent
publications focus on deep learning applications for immune
system repertoires (27). Some of them focus on similar issues to
the ones studied here, like immune receptor repertoire
representation. DeepTCR (28) for example, applies sequences
embedded using variational auto encoder (VAE) instead of the
linguistic approach used in our study (29). also use a VAE
approach on adaptive immune repertoires, with the purpose of
constructing generative probabilistic models.

This research focuses on developing a methodology to embed
BCR cDNA and protein sequences in a real vector space using
methods from NLP. The embedding proposed here enables the
numerical representation of high-dimensional sequences. As
such, it enables the applications of standard tools, such as
Frontiers in Immunology | www.frontiersin.org 11
dimensional reduction and classification to these data. Thus,
obtaining meaningful numeric representations of immune
receptor sequences, which does not suffer from the curse of
dimensionality and can act as input to various machine learning
architectures, is necessary. It opens the door to countless
applications, developed in the past few years for natural
language processing, and widely used in different industries
including machine translation, sentiment analysis, auto-
completion, and many more, which can be adapted and
explored in the medical field for real-life problems.

Several studies specifically applied word embedding to
different types of biological data. Medical text analysis was
studied by (30–32), and (33); the “DNA2vec” (10) method
presents a distributed representation of nucleotide n-grams;
methods such as “Splicevec” by (34) and “Gene2vec” by (35)
focus on genomic sequence analysis. The work presented in
“ProtVec” (8), inspired our approach, as it suggests the use of
word2vec method for protein representation. This work shows
how such approach performs in tasks like protein family
classification, structure prediction and visualization, disordered
protein identification, and protein-protein interaction prediction
(36). also adapted this approach for the purpose of identifying
antimicrobial peptides. As in the case of word2vec and deep NLP
models, immune2vec can be effective as a pre-trained embedding
layer for deep NN models that use immune sequences as inputs.

In real natural language analysis, one can examine the results
of an embedding by simple measures, such as viewing the words
that cluster together on a 2-dimensional map, or examining the
relations between known words to understand the quality of the
model. In biological data, there is more than meets the eye, as
there are no semantically meaningful sequences, and deep
biological understanding is required to analyze and evaluate
the results. In addition, the problem becomes even more
complex when trying to represent a wide combination of
sequences, such as the entire immune receptor repertoire.
The proposed method is first of its kind, involving several
steps, multiple hyper-parameters and degrees of freedom.
A B

FIGURE 6 | (A) Model prediction total accuracy using different data sets as corpora for creating the embedding model. (B) Number of sequences in each corpus.
DS6 was generated by randomly sampling sequences from DS5.
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Bearing in mind these challenges, we built this work in steps,
each step designed to raise our confidence in the model, allowing a
scale-up in the level of complexity with each result. Following the
structure of a natural language, in which words compose sentences
and sentences compose whole texts, we examine short sequences of
amino acids as words, CDR3 sequences as sentences, and the
immune system repertoire as text. This last analogy is not
completely accurate, as the order of sentences in books or article
is meaningful, while the immune receptor repertoire data is a
collection of sequences without biologically relevant order or
context. Thus, we did not apply common text analysis tools, such
as doc2vec, but preferred to find a way to represent a repertoire by
an overall analysis of its set of sequences.

A comprehensive comparison between different AIRR-seq
embedding methods that would encompass the many dimensions
of AIRR-seq such as the type of chain (IGH, IGK, IGL, TRB, TRA,
etc.), type of signal (nucleotide/amino acid enriched motifs, changes
in the overall diversity of a repertoire, etc.), DNA library preparation
protocol, sequencing technology, etc., is of utmost importance. Such
a comparison falls outside the scope of the current manuscript, and
is therefore aimed for a future independent study.

Our work demonstrates that sequence embedding using NLP
methods, enables low-dimensional representations that preserve
relevant information about the sequencing data, such as n-gram
properties and sequence gene family classification. We show that
this information is meaningful, as we found clinical condition
indicators that enable classification of HCV patients. This
indicates that the embedding space can be used for feature
extraction and exploratory data analysis. At the computational
level, first, once our data is correctly transferred to numeric
representation, we can exploit the on-going developments from
other fields and adapt them to answer biological questions. The
field of machine learning and NLP is advancing in a rapid pace,
with a plethora of approaches and tools. Second, a corpus file can
be generated from non-labeled data, so a large pool of immune
receptor repertoire data can be used to build a large corpus for
several applications. Furthermore, once a labeled data-set is
available, it is easily transformed to numerical representations
and processed via the suggested pipeline to form a feature table
that can be analyzed by multiple approaches, and answer
different questions by changing the training labels.

While this work provides encouraging results on immune
system representation using NLP methods, there is a lot to be
done before the suggested methods can be clinically valuable. First, a
large amount of the data should be collected and incorporated into a
large corpus, which can be used to train a general immune
repertoire model independent of the effects of different conditions
and diseases that exist when basing a model on a single data set.
Second, a major challenge is exhibited in the clustering and feature
extraction phase of repertoire data. If we choose to keep a large
number of features, the data becomes sparse and hard to cluster in
high-dimensional space, calling for tailored approaches for the type
of data presented here. Future work should aim at elucidating the
effects of different training data sets and obtaining a better
understanding of the feature representations, develop further the
repertoire presentation approach, and extend the sequence level
Frontiers in Immunology | www.frontiersin.org 12
representation to include information about the specific antigens
that are associated with sets of receptors.

To conclude, Immune2vec embeds BCR and TCR sequences
in real vector space, using methods from natural language
properties. It shows great advantages, and we hope to continue
and further unravel this approach to a simple and robust
workflow that can be easily applied to new data sets.
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