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Abstract: Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease whose earliest
clinical manifestations are microvascular tone dysregulation and peripheral microcirculatory abnor-
malities. Following previous evidence of an association between circulating neurovascular guidance
molecules and SSc disturbed angiogenesis, here, we measured the levels of soluble neuropilin 1
(sNRP1), semaphorin 3E (Sema3E), and Slit2 by enzyme-linked immunosorbent assay in serum
samples from a large case series of 166 SSc patients vs. 110 healthy controls. We focused on their
possible correlation with vascular disease clinical features and applied logistic regression analysis
to determine which of them could better reflect disease activity and severity. Our results demon-
strate that, in SSc: (i) sNRP1 is significantly decreased, with lower sNRP1 serum levels correlating
with the severity of nailfold videocapillaroscopy (NVC) abnormalities and the presence of ischemic
digital ulcers (DUs); (ii) both Sema3E and Slit2 are increased, with Sema3E better reflecting early
NVC abnormalities; and (iii) higher Sema3E correlates with the absence of DUs, while augmented
Slit2 associates with the presence of DUs. Receiver operator characteristics curve analysis revealed
that both circulating sNRP1 and Sema3E show a moderate diagnostic accuracy. Moreover, logistic
regression analysis allowed to identify sNRP1 and Sema3E as more suitable independent biomarkers
reflecting the activity and severity of SSc-related peripheral microvasculopathy.

Keywords: systemic sclerosis; scleroderma; neurovascular guidance molecules; sNRP1; Sema3E;
Slit2; peripheral microvasculopathy; nailfold videocapillaroscopy; ischemic digital ulcers

1. Introduction

Systemic sclerosis (SSc, scleroderma) is a severe multisystem connective tissue dis-
ease that is dominated by the pathogenic triad of autoimmunity, widespread peripheral
microvasculopathy, and progressive cutaneous and visceral fibrosis eventually leading to
substantial organ dysfunction [1–3]. Peripheral microvascular tone dysregulation, manifest-
ing with Raynaud’s phenomenon (RP), as well as microcirculatory abnormalities, mirrored
by nailfold capillaroscopic changes, represent the earliest clinical manifestations of SSc
and may precede both cutaneous and organ fibrosis by months or years [1–3]. Such a
microvascular dysfunction is characterized by vascular repair impairment and defective an-
giogenesis culminating in capillary network disruption, and frequently leads to significant
peripheral ischemic manifestations such as digital ulcers (DUs) [4,5]. SSc-related ischemic
DUs are disabling and painful lesions that are often refractory to treatment and may result
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in severe complications including infections and gangrene, thus heavily compromising
patients’ quality of life [4,5].

It is broadly recognized that blood vessels and nerves share several anatomical and
structural similarities, both being organized in complex and branched networks following
parallel routes and requiring precise control over their guidance and growth [6,7]. In-
terestingly, it has been shown that, during their development, the nervous and vascular
systems communicate with each other in a neurovascular crosstalk, with vessels producing
signals that are able to attract axons to track alongside the pioneer vessels and, in turn,
nerves releasing signals able to guide blood vessel growth [6–10]. In this context, sev-
eral molecules with attractive and repulsive properties, here referred to as neurovascular
guidance molecules, have been reported to regulate the sprouting of both nerves and
blood vessels [8–10], and to be involved in different pathologic processes including tumor
growth/metastasis, nephropathy, as well as autoimmune diseases such as rheumatoid
arthritis and systemic lupus erythematosus [11–17]. As far as SSc is concerned, members
of semaphorin/plexin/neuropilin and slit/roundabout families have been recently im-
plicated in SSc-related disturbed neuroendothelial control of vascular tone, peripheral
microvasculopathy, and defective angiogenesis, with their circulating levels being signif-
icantly associated with different vascular disease manifestations [9,18–22]. In particular,
previous studies from our group demonstrated that circulating levels of the angiogenic
regulator soluble neuropilin 1 (sNRP1) progressively decreased in SSc patients, reaching
the lowest values in those with the most severe architectural microvascular changes, while
serum levels of semaphorin 3E (Sema3E) and Slit2 were increased, especially in patients
with early peripheral vascular involvement [18,20–22]. Although variations in the levels of
these neurovascular guidance molecules have been proposed as a useful tool for evaluating
microcirculatory abnormalities at different stages of SSc [9,18,20–22], it is worth noting that
the aforementioned studies have been conducted to assess a single molecule at a time and in
relatively small groups of patients. Based on this scientific background, the objective of the
present research work was to measure in parallel circulating levels of sNRP1, Sema3E, and
Slit2 by enzyme-linked immunosorbent assay (ELISA) in a larger case series of SSc patients,
focusing on the peripheral vascular disease features. Moreover, we carried out a logistic
regression analysis to define which of these neurovascular guidance molecules could better
and independently reflect the severity of SSc-related peripheral microvasculopathy.

2. Materials and Methods
2.1. Patients, Controls and Serum Sample Collection

Serum samples were collected from 166 patients fulfilling the American College of
Rheumatology (ACR)/European League Against Rheumatism (EULAR) 2013 classifica-
tion criteria for SSc [23] (144 women and 22 men; mean ± SD age 58.6 ± 13.7 years) and
recruited from the Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliero-
Universitaria Careggi (AOUC), Florence, Italy. Patients showing symptoms that were
common to other autoimmune, rheumatic, and/or connective tissue diseases were ex-
cluded from the study. SSc patients were not taking immunosuppressants or other disease-
modifying medications at the time of blood sample collection. A total of 110 age- and
sex-matched healthy individuals (96 women, 14 men; mean ± SD age 59.2 ± 13.1 years)
were used as controls; the presence of primary RP was considered as an exclusion criterion.
Fresh venous blood samples from both patients and controls were drawn and left to clot
for 30 min before centrifugation at 1500× g for 15 min. The serum was then collected and
stored in aliquots at −80 ◦C until use. The study was performed in agreement with the
Declaration of Helsinki and approved by the local institutional review board at the AOUC,
Florence, Italy (approval number: AOUC 69/13; approval date: 17 June 2013). All the
enrolled subjects provided written informed consent.
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2.2. Clinical Assessment

The patients were classified as limited cutaneous SSc (n = 111) or diffuse cutaneous SSc
(n = 55) according to the criteria of LeRoy et al. [24], and phenotypically assessed as recom-
mended [25]. All the patients reported the occurrence of RP. At the time of blood sampling,
the presence of ischemic DUs on the fingertips and other finger areas was documented, and
microvascular abnormalities on all 10 fingers were assessed by nailfold videocapillaroscopy
(NVC). Specifically, after being allowed to adapt to room temperature (20–22 ◦C) for a
minimum of 15 min, the patients were subjected to the analysis of their nailfolds in order
to evaluate the presence of pericapillary edema, microhemorrhages, enlarged and giant
capillaries, ramified or bushy capillaries, disorganization of the vascular distribution, and
loss of capillaries. The 3 different NVC patterns were identified as follows: (i) early NVC
pattern, with few enlarged/giant capillaries and capillary microhemorrhages, no evident
capillary loss, and a relatively well-preserved capillary bed; (ii) “active” NVC pattern, fea-
turing giant capillaries and capillary microhemorrhages, absence/presence of few ramified
capillaries, moderate capillary loss, and mild disorganization of the capillary structure;
and (iii) “late” NVC pattern, with irregular capillary enlargement, absence/presence of
few giant capillaries, no microhemorrhages, frequent ramified/bushy capillaries, severe
capillary loss with large avascular areas, and disorganization of the normal capillary archi-
tecture [26]. The main demographic, clinical, and serological characteristics of SSc patients
are summarized in Table 1.

Table 1. Demographic, clinical, and serological characteristics of SSc patients.

Characteristics SSc Patients (n = 166)

Mean ± SD age, years 58.6 ± 13.7

Sex
Male 22 (13.2)

Female 144 (86.8)

Disease subset
limited cutaneous SSc 111 (66.9)

diffuse cutaneous SSc 55 (33.1)

Autoantibody positivity
Antinuclear 153 (92.1)

Anticentromere 81 (48.8)
Antitopoisomerase I 57 (34.3)

Digital ulcers 52 (31.3)

NVC pattern
Early 53 (32.0)

Active 69 (41.5)
Late 44 (26.5)

Except where indicated otherwise, values are n (%) of subjects. NVC, nailfold videocapillaroscopy; SSc, sys-
temic sclerosis.

2.3. Assay for Serum sNRP1

The serum levels of sNRP1 were assessed by commercial quantitative colorimetric
sandwich ELISA (catalog No. E2101Hu; BT Lab Bioassay Technology Laboratory, Birm-
ingham, UK), according to the manufacturer’s protocol. Each sample was measured in
duplicate. Briefly, 50 µL of each standard (already containing the anti-NRP1 biotinylated
antibody) and 40 µL of each sample were added to the 96-well microtiter plate that was pre-
coated with a human antibody that was specific to NRP1. Next, 10 µL of biotinylated human
anti-NRP1 antibody was added to sample wells, while 50 µL of streptavidin-horseradish
peroxidase (HRP) was added to both standard and sample wells. After 60 min at 37 ◦C, the
plate was washed for 5 times, and each well was incubated for 10 min at 37 ◦C in the dark
with 50 µL of substrate solution A plus 50 µL of substrate solution B. The enzyme-substrate
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reaction was stopped with 50 µL/well of stop solution and the optical densities (OD) were
determined within 10 min using a microplate reader that was set to 450 nm. The detection
range and the sensitivity of the assay were 0.1–40 ng/mL and 0.054 ng/mL, respectively.

2.4. Assay for Serum Sema3E

The Sema3E serum levels were measured by a commercial colorimetric sandwich
ELISA (catalog No. LS-F7925; LifeSpan Biosciences, Seattle, WA, USA), according to
the manufacturer’s instructions. Once both standards and samples (100 µL/well) were
added to the 96-well microtiter plate that was precoated with a capture antibody specific for
Sema3E, the plate was left to incubate for 1 h at 37 ◦C. The liquid was then aspirated without
washing and the wells were incubated for 1 h at 37 ◦C with 100 µL of detection reagent
A working solution (biotin-conjugated detection antibody). The plate was subsequently
washed 3 times and incubated for 30 min at 37 ◦C with 100 µL/well of detection reagent
B working solution (HRP conjugate). Following an additional 5 washes, the reaction was
firstly developed in the dark with 90 µL/well of tetramethylbenzidine (TMB) substrate
solution for 10–20 min at 37 ◦C, and finally terminated by applying 50 µL of the sulfuric acid
stop solution. The absorbance of each well was read using a microplate reader at 450 nm.
The serum levels of Sema3E were read from a standard curve that was prepared using a
lyophilized protein standard that was reconstituted with the standard diluent included in
the kit. The detection range of the assay was 0.312–20 ng/mL, while its sensitivity was less
than 0.114 ng/mL. The serum Sema3E concentration was determined by comparing the
OD of each sample to the standard curve. Each sample was measured in duplicate.

2.5. Assay for Serum Slit2

The Slit2 levels in serum samples were quantified using a commercial colorimetric
sandwich ELISA (catalog No. MBS703756; MyBiosource, San Diego, CA, USA) according to
the manufacturer’s protocol. Each sample was measured in duplicate. Briefly, the standards
and samples (100 µL/well) were added to the 96-well microtiter plate that was precoated
with a specific anti-Slit2 capture antibody, incubated for 2 h at 37 ◦C, and subsequently
removed without washing. Next, the plate was incubated for 1 h at 37 ◦C with 100 µL/well
of the biotin-conjugated antibody, washed 3 times, and then left for 1 h at 37 ◦C with
100 µL of the avidin-conjugated HRP solution. Following 5 additional washes, the enzyme-
substrate reaction was developed in the dark by incubating the plate with 90 µL/well of
TMB for 15–30 min at 37 ◦C, and then terminated by applying 50 µL/well of stop solution.
The color change was measured spectrophotometrically at a wavelength of 450 nm within
5 min. The Slit2 concentration in the samples was then determined by comparing the
OD of the samples to those of the standard curve. The detection range of the assay was
0.78–50 ng/mL, while the sensitivity was less than 0.195 ng/mL.

2.6. Statistical Analysis

Statistical analysis was conducted with the SPSS software for Windows Version 28.0
(SPSS, Chicago, IL, USA). Descriptive statistics for continuous variables were reported as
the mean ± SD or median and interquartile range (IQR), while descriptive statistics for
categorical variables were expressed as number and percentage. To verify the accuracy of
serum sNRP1, Sema3E, and Slit2 levels for the diagnosis of SSc disease, the test performance
in terms of sensitivity (ability of the test to identify true positive subjects) and specificity
(ability of the test to identify true negative subjects) was evaluated for each molecule
by performing receiver operator characteristics (ROC) curve analysis followed by the
estimation of the area under the curve (AUC). According to Swets classification, if the
AUC = 0.5 the test is not accurate, it is poorly accurate for 0.5 < AUC ≤ 0.7, moderately
accurate for 0.7 < AUC ≤ 0.9, highly accurate for 0.9 < AUC < 1, and perfect when AUC
= 1 [27]. Youden’s index (=Sensitivity − [1 − Specificity]) was also applied to maximize
both sensitivity and specificity and evaluate the best cutoff value in our experimental data
distributions. The non-parametric Mann–Whitney U test for independent samples was
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used to analyze sNRP1, Sema3E, or Slit2 serum differences between two groups. Since
Mann–Whitney U test analyses revealed that circulating levels of sNRP1, Sema3E, and Slit2
were significantly different in SSc patients according to the NVC pattern and the occurrence
of DUs, we performed multiple logistic regression analysis including these three molecules
as independent variables and a single dependent variable each time (i.e., NVC pattern and
DUs). Odds ratios (ORs) with 95% confidence intervals (95% CIs) were determined. All
p-values are two-tailed, and p-values < 0.05 were considered statistically significant.

3. Results
3.1. Serum sNRP1, Sema3E, and Slit2 Levels in SSc Patients

Circulating levels of sNRP1 were significantly decreased in SSc patients (median
1.39 ng/mL, IQR 0.14–2.82 ng/mL) compared to the healthy controls (median 2.52 ng/mL,
IQR 0.68–5.36 ng/mL; p < 0.001; Figure 1A), while both serum Sema3E and Slit2 were
found to be significantly increased in SSc with respect to the controls (median 0.48 ng/mL,
IQR 0.19–0.80 ng/mL vs. median 0.23 ng/mL, IQR 0.00–0.37 ng/mL for Sema3E; median
9.97 ng/mL, IQR 7.97–14.44 ng/mL vs. median 8.75 ng/mL, IQR 6.22–11.25 ng/mL for
Slit2; p < 0.001 for both molecules; Figure 1B,C).

Figure 1. Serum levels of (A) sNRP1, (B) Sema3E, and (C) Slit2 in healthy controls and SSc patients.
The data are presented as box plots. Each box denotes the 25th to 75th percentiles. Lines outside
the boxes are the 10th and 90th percentiles. Lines inside the boxes denote the median, while dots
the outliers; p-values are indicated. Sema3E, semaphorin 3E; sNRP1, soluble neuropilin 1; SSc,
systemic sclerosis.

When evaluating the possible association of sNRP1, Sema3E, and Slit2 with different
SSc clinical phenotypes, none of the three circulating molecules was found to be significantly
different according both to the SSc cutaneous subset (i.e., limited cutaneous SSc and diffuse
cutaneous SSc) and to the distinct autoantibody pattern (data not shown).
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3.2. Diagnostic Accuracy of Circulating sNRP1, Sema3E, and Slit2 for SSc

The ROC curves and the corresponding AUC were plotted in order to assess the
diagnostic accuracy of the three assessed circulating molecules. In particular, the diag-
nostic accuracy of both sNRP1 and Sema3E was found to be moderate (AUC = 0.743,
95% CI 0.682–0.804 for sNRP1; AUC = 0.714, 95% CI 0.654–0.774 for Sema3E; Figure 2A,B),
while Slit2 diagnostic accuracy was proven to be poor (AUC = 0.622, 95% CI 0.554–0.691;
Figure 2C). In addition, for sNRP1, the ROC curve analysis revealed a cutoff value of
3.46 ng/mL, with 46.4% sensitivity and 92.8% specificity in discriminating between SSc
patients and healthy controls, while the cutoff value for Sema3E was 0.43 ng/mL, with
58.4% sensitivity and 83.6% specificity.

Figure 2. ROC curve (green line) plots for (A) sNRP1, (B) Sema3E, and (C) Slit2 in SSc patients vs.
healthy controls. AUC values and reference lines for each curve are shown. AUC, area under the
curve; ROC, receiver operator characteristic; Sema3E, semaphorin 3E; sNRP1, soluble neuropilin 1.

3.3. Association of Serum sNRP1, Sema3E, and Slit2 Levels with the Severity of SSc-Related
Peripheral Microvascular Damage

As a measure of the severity of peripheral microvascular damage, we further explored
the presence of a possible association of circulating sNRP1, Sema3E, and Slit2 with both
the NVC pattern and the occurrence of ischemic DUs. As far as NVC is concerned, cir-
culating sNRP1 levels were found to be lower in SSc patients with an active/late NVC
pattern (median 0.76 ng/mL, IQR 0.07–2.53 ng/mL) when compared with those with an
early NVC pattern (median 2.23 ng/mL, IQR 0.60–3.44 ng/mL; p < 0.001; Figure 3A). A
similar difference was found for Sema3E (median 0.41 ng/mL, IQR 0.11–0.64 ng/mL for
active/late NVC vs. median 0.88 ng/mL, IQR 0.51–1.15 ng/mL for early NVC; p < 0.001;



Life 2022, 12, 1056 7 of 12

Figure 3B), while no difference was detected for Slit2 according to the NVC pattern (median
10.51 ng/mL, IQR 8.08–14.59 ng/mL for active/late NVC vs. median 8.92 ng/mL, IQR
7.45–13.75 ng/mL for early NVC; Figure 3C). When compared to healthy controls, signifi-
cantly different serum levels of all the three molecules were found in SSc patients with the
active/late NVC pattern, with a decrease in sNRP1 and an increase in both Sema3E and
Slit2 (p < 0.001 for all comparisons; Figure 3A–C). Conversely, only Sema3E values were
significantly different in SSc patients with the early NVC pattern compared to the controls
(p < 0.001; Figure 3B).

Figure 3. Serum levels of (A) sNRP1, (B) Sema3E, and (C) Slit2 in healthy controls and SSc patients
stratified according to early and active/late nailfold videocapillaroscopic patterns. The data are
presented as box plots. Each box denotes the 25th to 75th percentiles. Lines outside the boxes are the
10th and 90th percentiles. Lines inside the boxes denote the median, while dots the outliers; p values
are indicated. Sema3E, semaphorin 3E; sNRP1, soluble neuropilin 1.

As far as ischemic DUs are concerned, both sNRP1 and Sema3E were significantly
lower in SSc patients with DUs (median 0.08 ng/mL, IQR 0.00–0.73 ng/mL for sNRP1
and median 0.22 ng/mL, IQR 0.00–0.54 ng/mL for Sema3E) with respect to those without
DUs (median 2.18 ng/mL, IQR 0.62–3.21 ng/mL for sNRP1 and median 0.56 ng/mL, IQR
0.34–0.95 ng/mL for Sema3E; p < 0.001 for both molecules; Figure 4A,B). The Slit2 values were,
instead, increased in SSc patients with DUs (median 12.75 ng/mL, IQR 9.13–16.11 ng/mL)
when compared to those without DUs (median 9.06 ng/mL, IQR 7.79–12.67 ng/mL;
p < 0.001; Figure 4C). In addition, patients with DUs had lower levels of circulating sNRP1
and higher levels of Slit2 compared to healthy controls (p < 0.001 for both comparisons;
Figure 4A,C). On the contrary, the Sema3E values were significantly different only in SSc
patients without DUs compared to the controls (p < 0.001; Figure 4B).
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Figure 4. Serum levels of (A) sNRP1, (B) Sema3E, and (C) Slit2 in healthy controls and SSc patients
with and without ischemic DUs. The data are presented as box plots. Each box denotes the 25th to
75th percentiles. Lines outside the boxes are the 10th and 90th percentiles. Lines inside the boxes
denote the median, while dots the outliers; p values are indicated. DUs, digital ulcers; Sema3E,
semaphorin 3E; sNRP1, soluble neuropilin 1.

3.4. Logistic Regression Model Combining Serum sNRP1, Sema3E, and Slit2 Levels in SSc Patients

Since, when comparing SSc subgroup medians, we found significant differences in
circulating sNRP1, Sema3E, and Slit2 according to the severity of the NVC pattern and
the presence of ischemic DUs, we finally performed multiple logistic regression analysis
combining the serum levels of the three molecules as independent variables, and one of the
two abovementioned disease phenotypes as a single dependent variable each time. The
results of the logistic regression analysis are shown in Table 2.

Table 2. Logistic regression analysis model combining serum sNRP1, Sema3E, and Slit2 levels.

Active/Late NVC DUs

sNRP1
OR (95% CI) 0.65 (0.50–0.83) 0.48 (0.35–0.66)

p <0.001 <0.001

Sema3E
OR (95% CI) 0.07 (0.02–0.21) 0.09 (0.02–0.30)

p <0.001 <0.001

Slit2
OR (95% CI) 0.99 (0.97–1.01) 0.99 (0.99–1.00)

p 0.335 0.479
CI, confidence interval; DUs, digital ulcers; NVC, nailfold videocapillaroscopy; OR, odds ratio.

4. Discussion

Following the previously reported associations between the serum levels of neu-
rovascular guidance molecules and SSc-related peripheral vascular disease manifesta-
tions [9,18,20–22], the results of the present case-control study, carried out on a large cohort
consisting of 166 SSc patients vs. 110 healthy controls, demonstrated that: (i) circulating
levels of sNRP1 are significantly decreased in SSc, with lower sNRP1 correlating with
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the severity of NVC abnormalities and the presence of ischemic DUs; (ii) both circulating
Sema3E and Slit2 are increased in SSc, with Sema3E better reflecting early NVC abnormal-
ities; and (iii) higher Sema3E correlates with the absence of DUs, while augmented Slit2
significantly associates with the presence of DUs. Of note, ROC curve analysis revealed that
both sNRP1 and Sema3E serum levels show a moderate diagnostic accuracy. In addition,
the findings of our logistic regression analysis allowed us to discriminate that, among
the three neurovascular guidance molecules, sNRP1 and Sema3E may be better suitable
as independent biomarkers reflecting the activity and severity of SSc-related peripheral
microvasculopathy. Moreover, the evidence that sNRP1 levels in SSc patients with early
NVC pattern are comparable to those in healthy controls but significantly higher than in
patients with an active/late NVC pattern may indicate that, rather than being useful for
early diagnosis, they might be employed as marker of microvascular disease progression.
Conversely, since the Sema3E levels rise, particularly in patients with an early NVC pattern
followed by their decrease with progression of microvascular abnormalities, it can be
speculated that this molecule may better suited as early diagnostic marker.

A considerable body of evidence indicates that a dysregulation in neuroendothelial
control mechanisms, together with structural and functional peripheral microvascular
alterations clinically manifesting with RP and distinctive NVC patterns, represent the
initial manifestations of SSc and may precede skin and visceral fibrosis by months or
years [9,28–30]. Indeed, peripheral microvasculopathy can be easily observed with NVC, a
non-invasive technique that is included in the 2013 ACR/EULAR recommendations for
the diagnosis and management of SSc that allows both the qualitative and quantitative
evaluation of the microcirculation, thus enabling early detection of abnormalities [23,31,32].
Notably, plenty of literature indicates that NVC changes in SSc patients are often accom-
panied by abnormal levels of angiogenic/angiostatic factors acting on endothelial cells,
some of which have been proposed as vascular biomarkers [4,33,34]. In recent years, in-
creasing studies have demonstrated that endothelial cells express neuropilins, plexins, and
roundabouts, all axon guidance molecule receptors that interact with their soluble neu-
roendothelial ligands, such as semaphorins and slits, to control endothelial cell sprouting
and angiogenesis [9,35]. Given their regulatory role in angiogenesis, these molecules have
been implicated in the pathophysiology of different disorders including cancer, diabetic
retinopathy, and nephropathy, as well as autoimmune diseases such as multiple sclero-
sis, rheumatoid arthritis, and systemic lupus erythematosus [9,11–17]. As far as SSc is
concerned, our previous in vitro findings demonstrated a significant contribution of the
neurovascular guidance molecules NRP1, Sema3E, and Slit2 in the dysregulation of the
angiogenic process [9,18,20–22]. Moreover, NRP1 has been recently suggested as a poten-
tial biomarker to identify SSc patients who are at risk of developing pulmonary arterial
hypertension [19]. Our current data strikingly fits into this scenario, adding both sNRP1
and Sema3E to the considerable list of potential circulating biomarkers that are useful to
monitor the degree and, possibly, the progression of SSc peripheral microvasculopathy,
with an increase in the serum Sema3E better reflecting early microvascular involvement,
while a decrease in the serum sNRP1 mirroring more severe microvascular changes which
can result in the development of complications such as ischemic DUs. Interestingly, besides
SSc, which is known to be characterized by peripheral microvascular dysfunction culmi-
nating in capillary loss not compensated by sufficient angiogenesis, alterations in NRP1
and Sema3E protein levels have also been reported in several types of cancer, a pathologic
condition that is instead characterized by excessive angiogenesis [36–43]. In the circulation,
increased sNRP1 levels were associated with poor prognosis in patients with melanoma
and early breast cancer [37,38], while to our knowledge, no data about serum Sema3E in
tumors have been reported so far. Thus, the evidence that serum levels of Sema3E may
reflect the severity of SSc-related microvascular disease may pave the way for future studies
that are aimed at assessing this neuroendothelial molecule in the circulation of patients
with different pathologies that are characterized by either an excess or lack of angiogenesis.
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Our findings that both sNRP1 and Sema3E circulating levels show a moderate diagnos-
tic accuracy for SSc, as revealed by ROC curve analysis and AUC estimation, also deserve
attention. Indeed, if circulating sNRP1 has already been proposed as a possible diagnostic
biomarker for different diseases such as cervical cancer, cervical intraepithelial neoplasia,
and hepatocellular carcinoma [36,39], to our knowledge here we explored for the first time
the diagnostic power of circulating Sema3E. It is worth noting that previous studies from
our group reported altered levels of circulating sNRP1 and Sema3E also in subjects who
were suffering from RP, with decreased sNRP1 in patients with a very early diagnosis of
SSc (VEDOSS) and elevated Sema3E in subjects with primary RP [20,21]. Thus, we believe
that further insights into the potential diagnostic value of these markers could arise from
future longitudinal studies monitoring changes in circulating levels of sNRP1 and Sema3E
in VEDOSS patients who progress into an established SSc disease. In addition, considering
the cross-sectional nature of our data, we acknowledge that further prospective studies
on large cohorts of SSc patients are required to ascertain whether, over time, changes in
serum sNRP1 and Sema3E may correlate with the progression of NVC abnormalities and
the development of certain complications such as DUs and gangrene, and whether sNRP1
and Sema3E levels at diagnosis may be predictive of a more severe peripheral vascular
disease course, possibly helping in the choice of treatment. In particular, future longitu-
dinal analyses could help to clarify the usefulness of circulating Sema3E as a biomarker,
especially when considering that our data do not seem to suggest a one-way transition of
its levels along with the disease development and progression. Finally, we are confident
that our promising results will stimulate further research that is aimed at unveiling the
possible contribution of additional members of neurovascular guidance molecule families
to the pathophysiology and clinical phenotype of SSc.
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