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Simple Summary: Interleukin-10 is a cytokine that exhibits potent anti-inflammatory characteristics
that play an essential role in limiting the host’s immune response to pathogens and regulating
the growth or differentiation of various immune cells. Moreover, interleukin-10 prediction via
conventional approaches is time-consuming and labor-intensive. Hence, researchers are inclined
towards an alternative approach to predict interleukin-10-inducing peptides. Additionally, numerous
in silico tools are available to predict T cell epitopes. These methods generally follow a direct or
indirect approach where they directly predict cytotoxic T-lymphocyte epitopes rather than major
histocompatibility complex binders or indirectly predict single components of the T cell recognition
pathway. However, very few studies are available that address cytokine-specific predictions. Our
research utilized a computer-aided approach to develop a model to predict IL-10-inducing peptides.
This study outperformed the existing state-of-the-art method and achieved an accuracy of 87.5%
and Matthew’s correlation coefficient (MCC) of 0.755 on the hybrid feature types and outperformed
an existing state-of-the-art method based on dipeptide compositions that achieved an accuracy
of 81.24% and an MCC value of 0.59. Therefore, our model is promising to assist in predicting
immunosuppressive peptides that induce interleukin-10 cytokines.

Abstract: Interleukin (IL)-10 is a homodimer cytokine that plays a crucial role in suppressing inflam-
matory responses and regulating the growth or differentiation of various immune cells. However, the
molecular mechanism of IL-10 regulation is only partially understood because its regulation is envi-
ronment or cell type-specific. In this study, we developed a computational approach, ILeukin10Pred
(interleukin-10 prediction), by employing amino acid sequence-based features to predict and identify
potential immunosuppressive IL-10-inducing peptides. The dataset comprises 394 experimentally
validated IL-10-inducing and 848 non-inducing peptides. Furthermore, we split the dataset into
a training set (80%) and a test set (20%). To train and validate the model, we applied a stratified
five-fold cross-validation method. The final model was later evaluated using the holdout set. An extra
tree classifier (ETC)-based model achieved an accuracy of 87.5% and Matthew’s correlation coefficient
(MCC) of 0.755 on the hybrid feature types. It outperformed an existing state-of-the-art method
based on dipeptide compositions that achieved an accuracy of 81.24% and an MCC value of 0.59.
Our experimental results showed that the combination of various features achieved better predictive
performance..

Keywords: interleukin-10; immunosuppressive peptides; machine learning; anti-inflammatory;
cytokines; extra tree classifier
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1. Introduction
1.1. Roles of Interleukin (IL)-10 in Immune Responses

The complex network system of biological processes that protect organisms against
infection is known as the immune system. This system comprises several crucial cell types,
such as B cells, T cells, antigen-presenting cells (APCs), and the biochemical mediators
that help communicate and relay signals. All these factors have essential roles in the
immune system in defending the body against harmful substances. However, sometimes
our immune system mistakenly attacks our own body and damages its tissue, causing
autoimmune diseases. Recent advances suggested that deregulated function of the immune
system contributes to the development of several disorders, including cancers and autoim-
mune diseases [1]. Almost 4% of the world’s population suffers from one of more than
80 distinct autoimmune diseases [2]. Immunosuppression-mediated anti-inflammatory
cytokines can address the deregulated function of the immune system. These cytokines are
an array of immunoregulatory molecules that limit the proinflammatory cytokine response,
including interleukin (IL)-1 receptor a (1Ra), IL-4, IL-10, IL-11, IL-13, IL-33, IL-35, and IL-37
and transforming growth factor (TGF)-β.

IL-10 is a well-known and widely studied cytokine that Mossman and Coffman first
discovered in 1988. This novel immune mediator is secreted by mouse type 2 T-helper (Th2)
cell clones that inhibit the synthesis of IL-2 and interferon (IFN)-γ in Th1 cell clones, initially
termed the cytokine synthesis inhibitory factor (CSIF), and later named IL-10 [3]. IL-10 is
known for its essential pleiotropic immunoregulatory properties with multiple biological
effects in different cell types [4]. This immunosuppressive cytokine is produced by several
immune cells during the immune response, including monocytes, macrophages, Th2 cells,
mast cells, natural killer (NK) cells, and a cluster of differentiation-positive (CD4+), CD25+,
forkhead box p3 (Foxp3)+, and regulatory T (Treg) cells [5]. However, CD4+ cells are the
principal producers among all mature T cells [6].

The IL-10 receptor (IL-10R) mediates the immunosuppressive activities of IL-10. This
receptor comprises two subunits IL-10R1 and IL-10R2 that belong to the class II family of
cytokine receptors (CRF2). The CRF2 family includes IL-19, IL-20, IL-22, IL-24/melanoma
differentiation-associated gene (Mda)-7, IL-26, and interferons (IFN-α, -β, and -γ) [7]. The
binding affinity between IL-10 and IL-10R is very high; however, this can vary among
species. For example, mouse IL-10 can block the binding of human IL-10 to mouse but not
human cells [8]. After binding occurs between IL-10 and IL-10R, the complex activates
a Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway to
phosphorylate the receptors, creating docking sites for signaling molecules for STAT family
members that are required for IL-10’s immunoregulatory effects [9].

IL-10 has a wide range of functions in hemopoietic cells, including well-known anti-
inflammatory effects by macrophage deactivation and suppression of tumor necrosis factor
(TNF)-α, IL-1β, and IL-6 [10]. Despite all the essential roles played by IL-10, certain chronic
inflammatory diseases have been linked to overproduction or inappropriate production of
IL-10, such as inflammatory bowel disease and several other autoimmune diseases [11]. Pre-
vious studies demonstrated that a deficiency in IL-10 induces autoimmune disease, includ-
ing a wide range of experimental models, such as experimental autoimmune neuritis [12],
systemic lupus erythematosus [13], experimental autoimmune encephalomyelitis [14], and
rheumatoid arthritis [15]. Numerous clinical studies attempted to assess the efficacy of
recombinant IL-10 in treating autoimmune diseases. Unfortunately, the results of most
clinical trials did not meet expectations [16].

1.2. Literature Review

The fundamental step in applying bioinformatics and analytical methods to vaccine
development is to determine and discriminate epitopes that are potentially immunoprotec-
tive from those that are not [17]. It is currently well known that epitopes link to MHC class
I and II molecules in the binding groove by forming interactions between their R group
side chains and pockets located on the floor of MHC [18,19]. This knowledge has led to
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several T cell epitope-mapping algorithms that rapidly identify putative T cell epitopes [20].
Tools developed during this period have one basic similarity: they focus on individual
components of the T cell recognition pathway using either a direct or indirect approach [21].
Following the direct approach, the prediction tools directly predict cytotoxic T lymphocytes
(an essential immune cell to identify antigens on cells and help eliminate them) instead
of MHC binders, such as CTLPred [22] and NetCTLpan [23]. The CTLPred method is
based on artificial neural network (ANN) and support vector machine (SVM) techniques
and allows combined predictions using these two approaches. The NetCTLpan server is
based on ANN techniques to predict CTL epitopes, which can be restricted to any MHC
molecules of a known protein sequence.

MHC class I binder’s prediction tools follow the indirect approach. These tools focus
only on one component instead of T cell epitopes, e.g., nHLApred [24], a hybrid approach
to predict MHC class I-restricted T cell epitopes. ProPred1 is a matrix-based method to
predict MHC-binding sites in an antigenic sequence for MHC class I alleles [25]. TAPPred
is a prediction tool that predicts transporters associated with antigen processing (TAP)-
binding peptides that remarkably help identify MHC class I-restricted T cell epitopes [26].
These tools are currently very efficient and have wide allelic coverage with high prediction
accuracies. Notably, these methods predict T cell epitopes by following a direct or indirect
approach but fail to provide information on the release of cytokines. To address this issue,
Raghava’s group took into account and initiated the development of cytokine-specific
prediction methods, for example, IL-4Pred [27], IL-10Pred [21], and IL-6Pred [28]. In this
study, we developed a classification-based prediction method using a dataset (IL-10Pred)
of the state-of-the-art method. This study involved various sequence-based compositional
and physicochemical feature descriptors to identify and predict peptides that induce IL-10
and those that do not induce IL-10.

1.3. Challenges in Predicting IL-10-Inducing Peptides

Immune cells resist inflammation by producing anti-inflammatory cytokine, IL-10.
However, cytokines have a short half-life in circulation, and their impacts on cell activ-
ities are limited. Consequently, IL-10 therapy using recombinant native IL-10 has had
only limited success in treating human diseases [29] and have been shown to cause side
effects. Moreover, IL-10 as a therapeutic tool was reported to cause side effects in several
studies [30]. Contrarily, peptide-based epitopes that induce IL-10 may be a promising
alternative [31]. However, there are numerous challenges during the development phase,
including epitope identification, lack of immunogenicity, clinical evaluation, immune
evasion, and many more. Additionally, these methods are labor-intensive with high manu-
facturing costs. The biggest challenge for developing in silico models for such predictions is
the requirement for factual data that have been experimentally validated. In this study, we
retrieved a dataset from the IL-10Pred state-of-the-art method derived from the Immune
Epitope Database (IEDB) [32].

2. Materials and Methods
2.1. Dataset Acquisition and Preprocessing

To construct the interleukin-10 prediction model (ILeukin10Pred), we collected
a benchmark dataset from a published article on IL-10Pred [21]. This dataset was derived
from the IEDB, the largest repository of immune epitopes [32]. To build a positive dataset, all
experimentally validated MHC II binders that trigger the release of IL-10 were extracted and
denoted as IL-10-inducing peptides. Those MHC II binders that were not responsible for
triggering IL-10 were assigned as non-IL-10-inducing peptides. The final dataset consisted
of 394 IL-10-inducing and 848 non-inducing peptide sequences. Because the sequence
numbers of positive (IL-10-inducing peptides) and negative instances were extremely
imbalanced (the number of negative instances was almost double the number of positive
instances), we used Azure Machine Learning Studio [33] to perform SMOTE (Synthetic
Minority Oversampling Technique).
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2.2. Feature Encoding

In the machine learning-based prediction method, the first critical step was amino
acid sequence encoding, which plays a crucial role in the success of these methods. This
study used six feature representation schemes of amino acid composition (AAC); dipeptide
composition (DPC); composition, transition, and distribution (CTD); quasi-sequence order
(QSO); sequence order coupling (SOC); and autocorrelation (AutoC). We used the BioTrian-
gle web server [34], a comprehensive molecular representation platform that allows users
to generate various molecular descriptors of proteins or peptides. All feature descriptors
used in this study are briefly described here.

2.2.1. Amino Acid Composition (AAC)

The AAC is defined as the frequency of each amino acid in a peptide or protein
sequence [35]. The frequency of all naturally occurring amino acids can be calculated using
Equation (1):

f (i) =
N(i)

N
, i ∑{A, C, D, E, . . ., Y} (1)

where N(i) is the number of amino acid type i, and N is the length of the peptide or
protein sequence.

2.2.2. Dipeptide Composition (DPC)

The DPC is defined as the frequency of two amino acid types in a peptide or protein
sequence [36]. This scheme generated a total of 400 feature descriptors. The DPC is defined
in Equation (2):

D(rs) =
Nrs

N − 1
r, s ∑{A, C, D, E, . . ., Y} (2)

where Nrs is the number of dipeptides represented by amino acid types r and s.

2.2.3. Composition, Transition, and Distribution (CTD)

The CTD feature descriptor represents the distribution of amino acid patterns for
particular structural and physicochemical properties, such as hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge, secondary structures, and solvent
accessibility of the peptide or protein sequences [37–40]. Composition is defined as the
number of amino acids of an individual property divided by the total number of amino
acids. Transition measures the percentage frequency with which amino acids of another
property follow amino acids of a specific property. Distribution measures the chain length
within which the first 25%, 50%, 75%, and 100% of the amino acids of a distinct property
are located.

2.2.4. Quasi-Sequence Order (QSO)

QSO descriptors are derived from the distance metrics in between 20 amino acids [41],
as proposed by Chou et al. [42]. For each amino acid type, type-1 QSO (Xr) can be defined
as in Equation (3):

Xr =
fr

∑20
r=1 fr + w ∑

maxlag
d=1 τd

r = 1, 2 . . . , 20 + maxlag (3)

where fr is the normalized occurrence of amino acid type i, and w is a weight factor (w = 0.1)
for the first 20 QSO descriptors. The type-2 QSO (Xd) is defined as in Equation (4):

Xd =
wτd − 20

∑20
r=1 fr + w ∑

maxlag
d=1 τd

d = 21, 22 . . . , 30 + maxlag (4)
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2.2.5. Sequence Order Coupling (SOC) Number

The d-th rank SOC number is defined by Equation (5):

τd d =
N−d

∑
i−1

(di,i+d)
2 d = 1, 2, 3, . . ., nlag (5)

2.2.6. Autocorrelation (AutoC)

AutoC descriptors are defined based on the distribution of amino acid properties
along the sequence. There are three different AutoC descriptors, viz., Geary, Moran, and
Moreau-Broto. Moran and Geary AutoC descriptors can be expressed by Equations (6), (7),
and (8), respectively:

ACl =
∑N−1

i=1 PiPi+l

N − l
l = 1, 2, 3, 4 (6)

MAl =
1

N−l ∑N−l
i−1 (Pi − P) (Pi+1 − P)
1
N ∑N

i=1 (Pi − P)2 l = 1, 2, 3, 4 (7)

GAl =

1
2(N−l) ∑N−l

i=1 (Pi − Pi+l)
2

1
N−1 ∑N

i=1 (Pi − P)2 l = 1, 2, 3, 4 (8)

where l is the autocorrelation lag, Pi and Pi+l are the properties of amino acids at respective

positions i and i + l, and P is the average value of property P, P =
N
∑

i=1
Pi/N.

2.3. Imbalanced Dataset Handling by Oversampling

Once all features were generated, we normalized the data and used the synthetic
minority oversampling technique to avoid biases toward the majority class (non-IL-10-
inducing peptides). The SMOTE approach oversampled data of the minority class by
generating synthetic data [43]. This approach is widely used for imbalanced datasets. This
method is based on the nearest neighbors and predicted by Euclidean distances between
data points in the feature space. In our study, we used 100% oversampling, which means
that the number of synthetic samples created is always a multiple of 100. Hence, the
number of minority classes was doubled. For each minority instance, a k number of nearest
neighbors was found to belong to the same class:

K = SMOTE%/100 (9)

Differences between the feature vector of the considered instance and feature vectors
of the k-nearest neighbors were found. So, the k number of difference vectors was obtained.
The k difference vectors were multiplied by a random number between 0 and 1 (excluding
0 and 1). After being multiplied by the random numbers, the difference vectors were added
to the considered instance (original minority instance) feature vector at each iteration. The
dataset after applying the SMOTE method is shown in Figure S1.

2.4. Machine Learning Algorithms

Classification is a crucial issue in data mining. For a given database of records,
each assigned with a class label, a classifier generates a concrete and comprehensive
overview of each class that can be used for further classification [44]. Nowadays, many
classifiers with different virtues are used for binary classification tasks. In this study, we
used PyCaret, a newly developed open-source, low-code, python-based machine learning
library that allows users to evaluate the performances of various machine learning models
together. This library comprises 15 different machine learning classifiers, such as extra
trees classifier (ETC), extreme gradient boosting (XGB), light gradient boosting machine
(LGBM), random forest (RF), ada boost classifier (ABC), logistic regression (LR), SVM-



Biology 2022, 11, 5 6 of 18

linear kernel, naive Bayes (NB), decision tree (DT), ridge classifier, K-nearest neighbor
(KNN) classifier, quadratic discriminant analysis (QDA), linear discriminant analysis (LDA)
CatBoost classifier, and gradient boosting classifier (GBC). At first, we implemented all
machine learning models together to train and evaluate the model. Further, we optimized
the accuracy metric to sort the top 3 models from the highest accuracy to the lowest accuracy.
The top 3 models are briefly described here. ETC is an ensemble machine learning model
that generates many unpruned decision trees from training datasets and uses major voting
from decision trees for classification [45]. CatBoost stands for categorical boosting, and
is an algorithm for gradient boosting on decision trees [46]. LGBM is another gradient
boosting framework based on a decision tree that enhances the model’s efficiency with
minimal memory usage [47].

2.5. Computational Framework

The computational framework of our proposed method for predicting IL-10-inducing
peptides is illustrated in Figure 1. The analytical workflow comprised various steps,
including dataset collection from the IL10Pred server [22], feature extraction, imbalanced
data handling, feature selection, application of machine learning algorithms, and model
evaluation. The first step was to download the IL-10 dataset from the state-of-the-art
method. In the following steps, we used the BioTriangle webserver to extract and encode
six sequence-based compositional and physicochemical features [34]. Moreover, the SMOTE
method was applied to balance the dataset.
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Figure 1. The systematic architecture of the proposed method, Ileukin10Pred, which included
dataset collection, feature generation, SMOTE, feature selection, machine learning algorithms, and an
evaluation process.

The dataset was further divided into 80% training data and 20% test data. We then
trained and validated the model using stratified five-fold cross-validation. Additionally,
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a ‘classic’ feature selection method was applied that uses permutation feature importance
techniques to select important discriminative biological features to feed into the machine
learning models. The final model was evaluated on the holdout set. The holdout set was
solely used for a performance assessment of our model; it was never used at any stage
of model building or feature selection. Our system architecture represents the systematic
procedures followed in this study. The name of our proposed method is ILeukin10Pred.

2.6. Performance Evaluation

Evaluating a model’s performance plays a crucial role in predictive modeling. Hence,
selecting proper evaluation matrices is vital for any machine learning model. Here, we
used various popular statistical measures to evaluate model predictions, such as the area
under the receiver operating characteristics (ROC) curve (AUC), precision–recall (PR) curve,
precision, sensitivity (Sen.)/recall, specificity (Spe.), accuracy (Acc.), and the Matthews cor-
relation coefficient (MCC). The AUC is a widely accepted evaluation metric for classification-
based machine learning models. The ROC curve is created by plotting sensitivity against
[1-specificity]. This metric shows the ability of a model to discriminate the classes. The
higher the AUC is, the better the prediction model is. Like the ROC curve, PR is used
for evaluating the performance of binary classification algorithms when the classes are
imbalanced, and the precision indicates how precise the positive predictions are. The higher
the precision is, the lower the false positives are and vice versa, as shown in Equation (10),
while the recall or sensitivity measures the number of correctly predicted positive outcomes
from all true positives. The higher the recall is, the lower the false negatives are and vice
versa as shown in Equation (11). Another way to calculate the PR curve is by finding the
average precision (AP) as shown in Equation (12), where Pn is the precision and Rn is the
recall at the nth threshold. Specificity, as represented in Equation (13), measures a negative
outcome as positive (a false positive) out of the total true negatives. Accuracy is defined as
the percentage of true predictions for the test data and can be calculated by Equation (14),
with the true positives being divided by the total number of predictions. Last, we used
one of the most reliable statistical rates, MCC, as shown in Equation (15). Based on the
proportion of each class in its formula, its score is high only if the classifier performs well
for both negative and positive elements:

Precision =
TP

TP + FP
(10)

Sen. = Recall =
TP

TP + FN
(11)

AP = ∑(Rn − Rn−1)Pn (12)

Spe. =
TN

TN + FP
(13)

Acc. =
TP + TN

TP + TN + FP + FN
(14)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

3. Results
3.1. Hyper-Parameters Tuning

Our machine learning model for IL-10 peptide prediction consisted of multiple hyper-
parameters. To tune the hyper-parameters, we performed stratified 5-fold cross-validation.
The hyper-parameters were tuned using a random grid search method. The parameters of
our best models are mentioned as follows:
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3.1.1. ET Classifier

n estimators = 200, criterion = ‘gini’, max depth = 6, min samples split = 7, min sam-
plesleaf = 4, min weight fraction leaf = 0.0, max features = 1.0, max leaf nodes = None, min
impurity decrease = 0.0, bootstrap = False, oob score = False, n jobs =−1, random state = 123,
verbose = 0, warm start = False, class weight = balanced subsample, ccp alpha = 0.0, max
samples = None.

3.1.2. LGBM Classifier

Boosting type = gbdt, class weight = None, colsample bytree = 1.0, importance type
= split, learning rate = 0.1, max depth = −1, min child samples = 20, min child weight =
0.001, min split gain = 0.0, n estimators = 100, n jobs = −1, num leaves = 31, objective =
None, random state = 123, reg alpha = 0.0, reg lambda = 0.0, silent = True, subsample = 1.0,
subsample for bin = 200,000, subsample freq = 0.

3.1.3. CatBoost Classifier

Nan mode = Min, eval metric = Logloss, iterations = 1000, sampling frequency = Per
Tree, leaf estimation method = Newton, grow policy = SymmetricTree, penalties coefficient = 1,
boosting type = Plain, model shrink mode = Constant, feature border type = GreedyLogSum,
bayesian matrix reg = 0.10, l2 leaf reg = 3, random strength = 1, rsm = 1, boost from average
= False, model size reg = 0.5, pool metainfo options={‘tags’:{}}, subsample = 0.8, use best
model = False, class names = [0, 1], random seed = 123, depth = 6, posterior sampling =
False, border count = 254, classes count = 0, auto class weights = None, sparse features
conflict fraction = 0, leaf estimation backtracking = AnyImprovement, best model min trees
= 1, model shrink rate = 0, min data in leaf = 1,loss function = Logloss, learning rate = 0.01,
score function = Cosine, task type = CPU, leaf estimation iterations = 10, bootstrap type =
MVS, max leaves = 64.

3.2. Analysis of Amino Acid Position Preferences

In this section, we investigated the position preference of amino acid residues for both
IL-10-inducing peptides and non-IL-10-inducing peptides. Here, we considered two crucial
physicochemical properties (charge and hydrophobicity) of the amino acid residues that
play vital roles in anti-inflammatory peptides. Furthermore, Ialenti et al. reported that
the anti-inflammatory activity of a molecule is in the N-terminal region [48]. As a proof
of concept, we further investigated the position preference of amino acids with the help
of a two-sample logo (TSL). The height of the peptide logo was scaled (t-test by p < 0.05)
for statistical significance. For the preference of amino acid residues at both the N and
C terminals, we considered the average peptide length (i.e., 16 amino acid residues) of
IL-10-inducing and non-IL-10-inducing peptides. The first eight residues represent the
N-terminal, and the last eight residues represent the C-terminal.

In Figure 2, we show the position preferences of positively and negatively charged
amino acid residues for both datasets. Our analysis revealed that the preferences of posi-
tively charged residues were abundantly present in IL-10-inducing peptides like histidine
(H) at the 1st position, arginine (R) at the 2nd and 6th positions of the N-terminal, and lysine
(K) at the 9th, and arginine at the 12th and 15th positions of the C-terminal. Conversely, for
non-IL-10-inducing peptides, a negatively charged residue (aspartic acid, D) was present at
the 3rd position of the N-terminal and 10th position of the C-terminal. Additionally, we
made other observations based on hydrophobicity, and we found that leucine (L) frequently
appeared at the 3rd, 4th, 5th, 7th, 10th, and 14th positions and phenylalanine at the 8th
and 13th positions. However, for non-IL-10-inducing peptides, alanine (A) was more
predominant at the 1st, 4th, and 5th positions of the N-terminal and 9th and 14th positions
of the C-terminal.
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Figure 2. Two-sample logo showing the preference of positively charged and hydrophobic residues
in IL-10-inducing peptides and non-IL-10-inducing peptides at different positions. The first eight
positions represent the N-terminus of peptides, and the last eight positions represent the C-terminus
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3.3. Compositional Analysis of IL-10 Datasets

The composition of amino acids of any peptide defines its function and quality. Here,
we conducted a composition analysis of IL-10-inducing and non-IL-10-inducing peptides.
The average compositions of amino acids for both datasets are shown in the bar plot of
Figure 3. In terms of hydrophobic and positively charged residues, the compositional
analysis revealed that among 20 amino acids, 12 of them were dominant in IL-10-inducing
peptides, in which positively charged residues were arginine (R) and histidine (H), and
hydrophobic residues were isoleucine (I), leucine (L), methionine (M), phenylalanine (F),
and tyrosine (Y). In contrast, in non-IL-10-inducing peptides, hydrophobic residues of
alanine (A), valine (V), and tryptophan (W) were dominant, whereas lysine (K) was the
only dominant positively charged residue. Interestingly, the amino acids found in IL-10-
inducing peptides had great significance in terms of immune responses.
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3.4. Machine Learning Model Prediction of Single Feature Types

Each biological feature in our experiment was evaluated separately. Here, we used
six distinct (i.e., AAC, DPC, CTD, QSO, SOC, and AutoC) sequence, structure, and physic-
ochemical features to delineate their roles in distinguishing IL-10-inducing and non-IL-
10-inducing peptides. We performed stratified five-fold cross-validation on the training
dataset to fit and evaluate the model multiple times. For feature selection, we applied
the ‘classic’-based feature selection method. Further, the performance of our model was
assessed using a holdout/test set that was never used at any stage of model building
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or feature selection, so the performance was evaluated only one time. The predictive
performance of the top three models (ETC, CatBoost, and LGBM) for the training with
their means ± standard deviations (SDs), and test dataset results are shown in Table 1.
We compared the accuracy, AUC, and MCC values of different algorithms based on the
above-mentioned features. The experimental results showed that the AAC descriptors of
the LGBM classifier achieved the highest accuracy of 85.4%, with AUC and MCC values of
0.903 and 0.712, respectively.

Table 1. Performances of machine learning models based on single-feature types for the benchmark
training and test datasets. Values shown are the mean ± standard deviation for the training dataset.

Training Set

Feature
ETC CatBoost LGBM

Acc. % AUC MCC Acc. % AUC MCC Acc. % AUC MCC

AAC 82.3 ± 0.022 0.906 ± 0.013 0.647 ± 0.046 86.1 ± 0.022 0.920 ± 0.018 0.722 ± 0.045 85.3 ± 0.017 0.919 ± 0.014 0.707 ± 0.035

DPC 86.5 ± 0.008 0.942 ± 0.004 0.730 ± 0.017 84.2 ± 0.010 0.922 ± 0.011 0.685 ± 0.021 85.4 ± 0.015 0.920 ± 0.012 0.709 ± 0.029

CTD 84.6 ± 0.014 0.915 ± 0.005 0.693 ± 0.027 85.4 ± 0.013 0.912 ± 0.010 0.708 ± 0.025 85.6 ± 0.023 0.913 ± 0.012 0.704 ± 0.046

AutoC 82.9 ± 0.021 0.905 ± 0.012 0.664 ± 0.042 84.9 ± 0.014 0.903 ± 0.009 0.699 ± 0.029 84.8 ± 0.015 0.907 ± 0.014 0.696 ± 0.029

QSO 86.8 ± 0.013 0.925 ± 0.009 0.7369 ± 0.025 84.8 ± 0.029 0.912 ± 0.016 0.695 ± 0.055 84.3 ± 0.021 0.911 ± 0.019 0.687 ± 0.041

SOC 82.3 ± 0.004 0.887 ± 0.005 0.649 ± 0.008 80.7 ± 0.014 0.876 ± 0.008 0.619 ± 0.027 80.4 ± 0.016 0.869 ± 0.014 0.608 ± 0.033

Test Set

Feature
ETC CatBoost LGBM

Acc. % AUC MCC Acc. % AUC MCC Acc. % AUC MCC

AAC 83.5 0.912 0.674 85.1 0.919 0.705 85.4 0.903 0.712

DPC 86.6 0.943 0.733 84.5 0.925 0.689 84.8 0.919 0.695

CTD 83.8 0.913 0.678 83.8 0.887 0.677 83.8 0.891 0.677

AutoC 84.8 0.922 0.698 85.9 0.909 0.719 84.8 0.916 0.695

QSO 86.3 0.924 0.726 82.9 0.906 0.658 86.3 0.910 0.725

SOC 87.8 0.952 0.757 89.9 0.936 0.801 86.9 0.932 0.737

Additionally, to check the importance of selected feature types, we performed experi-
ments on unselected or junk features previously discarded from the models. We observed
that performance results on both training and test data drastically decreased for single
feature types, particularly ACC and CTD. The performance results of all models on single
feature types are mentioned in the Table S1.

Furthermore, analyzing the roles amino acids play in biological systems is one way
of evaluating the effectiveness of an amino acid-encoding scheme. Using this strategy,
we interpreted the model based on SHapley Additive exPlanations (SHAP) to observe
the predictions generated from our trained model. We determined each feature’s impact
on the model output through this representation by examining a density scatterplot of
SHAP values for each feature in the test dataset. All features were sorted by the sum
of SHAP values across all samples. In Figure S2a, for AAC, we observed that R, G, V, F,
and L amino acid residues had a better impact than other amino acid residues. Notably,
some of these residues were dominant in our position preference and composition analysis
(Figures 2 and 3). ETC achieved the highest accuracy of 86.6% for DPC descriptors, with
an AUC of 0.943 and an MCC value of 0.733. One possible reason for the DPC achieving
a higher prediction performance was due to the information implicit in dipeptides, as it
contains more structure and sequence information than the AAC. Moreover, in a recent
publication by Wang et al., out of 18 dipeptides derived from ovotransferrin, five dipeptides
(FL, LL MK, HC, and CR) were shown to increase IL-10 gene expression along with
inhibiting proinflammatory cytokines [49].

Similarly, dipeptides predicted by our model also supported the above study, as
dipeptides FF and LL had the highest impacts on the model performance (Figure S2b).
CTD descriptors were based on the overall composition, transition, and distribution of
amino acid attributes, such as the secondary structure, solvent accessibility, hydrophobicity,
charge, normalized van der Waals volume, polarity, and polarizability [50]. The charge,
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van der Waals, and secondary structure showed the highest impacts on model outputs,
with an accuracy of 83.8%, an AUC of 0.913, and an MCC value of 0.678 by ETC (Additional
Figure S2c). Conversely, the CatBoost classifier outperformed other ML models on AutoC
descriptors, which were based on the distributions of various amino acid properties along
with the sequence. As shown in Figure S2d, stericity, hydrophobicity, and mutability had
the highest impacts on the model output and achieved an accuracy of 85.9%, an AUC
of 0.909, and an MCC of 0.719. Sequence orders had two attributes of SOC and QSO.
CatBoost attained the highest accuracy of 89.9% for SOC descriptors, with an AUC of
0.936 and an MCC value of 0.801. For the QSO descriptor, ETC achieved the optimum
performance with an accuracy of 86.3%, an AUC value of 0.924, and an MCC value of 0.726.
The sequence order features represent amino acid distribution patterns corresponding to
specific physicochemical properties along with a protein or peptide sequence [51]. The best
performing features of SOC and QSO are illustrated in Figure S2e,f.

3.5. Machine Learning Predictions of Hybrid Feature Types

In our study, the predictive performance based on hybrid features was investigated.
Hybrid features denote combinations of sequence and physicochemical features. These
data could be enriched with information derived from combinations of such features. This
section combines all feature types to explore the impacts of the biological properties in
predicting IL-10-inducing peptides. For feature selection, we performed a classic-based
feature selection method using permutation feature importance techniques with a feature
selection threshold of 0.9, and we obtained 1342 selected features.

Various machine learning algorithms were employed on the selected feature sets,
and the holdout set was used to evaluate the predictive performances of the best three
models. Among the best three predictive models, the ETC achieved an 86.5% accuracy and
an AUC of 0.929 on the training dataset, whereas, on the test dataset, it achieved an 87.50%
accuracy, a 0.931 AUC value, and an MCC of 0.755 with a PR curve of 0.93. We list the other
classifier’s predictive performances on the benchmark training and test datasets in Table 2,
and the AUC and PR curve values are shown in Figure 4. This figure provides a graphical
representation of a classifier’s performance for the top three highest performing classifiers,
i.e., the ETC, CatBoost, and LGBM. The ETC outperformed the other classifiers used in
this study. The ROC curve was generated by calculating and plotting the true positive rate
against the false positive rate, and the higher the AUC score was, the better the classifier
performance was. Similarly, we also provided a graphical representation of the PR curve.
This was generated by calculating and plotting the precision against the recall. The PR
curve can be calculated by finding the AP score. The higher the PR curve score was, the
better a classifier performed.

Table 2. Performances and comparison with state-of-the-art machine learning models based on
hybrid features for the benchmark training and test datasets. The values shown are mean ± standard
deviation for the training dataset.

Training Set

Model Acc. (%) AUC Recall/Sen.
(%)

Specificity
(%) Precision (%) MCC

ETC 86.5 ± 0.013 0.929 ± 0.015 82.2 ± 0.004 89.8 ± 0.025 88.3 ± 0.025 0.724 ± 0.027

LGBM 86.3 ± 0.015 0.918 ± 0.013 83.8 ± 0.016 88.6 ± 0.029 87.3 ± 0.025 0.726 ± 0.030

CatBoost 86.2 ± 0.019 0.916 ± 0.019 83.1 ± 0.009 88.9 ± 0.034 87.6 ± 0.033 0.724 ± 0.039

Test Set

Model Acc. (%) AUC Recall/Sen.
(%)

Specificity
(%) Precision (%) MCC

IL-10Pred 81.2 0.880 79.7 81.9 N/A * 0.590

ETC 87.5 0.931 80.4 94.7 92.7 0.755

LGBM 87.2 0.929 81.0 91.7 91.4 0.747

CatBoost 86.6 0.923 79.1 92.9 91.9 0.737

* N/A denotes “not available.” The precision score of IL-10Pred is not available in the manuscript (Nagpal et al.,
Scientific Reports, 2017).
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Additionally, we also explored five other combinations, such as AAC+DPC, CTD+AutoC,
QSO+SOC, AAC+DPC+CTD, and QSO+SOC+AutoC, where the ETC model on the
AAC+DPC hybrid feature outperformed all the models with a performance of 87.2%
accuracy and 0.946 AUC and an MCC value of 0.751. All model performances based on
other combinations are mentioned in Table S2. Moreover, we carried out experiments on
unselected or junk features previously discarded from models to determine the importance
of the selected feature types. As a result, the models’ performance both on the test and
training data shows a 4–5% performance reduction in comparison to the models’ perfor-
mance on the optimal features. The performance results on the unselected feature sets are
mentioned in Table S3.

4. Discussion

Applying bioinformatics to vaccine development has an essential role in decipher-
ing molecular characterizations of infectious pathogens. At the same time, to combat
the debilitating disease agent, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), bioinformatics applications have experienced unprecedented growth during the
recent outbreak. In silico methods of bioinformatics, immune-informatics, and so forth
can be used for more rapid and precise vaccine designs. Another great aspect of using
a computational approach for prediction analyses is that it can effectively reduce labor-
intensive and time-consuming work compared to conventional approaches. Therefore,
in this study, we developed a sequence-based computational method for determining
IL-10-inducing peptides.

4.1. Position Preference and Composition Analysis of Amino Acids

We performed a composition and position preference analysis between IL-10-inducing
and non-IL-10-inducing peptides to understand the residue preference using a benchmark
dataset. Since IL-10 exhibits potent anti-inflammatory properties, this property can be
influenced by hydrophobic amino acid residues and positively charged residues. Therefore,
in this analysis, we mainly focused on two types of residues (hydrophobic and positive
charged residues) to determine IL-10-inducing peptides. In both analyses, we observed
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that hydrophobic (I, L, M, F, and Y) and positively charged residues (R and H) frequently
occurred in IL-10-inducing peptides, whereas three hydrophobic residues (A, V, and W)
and only one positively charged residue (K) were dominant in non-IL-10-inducing peptides.
Intriguingly, a study by Gesser et al. reported the N-terminal and C-terminal residues
when comparing the homology of IL-10 sequences among humans, mice, and viral IL-10.
They found that A and Y were part of the N-terminal region, whereas I, L, M, and K were
present in the C-terminal region [52].

Second, the composition analysis revealed some crucial amino acids that exhibit anti-
inflammatory properties and play crucial roles in immune responses, such as arginine, the
primary function of which is to regulate cytokine production and eliminate pathogens.
Researchers, using in vitro studies, determined that the presence of certain amounts of
arginine was necessary for the maximal proliferation of rodent and human T lymphocytes
upon exposure to mitogens and the killing of tumor cells by activated macrophages [53].
However, a recent publication reported that inflammatory macrophages utilize arginine
for nitric oxide (NO). As a result, IL-10 can reduce NO production by inhibiting the ex-
pression of the messenger (m)RNA of inducible NO synthase (iNOS) or by enhancing
its degradation [54]. Cysteine regulates the cellular redox state, and a study of the IL-10
crystal structure revealed that IL-10 is stabilized by two intramolecular disulfide bridges,
Cys12–Cys108 and Cys62–Cys114. [55]. Histidine, one of the most common naturally
occurring amino acids, was reported to act as a radical scavenger during epithelial injury.
A recent study on an IL-10(-/-) transfer model of colitis stated that dietary histidine reduced
histologic damage and colon weight, and tumor necrosis factor (TNF)-α mRNA expres-
sion and histidine inhibited lipopolysaccharide (LPS)-induced nuclear factor (NF)-κB in
macrophages [56]. Other amino acids, such as leucine, also regulate the immune response
while lysine possesses antiviral activity and regulates NO synthesis.

4.2. Biological Assessment of the Top 10 Selected Features

Feature selection becomes essentially predominant when a dataset consists of several
features. In this study, we used a ‘classic’ method based on the permutation feature
importance technique to identify important subsets of features for a given classification
task. These methods can be used to identify and eliminate unneeded, irrelevant, and
redundant attributes from data that might affect a predictive model’s accuracy, and this
enables machine learning algorithms to train faster. We show the top 10 selected feature
importance plots in Figure 5.

These top 10 descriptors were distribution features of amino acids with certain physic-
ochemical properties, such as hydrophobicity, charge, mutability, residue’s solvent accessi-
bility, polarizability, Moran and Geary AutoC, and QSO. Interestingly, we observed that
among these selected features, some features fell into the category that may play a crucial
role during the formation of the IL-10/IL-10R1 complex, such as hydrophobicity, charge,
and a residue’s solvent accessibility. A recent study investigated the roles of surface charge
and hydrophobicity distribution of the IL-10-binding interface. They found a significant
difference in surface charge distributions at the interface between IL-10 and IL-10Ra, sug-
gesting that electrostatic interactions might primarily determine IL-10 binding to IL-10Ra,
where IL-10 has a more positively charged binding region. Similarly, in our amino acid
composition analysis, we observed the preference for positively charged amino acids in
IL-10-inducing peptides.

In terms of mutability, various studies reported the effects of mutations on IL-10R.
Those reports suggested that a mutation in the IL-10R subunit gene was linked to early-
onset enterocolitis, which involves hyperinflammatory immune responses in the gut [57].
Measurement of residues in proteins is based on their relative solvent accessibility (RSA),
which describes how much of that residue is exposed in the tertiary structure. RSA is
frequently used to describe a protein’s biophysical or evolutionary characteristics [58].
However, very few studies have reported the aforementioned features, that requires further
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investigation to decipher the importance of amino acid physicochemical properties either
in inducing IL-10 or influencing its anti-inflammatory properties.
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4.3. Evaluation of Single-Feature Types versus Hybrid-Feature Types

This study used two approaches to understand the importance of feature descriptors
in identifying IL-10-inducing peptides, i.e., single-feature types and hybrid-feature types.
We computed all six features individually for the positive and negative datasets to train and
test a single-feature-type model. SOC and DPC achieved the highest accuracies, followed by
QSO, AutoC, AAC, and CTD. The results suggested that both SOC and DPC features could
be better indicators for predicting IL-10-inducing peptides. Similarly, we made another
attempt to develop a prediction model by merging all feature types. The ETC outperformed
the other models used in this study. When developing our model based on the hybrid-
features set, we observed that the physicochemical properties of the Geary AutoC, such as
the hydrophobicity scale, average flexibility index, polarizability parameter, free energy of
a solution in water, accessible surface areas, residue volume, steric parameters, and relative
mutability, were prominent and frequently occurred in the top 10 selected features. In
contrast, the DPC and SOC feature individually performed better, but in the case of hybrid
features, the DPC feature variable importance was less than the other feature types and
failed to land in the list of top 10 features shown in Figure 5. This analysis revealed the
importance of hybrid features over single-feature types.

4.4. Performance Comparison with the State-of-the-Art Method

Using the benchmark dataset, we compared our Ileukin10Pred method with the state-
of-the-art IL-10-inducing peptide prediction method (IL-10Pred). As shown in Table 2, our
ETC model attained the best performance with an 87.5% accuracy, an AUC of 0.931, and
an MCC of 0.755 on the holdout set. Moreover, LGBM also achieved a better performance
than the state-of-the-art method in terms of an accuracy of 87.2%, an AUC of 0.929, and an
MCC of 0.747, whereas CatBoost achieved an accuracy of 86.6%, an AUC of 0.923, and an
MCC value of 0.737. In this study, we used various approaches to examine the performance
of our model. We first developed our model on the benchmark IL-10 training dataset and
attained the best performance among other classifiers used in this study.
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This study focused on understanding correlations between amino acid sequence
features and IL-10-inducing peptides. Since it is well-known that amino acids are building
blocks of proteins, and even though they all share a carboxyl group, an amine group,
and a side chain, the various functional groups in the side chain often contribute to the
distinctive properties affect the formation and function of proteins. Hence, it is crucial to
consider various distinctive properties of amino acids to develop a more precise prediction
model. Similarly, when compared to the state-of-the-art method, the model was developed
by utilizing a single-feature type (DPC) only.

Conversely, this study was not only restricted to single-feature types. Besides, we
first investigated all features individually and observed the prediction performances of
all models. After that, we combined all features and used them as a hybrid of all features
to further develop our model. By doing this, we not only achieved better prediction
performances but were also able to determine the most important features that contributed
to IL-10-inducing peptide predictions. However, further experimental studies are required
to elucidate the importance of the physicochemical properties of amino acids in identifying
IL-10-inducing immunosuppressive peptides.

4.5. Advantages and Limitations of ILeukin10Pred

This section summarizes a theoretical comparison of the proposed ILeukin10Pred with
the existing state-of-the-art method. ILeukin10Pred investigated primary sequence-based,
physicochemical-based, and evolutionary features. However, in IL-10Pred [22], only pri-
mary sequence encoding schemes were investigated. For instance, the IL-10pred method
analyzed primary sequence-based descriptors, such as AAC, DPC, and the sequence-
based binary profile. Conversely, in this study, we did not restrict ourselves to investi-
gating only primary sequence-based features. Instead, we also included and investigated
physicochemical-based and evolutionary features individually and a combination of all
these features (hybrid types) to examine their importance in predicting IL-10-inducing
peptides. Here, we observed that hybrid-based features outperformed single-based feature
types in predicting IL-10-inducing peptides. A limitation of our study is that the dataset
used was comparatively small. Notably, it is imperative to consider the quantity and quality
of the data when developing more accurate and reliable methods. Including more data for
the peptide prediction task would reveal more insights, as the data provide information
instead of relying on assumptions and weak correlations. Another possibility to further
improve the prediction performance is to use blended models, where multiple models were
combined to predict IL-10-inducing peptides.

4.6. Future Work

In this work, we used a sequence-based feature to develop a classification-based
prediction method for IL-10-inducing peptides using a small dataset with a state-of-the-
art method. For future work, we plan to add more experimentally verified data to the
training set and investigate only structural features of the peptides that might provide
deeper insights into understanding the molecular phenomenon of IL-10. Additionally, we
plan to build our next prediction model using blended models, which might increase the
performance and robustness of the model.

5. Conclusions

IL-10 is a pleomorphic cytokine that exhibits a broad spectrum of pleiotropic effects in
immune regulation and inflammation, initially discovered as a product of Th2 cells that
inhibit the production of Th1. However, later it was shown to be produced by various
types of cells, including monocytes, macrophages, Th2 cells, mast cells, NK cells, and CD4+,
CD25+, and Foxp3+ Tregs. Potent anti-inflammatory characteristics of IL-10 play a central
role in maintaining normal tissue homeostasis. Similarly, defective IL-10 can lead to the
development of autoimmune diseases. Nowadays, immunosuppressive medication is the
core of conventional therapies for autoimmune diseases. These agents show promising re-
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sults and remain the “gold standard” of care. However, prolonged use of these medications
can result in toxicity and severe side effects in some patients. Thus, there is an imperative
need to develop more specific strategies that might improve tolerability while minimizing
adverse effects [59].

To address these concerns, several studies administered peptides that induce IL-10,
which showed great potential over the direct use of IL-10 [60]. Hence, predicting IL-10-
inducing peptides has become crucial for subunit vaccine design. To date, numerous
computational methods have been developed to predict T cell epitopes; however, only
one approach exists to address predictions of IL-10-inducing peptides (IL-10Pred). In this
study, we developed a model (ILeukin-10Pred) to predict IL-10-inducing peptides, utilizing
amino acid compositions and physicochemical-based features.
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models based on unselected features of all single-feature types for the benchmark training and test
datasets. Table S2: Performances based on various hybrid feature combinations on the benchmark
training and test datasets. Table S3: Performances of machine learning models based on unselected
features on the hybrid dataset (Combinations of all feature types) for the benchmark training and
test datasets.
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