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Abstract

This article comprehensively reviews how cerebral hypoxia impacts the physiological state of neurons and dendritic spines
through a series of molecular changes, and explores the causal relationship between these changes and neuronal functional
impairment. As a severe pathological condition, cerebral hypoxia can significantly alter the morphology and function of
neurons and dendritic spines. Specifically, dendritic spines, being the critical structures for neurons to receive information,
undergo changes such as a reduction in number and morphological abnormalities under hypoxic conditions. These alterations
further affect synaptic function, leading to neurotransmission disorders. This article delves into the roles of molecular path-
ways like MAPK, AMPA receptors, NMDA receptors, and BDNF in the hypoxia-induced changes in neurons and dendritic
spines, and outlines current treatment strategies. Neurons are particularly sensitive to cerebral hypoxia, with their apical
dendrites being vulnerable to damage, thereby affecting cognitive function. Additionally, astrocytes and microglia play an
indispensable role in protecting neuronal and synaptic structures, regulating their normal functions, and contributing to the
repair process following injury. These studies not only contribute to understanding the pathogenesis of related neurologi-
cal diseases but also provide important insights for developing novel therapeutic strategies. Future research should further
focus on the dynamic changes in neurons and dendritic spines under hypoxic conditions and their intrinsic connections with
cognitive function.
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Introduction

Cerebral hypoxia is a condition that profoundly affects brain
function and structure, with its impact extending beyond
the brain itself to the entire central nervous system (Verma
et al. 2024). The brain is a highly oxygen-dependent organ,
and when hypoxia occurs, it triggers a series of complex
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events that ultimately impact the health and survival of neu-
rons, as well as the integrity of dendritic spines (Hours et al.
2023). Dendritic spines, the tiny protrusions on neurons, are
responsible for receiving signals from other neurons (Priel
et al. 2022). Their morphological and density changes can
provide some insights into synaptic function and neuronal
connectivity.

Under hypoxic conditions, abnormal dendritic spine
structure becomes a common phenomenon, manifesting as
decreased numbers, shortened lengths, and abnormal mor-
phologies (Gao et al. 2021). These structural abnormalities
further affect synaptic function, leading to impaired neural
signal transmission and disrupted neuron generation and
integration, thereby closely linking them to neuropatho-
logical processes in various diseases (Taylor et al. 2023a,
b). Hippocampal CA1 neurons are particularly sensitive to
cerebral hypoxia, exhibiting a delayed and selective pattern
of damage. In damaged neurons, the injury first appears in
the apical dendrites and gradually spreads throughout the
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entire neuron, highlighting the fragility of the apical den-
drites (Virga et al. 2023; Merino-Serrais et al. 2023). This
damage not only affects the structure and function of neu-
rons but also leads to impeded information transmission,
further compromising cognitive function (Fig. 1).

In this review, we have conducted an in-depth explora-
tion of the molecular mechanisms underlying the changes in
neurons and dendritic spines induced by cerebral hypoxia.
Specifically, we have emphasized elucidating the causal
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Fig.1 Structural abnormalities of neuronal dendritic spines under
hypoxic conditions and their impact on cognitive function

relationship between the molecular alterations triggered
by hypoxia and the physiological impacts on neurons and
synapses.

Molecular Mechanisms Underlying
Hypoxia-Induced Changes

Hypoxia has profound effects on the brain, particularly on
neurons and dendritic spines. The mechanisms underlying
these changes are complex and involve multiple molecular
pathways. A better understanding of these mechanisms can
aid in the development of effective treatment strategies to
mitigate the harmful effects of hypoxia and promote neu-
ronal recovery.

MAPK

In the complex pathological process of cerebral hypoxia
diseases, the MAPK signaling pathway plays a crucial role
(Fig. 2). As a central regulator, it not only modulates the
apoptosis process of nerve cells but also affects key bio-
logical mechanisms such as antioxidant defense systems
and energy metabolism, thereby exerting protective effects
on nerve cells under cerebral hypoxic conditions. Notably,
recent studies have increasingly focused on the regulatory
role of IncRNAs in the MAPK pathway. For instance, IncR-
NAs such as LINC00938 and PVT1 have been found to

regulation

\
\

LINC00938

MAPK signaling pathway

éntioxidatlon,,

[c-dun N-terminal protein kinaseJ

- I[ERK1/2”dephosphorylating p3s

metabolism

pa
. -
early neurological outcomes?t ¢

— neural damage |

\1, cytochrome C ‘1'

|—— hippocampal neuronal ferroptosis|

s,

AY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

4

Fig.2 Regulatory role and neuroprotective mechanisms of MAPK signaling pathway in cerebral hypoxic diseases
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finely regulate the activity of the MAPK signaling pathway.
Under cerebral hypoxic conditions, the expression levels of
these IncRNAs often decrease, and this downregulation is
closely associated with increased neuronal apoptosis and
significantly elevated oxidative stress levels. Specifically,
IncRNAs can target and regulate the level of Rock2. When
IncRNA expression is downregulated, the activity of Rock2
may be affected, leading to a series of adverse consequences,
such as ROS accumulation, increased NO production,
accelerated lipid peroxidation, reduced GSH synthesis, and
mitochondrial dysfunction (Zhang et al. 2021a, b). These
processes not only exacerbate the oxidative stress state of
nerve cells but also potentially lead to disorders in cellular
energy metabolism, further promoting neuronal apopto-
sis. Further research has revealed that downregulation of
IncRNA expression leads to upregulated expression of Bax
and cleaved caspase-3, while the expression of Bcl-2 is sup-
pressed. This change triggers or accelerates the apoptotic
process of nerve cells, resulting in the loss of nerve cells and
impairment of brain function. Additionally, IncRNAs exert
neuroprotective effects by inhibiting the phosphorylation of
JNK and p38 MAPK. When IncRNA expression decreases,
the phosphorylation levels of JNK and p38 MAPK increase,
activating these kinases and promoting neuronal apoptosis.
Simultaneously, the inhibitory effect of IncRNAs on the
ERK signaling pathway is weakened, further exacerbating
neuronal damage (Zhao et al. 2023). Therefore, in-depth
research on the regulatory role and mechanisms of IncRNAs
in cerebral hypoxia diseases is of significant importance for
developing new treatment strategies and drugs.

The activation of the MAPK pathway has demonstrated
significant effects in the treatment of cerebral hypoxia injury.
This pathway activation significantly alleviates neural dam-
age caused by cerebral hypoxia, improves early neurological
outcomes, and has a positive impact on learning and mem-
ory functions. The key to this protective mechanism lies in
the regulation of multiple crucial biological processes by the
MAPK pathway. Firstly, the MAPK pathway exerts its anti-
apoptotic effect by regulating the expression of Bcl-2 family
proteins. Specifically, it promotes the expression of Bcl-2
while reducing the expression of Bax and caspase-3. This
regulatory mechanism helps maintain the survival state of
neural cells and reduces the occurrence of apoptosis. Addi-
tionally, the MAPK pathway also mitigates inflammatory
responses and apoptosis by downregulating the expression of
TLR4 and p53. TLR4 is an important inflammatory signal-
ing receptor, while p53 is a crucial regulator of apoptosis. By
decreasing the expression of these two factors, the MAPK
pathway inhibits the occurrence of inflammatory responses
and apoptosis, thereby protecting neural cells from damage.
In protecting mitochondria from injury, the MAPK path-
way also plays an important role. It enhances the antioxidant
capacity of mitochondria by upregulating the expression of

SLC7A11 and GPX4 (Zhu et al. 2021). Simultaneously, this
pathway inhibits the release of mitochondrial cytochrome
C and prevents hippocampal neuronal ferroptosis, further
protecting neural cells from injury.

Apart from the aforementioned functions, the MAPK
pathway also enhances cellular antioxidant capacity by
upregulating the expression of Nrf2 and HO-1. Nrf2 and
HO-1 are two crucial antioxidant enzymes that eliminate
oxidative stress products within cells, protecting them from
oxidative damage. Additionally, the MAPK pathway down-
regulates the expression levels of inflammatory factors such
as IL-1p, TNF-a, and IL-6, reducing the LDH activity and
the release of oxidative stress products like H,0,, NO, and
MDA caused by hypoxic injury. This enhancement improves
the activities of SOD, CAT, GSH-PX, and complexes I, II,
III, IV, activates NADH dehydrogenase and cytochrome C
oxidase, thus strengthening the cellular antioxidant and anti-
inflammatory capabilities (Jing et al. 2022). These actions
collectively enhance the antioxidant and anti-inflammatory
abilities of cells, contributing to the protection of neural
cells from damage.

In terms of enhancing cell viability, the MAPK pathway
achieves this by activating extracellular signal-regulated
kinases ERK1/2 and c-Jun N-terminal protein kinase, as
well as dephosphorylating p38MAPK. The activation and
dephosphorylation of these kinases regulate intracellular
signaling pathways, promoting cell survival and prolifera-
tion. Finally, the MAPK pathway also enhances cellular
energy metabolism and antioxidant stress capability by
upregulating the expression of PGC-1a and SIRT1. PGC-1a
and SIRT1 are two vital regulatory factors that participate in
cellular energy metabolism and antioxidant stress responses.
By increasing the expression levels of these two factors, the
MAPK pathway safeguards cells from oxidative cell toxicity.
Studies have confirmed that hydrogen can mitigate ischemic
brain injury by regulating the MAPK/HO-1/PGC-1a path-
way, providing a new direction for the treatment of related
diseases in the future (Wang et al. 2020a, b).

AMPA Receptors

AMPA receptors, as members of the excitatory glutamate
receptor family, play a crucial role in the function of the
nervous system. These receptors influence neuronal and
dendritic spine transmission through their specific subu-
nits, particularly GluA1l and GluA2 (Chen et al. 2020). In
neural synapses, AMPA receptors are primarily responsi-
ble for rapid excitatory synaptic transmission, where the
expression of GluA1 subunit on the postsynaptic membrane
is pivotal for maintaining the excitatory state of neurons.
However, under pathological conditions of cerebral hypoxia,
the balance of the nervous system is disrupted. During this
state, the NLRP3 inflammasome is abnormally activated,
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triggering a cascade reaction of caspase-1. This series of
biochemical events leads to a significant reduction in the
protein level of GluA1l subunit in AMPA receptors, fur-
ther affecting the function of neurons and dendritic spines
(Roberts et al. 2023). Since the expression of GluA1 on the
postsynaptic membrane is crucial for neuronal excitability,
its reduced level directly impacts the normal function of neu-
rons, including advanced neural activities such as learning
and memory.

Under normal conditions, the expression and localization
of GluAl are precisely regulated by the nervous system.
However, in the case of cerebral hypoxia, this regulatory
mechanism is disrupted, leading to impaired neuronal func-
tion. To address this challenge, researchers have proposed
a series of strategies. One approach involves inhibiting the
NLRP3 inflammasome signaling pathway to prevent the
activation of caspase-1, thereby preventing the reduction of
GluAl levels. Another strategy is to enhance the interaction
between p97 and GluA 1, which helps restore the expression
and localization of GluA1 on the postsynaptic membrane,
promoting the recovery of the nervous system. In addition to
these strategies, the non-competitive, selective AMPA recep-
tor antagonist Perampanel has also demonstrated a protective
effect against hypoxia-induced brain injury. Through pre-
treatment, Perampanel can reduce the activity of the AMPA
glutamate excitatory receptor GluA1 subtype in hippocam-
pal pyramidal neurons, thus activating synaptic plasticity
during the critical period of LTP (Heit et al. 2021). This
finding provides new insights for the treatment of cerebral
ischemia injury. Furthermore, research on the GluA2 subunit
of AMPA receptors has also revealed its specific role under
cerebral hypoxia conditions. The GluA2 subunit participates
in persistent synaptic depression through clathrin-mediated
endocytosis. However, compared to the GluA1l subunit,
GluA2 exhibits differences in internalization responses and
regulatory mechanisms (Chen et al. 2014). These differences
provide a deeper understanding of the mechanisms of AMPA
receptors under cerebral ischemia conditions.

GluR2, an important subtype of AMPA receptors, plays a
crucial role in neural signal transmission and synaptic func-
tion regulation. Specifically, under cerebral hypoxia condi-
tions, the activity of GluR2 in AMPA receptors is signifi-
cantly enhanced. This augmentation not only directly affects
synaptic plasticity, referring to the efficiency and flexibility
of information transmission between neurons, but also fur-
ther impacts the normal function of neurons. Specifically,
the increased activity of GluR2 may lead to excessive exci-
tation of synaptic transmission, interfering with the normal
electrical activity of neurons and even causing neuronal
damage. Additionally, the enhanced activity of GIuR2 is
closely related to the activation of oxidative stress. Oxida-
tive stress is a physiological response generated by cells in
response to external stress, but excessive oxidative stress can
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lead to cell damage. Under cerebral hypoxia conditions, the
excessive activation of GluR2 may exacerbate this process,
further aggravating neuronal injury. Meanwhile, the increase
in ERK I/II proteins is considered one of the downstream
effects of GluR2 activity enhancement (Cui et al. 2020).
ERK I/II are key enzymes involved in various cellular func-
tions, including cell proliferation, differentiation, and apop-
tosis. In the nervous system, ERK I/II also participates in
many important biological processes. However, when GluR2
is excessively active under cerebral hypoxia conditions, it
may lead to abnormal activation of ERK I/II, further affect-
ing the normal function of neurons.

However, these seemingly adverse biological processes
are not irreversible. Recent studies have shown that certain
natural compounds and drugs possess the ability to regu-
late these processes. For instance, the intervention of icariin
can effectively modulate the GluR2/ERK I/II pathway, thus
mitigating the impact of cerebral hypoxia on GluR2, protect-
ing neurons, and improving cognitive function (Guo et al.
2020). Apart from icariin, other drugs also demonstrate
similar potential. For example, fingolimod, an anti-inflam-
matory and neuroprotective agent, can restore the imbalance
in gene expression of excitatory and inhibitory receptors,
including key receptors such as the AMPA receptor GluR2
subunit, NMDA receptor NR2A subunit, and GABA recep-
tor y2 subunit (Hajipour et al. 2023). These findings provide
strong support for the therapeutic potential of icariin and
fingolimod in diseases such as cerebral ischemia.

NMDA Receptors

Like AMPA receptors, NMDA receptors are also excita-
tory glutamate receptors that play a pivotal role in neu-
ronal communication, synaptic plasticity, and advanced
neural activities such as learning and memory (Fig. 3).
Specifically, under cerebral hypoxia conditions, the func-
tional changes of NMDA receptors and their impacts on
related biological processes have become a focal point of
research (Devereaux et al. 2023). During cerebral hypoxia,
glutamatergic drive during respiration significantly
increases. This change not only reflects the self-regulatory
mechanism of the nervous system in response to hypoxic
stress, but also reveals the close connection between the
glutamatergic system and respiratory neural plasticity.
However, with the enhancement of glutamatergic drive,
there is a decreasing trend in respiratory neural plasticity,
further suggesting the potential threat of cerebral hypoxia
to neural system function. Research has found that cerebral
hypoxia not only upregulates the GluR2 subunit of AMPA
receptors but also affects the NR2A subunit of NMDA
receptors. This impact is not limited to the expression lev-
els of receptor subunits but also involves related signal-
ing pathways and molecular mechanisms. For instance,
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Fig. 3 Functional and regulatory mechanisms of AMPA and NMDA receptors under cerebral hypoxia conditions

cerebral hypoxia can lead to elevated levels of HIF-1a
and TNF-a, while reducing the levels of phosphatases and
PTEN (Wang et al. 2021). These changes not only reveal
the direct impact of cerebral hypoxia on NMDA receptor
function but also suggest its potential role in neurological
diseases.

NMDA receptors play a significant role in the regulation
of synaptic plasticity and sensitivity to redox status (Arias-
Cavieres et al. 2021). Synaptic plasticity serves as the foun-
dation for learning and memory in the nervous system, and
NMDA receptors are crucial participants in this process.
NMDA receptor-dependent LTP and LTD are two crucial
manifestations of synaptic plasticity (Yao et al. 2021). How-
ever, it is noteworthy that cerebral hypoxia can inhibit both
forms of plasticity (Bueschke et al. 2023). This inhibition
not only affects the efficiency of neuronal information trans-
mission but may also adversely impact learning and memory
functions. Furthermore, NMDA receptors are highly sen-
sitive to changes in redox status. Under cerebral hypoxia
conditions, the redox balance within the nervous system is
disrupted, leading to the generation of oxidative stress. This
oxidative stress not only affects the normal function of neu-
rons but may also have a direct impact on NMDA receptors.
For instance, cerebral hypoxia can lead to a reduction in
the expression of GluN1, GIuN2A, and GIuN2B subunits in
the hippocampus (Zhang et al. 2023a, b, c). These subunits
are the primary components of NMDA receptors, and their
reduction not only affects the function of NMDA receptors

but may further exacerbate neuronal damage (Zhang et al.
2023a, b, ¢).

The roles and characteristics of NMDA receptors and
AMPA receptors in the nervous system exhibit significant
differences (Hofmann et al. 2024). These disparities are
not only reflected in their activation mechanisms, but also
include their sensitivity to redox status and the roles they
play in synaptic plasticity. These unique characteristics ena-
ble these two receptors to play distinct roles in the normal
functioning of neurons as well as in pathological states.

First, from the perspective of activation mechanisms,
there are significant differences between AMPA receptors
and NMDA receptors. AMPA receptors primarily respond
rapidly to glutamate, rapidly opening ion channels within
milliseconds to mediate fast excitatory synaptic transmis-
sion. This rapid response makes AMPA receptors play a
crucial role in neural information transmission. In contrast,
NMDA receptors require the combined action of glutamate
and glycine for activation. More specifically, NMDA recep-
tors are also influenced by membrane potential depolariza-
tion, only being fully activated and participating in slow
excitatory synaptic transmission when the postsynaptic neu-
ron depolarizes to a certain extent. This activation mecha-
nism enables NMDA receptors to play a more complex and
intricate role in neural information transmission (Yildizhan
and Naziroglu 2023).

Secondly, in terms of sensitivity to redox status, NMDA
receptors are more sensitive compared to AMPA receptors.
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Redox status is an essential parameter of the intracellular
environment, crucial for maintaining the normal function
of neurons. Under pathological conditions such as cerebral
hypoxia, when the redox status is imbalanced, the function
of NMDA receptors is more vulnerable to impairment. Such
impairment may lead to changes in synaptic plasticity and a
decline in cognitive function. In contrast, although AMPA
receptors may also be influenced by redox status, their sen-
sitivity is lower, enabling them to maintain a certain level of
function even during redox imbalance.

In terms of synaptic plasticity, AMPA receptors and
NMDA receptors also play distinct roles. AMPA receptors
primarily participate in basic synaptic transmission, ensur-
ing the basic communication function between neurons. In
contrast, NMDA receptors are more involved in synaptic
plasticity, such as LTP and LTD. These processes are cru-
cial for learning and memory, affecting neuronal connec-
tivity and information processing capabilities by altering
the strength and efficiency of synapses. Therefore, NMDA
receptors play an indispensable role in the learning and
memory functions of the nervous system.

BDNF

BDNF plays a pivotal role in HIBD. BDNF, a protein widely
present in the nervous system, is crucial for the growth,
development, differentiation, and survival of neurons. Spe-
cifically in HIBD, BDNF exerts profound effects on neuronal
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Fig.4 Neuroprotective effects of BDNF regulation in HIBD
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apoptosis by regulating the specific signaling pathway,
namely the cAMP/PKA/p-CREB signaling pathway (Fig. 4).
cAMP, as a second messenger, transmits signals within the
cell, activating PKA. The activated PKA then phosphoryl-
ates CREB, converting it into p-CREB, which initiates a
series of gene expressions related to neuronal survival. In
this process, BDNF, as a key member of these genes, is regu-
lated by p-CREB. When BDNF expression increases, it can
inhibit neuronal apoptosis through a series of downstream
effects. Experimental studies have shown that in the HIBD
rat model, activating the BDNF pathway can significantly
reduce the degree of cerebral infarction and improve learn-
ing and memory function. This effect is closely related to
the downregulation of neuronal apoptosis-related indica-
tors such as cleaved caspase-3 and Bax/Bcl-2 expression
by BDNF. However, when cAMP or BDNF is inhibited, its
anti-apoptotic effect is significantly reduced. This further
underscores the importance of BDNF in the neuroprotection
of HIBD. Therefore, strategies targeting the regulation of
the BDNF pathway have become potential approaches for
the treatment of HIBD.

In recent years, the application of atorvastatin in the treat-
ment of HIBD has attracted widespread attention. Atorvas-
tatin, a commonly used lipid-lowering drug, has been found
to possess neuroprotective effects. By activating the cAMP/
PKA/p-CREB/BDNF pathway, atorvastatin can inhibit neu-
ronal apoptosis, providing new ideas and methods for the
treatment of HIBD (Yu et al. 2022). Furthermore, studies
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have reported the role of silenced long non-coding antisense
RNA BDNF and overexpressed BDNF-engineered mesen-
chymal stem cells in reducing the severity of HIBD. These
studies not only offer new insights into the mechanisms of
BDNF in neuroprotection but also provide strong support for
the development of novel therapeutic strategies (Qiao et al
2020; Ahn et al. 2021).

BDNF has long been a focus of attention in the field of
neuroscience, and its crucial role in HIBD has been widely
recognized. However, as research progresses, we are gradu-
ally discovering that BDNF also plays a pivotal role in a
wider range of hypoxia-related neurological diseases. In
complex environments such as acute normobaric hypoxia,
neurological damage caused by COVID-19, and high-alti-
tude hypoxia, BDNF actively participates in the protection
of neurons and dendritic spines as well as the regulation of
functional recovery. These findings provide new insights into
our understanding of the protective mechanisms of BDNF
in neurological diseases (Fan et al. 2023).

Under cerebral hypoxia conditions, the expression levels
of BDNF and its receptor TrkB are significantly increased,
a change crucial for the survival and functional recovery of
neurons (Asgarzadeh et al. 2022). The mechanism underly-
ing this increase in expression may be attributed to BDNF's
ability to inhibit the expression of apoptosis-related proteins
such as Bax and cleaved caspase-3, effectively reducing
neuronal apoptosis and enhancing cell viability (Zhai et al.
2022). This process serves as an important self-protection
mechanism of the nervous system in response to hypoxic
stress. In addition to directly inhibiting the expression of
apoptosis-related proteins, BDNF also regulates neuronal
synaptic plasticity and cognitive function by influencing the
activity of downstream signaling pathways such as ERK/
CREB and p35/CdkS5 (Tao et al. 2022). The activation of
these signaling pathways is significant for neuronal growth,
development, and repair, contributing to the functional
recovery of the nervous system in a hypoxic environment.
However, it is worth noting that although BDNF expression
levels increase under hypoxic conditions, its neuroprotec-
tive effects may not always be directly correlated with its
elevated levels. For instance, in studies on acute normo-
baric hypoxia, no significant association was found between
elevated BDNF levels and decreased executive function in
young males (Chroboczek et al. 2022). This finding suggests
that the mechanisms and effects of BDNF may vary under
different hypoxic environments and disease conditions,
requiring further in-depth research.

Furthermore, recent studies have revealed that regulatory
factors such as miR-126 and miR-210 play significant roles
in BDNF-mediated neuroprotection. These regulatory fac-
tors influence the expression and activity of BDNF, thereby
modulating neuronal survival and function. For example,
when EPC-EXs and NPCs-EXs are combined with miR-126

and miR-210 overexpression, they can mimic the neuropro-
tective effects of BDNF and exert protective effects on neu-
rons through the Nox2/ROS/TrkB signaling pathway (Xu
et al. 2023a, b). This discovery further emphasizes the cen-
tral role of BDNF in neuronal protection and provides new
insights for developing novel therapeutic approaches.

Overall, MAPK, AMPA receptors, NMDA receptors, and
BDNEF play crucial neuroprotective roles in hypoxia-related
neurological diseases by regulating neuronal survival, func-
tional recovery, and synaptic plasticity. However, the spe-
cific mechanisms and effects may vary depending on the
hypoxic environment and disease conditions. Therefore,
further exploration is needed in future studies to delve into
the specific mechanisms and therapeutic effects of MAPK,
AMPA receptors, NMDA receptors, and BDNF under dif-
ferent hypoxic environments and disease settings.

Cerebral Hypoxia and Neuronal Function

Following cerebral hypoxic injury, neuronal structures
undergo a series of complex changes, with particularly nota-
ble losses of dendrites and their spinous structures (Fisek
et al. 2023). Dendrites serve as crucial sites for neurons to
receive information, and their structural integrity is essential
for neural signal transmission (Wang et al. 2023a, b, c, d).
Changes in dendritic structure caused by hypoxic injury not
only affect the normal function of neurons but also lead to
dysfunction in sensation, movement, and cognition, among
other aspects (Wang et al. 2023a, b, c, d). Therefore, explor-
ing effective methods to promote the recovery of dendritic
structure, particularly the regeneration and stabilization of
dendritic spines, after hypoxic injury holds significant aca-
demic and practical value for neural function recovery.

The Harmful Effects of Cerebral Hypoxia on Neurons

The brain, as the most energy-consuming organ, is extremely
sensitive to energy homeostasis in terms of neuronal growth
(Vinopal et al. 2023). Under pathological conditions such as
stroke, neurons suffer apoptosis and necrosis due to insuf-
ficient blood supply (Nakamura et al. 2023). Hypoxia, a
state triggered by various conditions including stroke, heart
attack, respiratory failure, and high-altitude exposure, pro-
foundly affects neuronal function (Hou et al. 2023). Neurons,
also known as nerve cells, are the fundamental units of the
nervous system's structure and function, interconnecting to
form neural pathways for the transmission of electrical or
chemical signals (Jékely 2021). Cerebral hypoxia impacts
neuronal metabolism, energy supply, and synaptic transmis-
sion (Fig. 5) (Luo et al. 2023; Hu et al. 2023; Skdérkowska
et al. 2024).
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Fig. 5 Harmful effects of cerebral hypoxia on neurons

Under hypoxic conditions, neurons may adjust their meta-
bolic pathways, inducing abnormal brain function, such as
brain injury including seizures and weakened EEG back-
ground activity (Primiani et al. 2023). Moreover, hypoxia
can also induce various cellular morphological changes,
thereby reshaping neuronal excitability and function. The
complexity of dendrites has a significant impact on the elec-
trical properties of cells. For example, in pyramidal cells,
the high complexity of dendrites is associated with changes
in neuronal activity, manifesting as a reduction in spike
frequency adaptation events. Additionally, the increase in
somatic area is associated with a decrease in neuronal Rn
(Qiao et al. 2023). Furthermore, the increase in dendritic
complexity and the number of nodes is closely related to
the formation of dendritic spines, which are special com-
partments of excitatory synapses that can regulate synaptic
strength and thus increase cellular excitability. Some schol-
ars have confirmed that the effects of continuous hypoxia on
rectus abdominis motor neurons are mainly manifested as
hyperexcitability and morphological changes in neurons (da
Silva et al. 2019). Specifically, continuous hypoxia enhances
neuronal synaptic strength, mainly reflected in discharge fre-
quency and EPSCs, and induces tonic active neuronal mor-
phological changes, particularly an increase in the number
and complexity of dendritic spines. Such changes help neu-
rons maintain appropriate respiratory drive under hypoxic
conditions. Other studies have shown that after brief hypoxia
in newborn rats, the development of dendritic and dendritic
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spines in brain neurons is affected, leading to abnormal syn-
aptic activity and memory impairment. This research pro-
vides a new perspective for exploring the effects of cerebral
hypoxia and neuronal plasticity (Tang et al. 2020).

Under hypoxic conditions, the transition from oxygen-
dependent aerobic metabolism to anaerobic metabolism to
generate energy affects the ionic balance and excitability of
neurons, resulting in the inhibition of neuronal discharge
activities and ATP production (Ban et al. 2024). As the pri-
mary energy source for neurons, ATP depletion leads to the
loss of cell membrane ion gradients, subsequently trigger-
ing cellular dysfunction and death. Additionally, hypoxia
triggers the release of excitatory neurotransmitters (such as
glutamate and aspartate), potentially inducing excitotoxic-
ity and exacerbating neuronal damage (Poli et al. 2024).
Hypoxic brain injury initiates a series of complex cascade
reactions, with the initial disruption of electrophysiologi-
cal activities within the brain. Subsequent calcium influx
induces calcium-dependent excitotoxicity, accompanied by
the production of large amounts of ROS, ultimately leading
to cell membrane disruption and cell death (Lou et al. 2024).
Studies have shown that hypoxic brain injury significantly
promotes endogenous neurogenesis in the SVZ and SGZ of
the hippocampal DG, as well as increases the neck length of
basal and apical neurons in the hippocampal CA1 region and
leads to abnormal development in the CA3 region. These
regions are the main gathering places for NPCs in the adult
brain. However, despite the migration of newly generated
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neurons to ischemic lesions such as the striatum and granular
layer of the hippocampus to replace damaged neurons, the
proportion of them differentiating into mature neurons is
quite limited. This suggests that hypoxia not only directly
damages neurons but also poses significant obstacles to the
regeneration and differentiation processes of neurons. There-
fore, the relationship between hypoxia and neuronal function
is not only reflected in direct damage effects but also lies in
its profound impact on the mechanisms of neuronal regen-
eration and differentiation.

Additionally, hypoxia can lead to alterations in synaptic
transmission and impairments in neuronal communication
(Zhang et al. 2024). Brain hypoxic injury significantly dis-
rupts spontaneous synaptic activities in neurons, particu-
larly in hippocampal CA1 pyramidal cells, where a short-
term "synaptic blockade" phenomenon is observed, causing
downregulation of proteins related to synaptic vesicle traf-
ficking, such as Syntaxin-1A, Synaptogyrin-1, and SV-2.
Besides the interference with synaptic vesicle cycling, this
injury can profoundly impact various biological processes
including oxidative phosphorylation, glycolysis/gluconeo-
genesis, glutamatergic synaptic transmission, and GABAe-
rgic synaptic function (Li et al. 2023a, b). These changes
manifest as reduced amplitude and frequency of miniature
EPSCs in hippocampal CA1 neurons, weakened glutamater-
gic and GABAergic receptor currents, decreased cofilin-1,
hindered cytoskeletal rearrangement, and impaired neuro-
transmitter transmission. These alterations have profound
effects on the behavioral and cognitive functions of the
nervous system (Lippman-Bell et al. 2021). Hypoxic injury
may also lead to modifications of NMDA receptors in the
brain, affecting signal transduction from BLA neurons to IL
via presynaptic TrkB receptors, resulting in morphological

cerebral blood flow rates
LTP
SPAR

@ mild hypoxic injuryh

Fig.6 Beneficial effects of cerebral hypoxia on neurons
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changes in the developing brain, such as reduced dendritic
length in the hippocampus, severe impairments in spatial
memory, decreased brain growth, ventriculomegaly, cortical
generation impairment, and reduced volumes of subcorti-
cal white matter, corpus callosum, and cortex. Additionally,
there is downregulation of Nogo-A, an inhibitor of myelin-
associated axonal regeneration (Morin et al. 2021; Sanchez-
Bezanilla et al. 2020).

The Beneficial Effects of Cerebral Hypoxia
on Neurons

Although hypoxic injury has deleterious effects, moder-
ate hypoxic exposure can induce neuronal protection and
cell survival, promote neural plasticity, and complement
synaptic plasticity (Fig. 6). "Moderate hypoxic exposure"
refers to exposing cells or tissues to a relatively hypoxic
environment for a specific duration, in which the level of
oxygen deprivation is moderate enough to induce cellu-
lar protection and survival without causing fatal damage.
This state encompasses both the degree and the duration
of the hypoxic exposure. Brief hypoxia, as a precondi-
tioning stimulus, can enhance neuronal synaptic plastic-
ity, significantly influencing synaptic plasticity-related
proteins such as Synaptophysin, Spinophilin, and PSD95.
This maintains normal neural network excitability,
enhances the survival rate of specific neuronal popula-
tions, and improves the tolerance of GABAergic neurons
to hypoxia, thereby promoting cellular adaptation and sur-
vival (Lechner et al. 2021). Studies have shown that under
hypoxic conditions in the brain, overexpression of BDNF
significantly enhances the effects of brief hypoxic pre-
conditioning, boosts the tolerance of GABAergic neurons
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to hypoxia, and significantly increases the expression of
anti-apoptotic genes such as Stat3, Socs3, and Bcl-xI.
This enhances cerebrovasodilation and reduces blood
viscosity. Additionally, BDNF overexpression can reduce
the expression of pro-apoptotic and pro-inflammatory
genes such as Bax, caspase-3, Fas, IL-1p, and TNFa, and
increase the levels of AKT and CREB phosphorylation
(Turovskaya et al. 2020).

When the brain sustains mild hypoxic injury, it initiates
a series of neuroprotective mechanisms. For instance, by
upregulating cerebral blood flow rates, the brain ensures
adequate oxygen and nutrient supply to neurons, main-
taining their normal functions (Liu et al. 2021). Further-
more, this hypoxic stimulus can enhance learning and
memory capabilities by potentiating LTP—a phenomenon
of synaptic transmission enhancement. Numerous genes
regulate LTP, including Aktl, Arc, Bdnf, Crebl, Grial,
Grin2a, Grin2b, and Mapk1l. The mRNA expression lev-
els of these LTP-regulating genes are crucial for memory
and learning processes (Sanchez-Brualla et al. 2023).
Additionally, SPAR, which is associated with dendritic
spines, is activated, aiding in the modulation of neuronal
morphology and function, thereby strengthening neuronal
resilience (Ying et al. 2023).

As the severity of hypoxia increases, the brain further
adjusts its response mechanisms. At this stage, the brain
is capable of correcting the abnormal expression of cer-
tain genes, such as cFos and NGFI-A, which can lead to
neuropathological outcomes during severe hypoxia. By
rectifying these aberrant expressions, the brain mitigates
the damage to neurons caused by hypoxia and maintains
their normal function (Yang et al. 2024a, b, c¢). Addi-
tionally, moderate hypoxia may induce the expression
of genes associated with neuronal survival, protection,
and transportation, such as HIF-1, EPO, and BDNF. The
expression of these genes aids neurons in better adapt-
ing and surviving in hypoxic environments (Richter et al.
2022). Research has confirmed that HIF-1a-induced
upregulation of the m6A reader IGF2BP1 promotes the
recovery of peripheral nerve injury by enhancing the sta-
bility of SLC7A11 mRNA (An et al. 2023).

When hypoxia reaches a sub-lethal level, the brain
employs more extreme measures to safeguard neurons
from apoptosis or necrosis. In such circumstances, the
brain enhances neuronal viability by promoting cellular
mitotic activity (Chao et al. 2020). Mitosis is the process
of cells replicating themselves, and by increasing mitotic
activity, the brain can facilitate neuronal regeneration
and repair, thereby averting cell apoptosis or necrosis
(Sandhu et al. 2022). This protective mechanism serves
as the brain's final defense line under extreme hypoxic
conditions (D'aes et al. 2023).
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The Role of Astrocytes and Microglia Under Hypoxic
Conditions

Under hypoxic conditions, the stability and recovery capa-
bility of the nervous system are severely challenged, wherein
astrocytes and microglia play crucial roles (Xin et al. 2023).
In this complex physiological environment, astrocytes and
microglia, with their unique biological characteristics and
functions, are indispensable in protecting neuronal and syn-
aptic structures, regulating their functions, and participating
in the repair process after injury.

Firstly, as significant support cells in the nervous sys-
tem, astrocytes exhibit neuroprotective properties in hypoxic
environments. They buffer toxic substances released by
neurons, such as excitatory amino acids and K*, and utilize
Na*-dependent glutamate transporters (e.g., GLAST and
GLT-1) on the cell membrane to remove glutamate from
the extracellular space, significantly reducing the excitatory
toxicity of glutamate outside the cell (Hsu et al. 2022). This
provides robust protection for neurons, effectively preventing
them from further damage. Additionally, astrocytes secrete
protective neurotrophic factors, such as BDNF, which have
significant effects on neuronal survival and synaptic func-
tion (Zhang et al. 2021a, b). However, it is noteworthy that
under extreme hypoxic conditions, astrocytes may undergo
transformation, releasing toxic cytokines that damage neu-
rons, depending on the severity and duration of hypoxia.
Studies have shown that regulating the activation state of
astrocytes can delay the onset of seizures and respiratory
arrest induced by hypoxia, further emphasizing their crucial
role under hypoxic conditions.

Concurrently, microglia also demonstrate unique value
under hypoxic conditions (Yu et al. 2024). As immune cells
in the central nervous system, microglia play a crucial role in
maintaining vascular integrity. In hypoxic environments, the
absence of microglia disrupts the vascular coupling of astro-
cytes, leading to increased vascular leakage and affecting
the neuronal environment. Furthermore, microglia regulate
immune responses to influence neuronal survival and func-
tion, although the specific mechanisms are not fully under-
stood. After hypoxia, microglia may participate in neuronal
protection and regeneration processes, promoting neuronal
survival and regeneration by clearing damaged neurons and
synaptic debris. Additionally, microglia secrete various
growth factors, such as NGF and BDNF, which are signifi-
cant for promoting neuronal survival and regeneration, pro-
viding a favorable environment for neuronal survival (Zhou
et al. 2020).

In summary, astrocytes and microglia play important
protective and regulatory roles in neuronal and synaptic
structures under hypoxic conditions. They alleviate hypoxia-
induced neuronal damage and promote neuronal survival and
regeneration through their unique mechanisms. Therefore, in
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the research and treatment of hypoxia-related neurological
diseases, we must fully recognize the significant roles and
potential value of these two glial cells to provide new ideas
and methods for disease prevention and treatment.

Impact on Dendritic Spines

The impact of hypoxia on dendritic spines is profound and
complex, altering not only their morphology, number, den-
sity, and plasticity but also the structure and function of neu-
rons, thereby exerting adverse effects on the normal opera-
tion of the brain. Therefore, a thorough investigation of the
effects of hypoxia on dendritic spines and their underlying
mechanisms holds significant importance for understand-
ing the pathogenesis of neurocognitive disorders and other
neurological diseases, as well as for developing effective
treatment strategies.

The Developmental Impact of Hypoxia on Dendritic
Spines

Recent studies have demonstrated that hypoxic environments
significantly impact the morphology, number, and density
of dendritic spines, while the adaptive adjustments of den-
dritic spines may also contribute to the recovery and remod-
eling of neural networks (Kang et al. 2020). Under hypoxic
conditions in the brain, dendritic spines undergo a series of
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Fig. 7 Effects of hypoxia on dendritic spine development
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morphological changes, thereby affecting their density and
directly or indirectly influencing neuronal functions such as
information transmission efficiency and cognitive abilities
(Zhuravin et al. 2019a, b). Hypoxia, as a common physi-
ological and pathological state, has a pronounced impact
on the development of dendritic spines (Fig. 7) (Zhuravin
et al. 2019a, b).

During the early stages of hypoxia, subtle swelling occurs
in dendritic shafts, manifesting as a beaded-like alteration
that persists. Concurrently, the length and width of dendritic
spines gradually increase to accommodate the neural signal-
ing demands in a hypoxic environment. This compensatory
mechanism aims to enhance synaptic transmission efficiency
in response to hypoxia (Turlova et al. 2023). However,
excessive spine elongation and compensation may lead to
the formation of abnormal neural circuits. These changes
are closely associated with abnormalities in oxidative phos-
phorylation, synaptic vesicle cycling, and glutamatergic
synaptic pathways. The accumulation of glutamate within
cells is further linked to neurocognitive dysfunction, such
as cognitive impairment (Sanmarco et al. 2023).

During the mid-stage of hypoxia, dendrites in the core
infarct area undergo severe damage, manifesting as nota-
ble fragmentation and degeneration. This results in a sig-
nificant reduction in the integrity and quantity of dendritic
spines. Such damage may indicate a weakening of synaptic
connections, profoundly affecting neural signal transmis-
sion and further disrupting neural network functions (Xu

Dendriti
Spine

dendrites and dendritic spines
complete disappearance

dendritic spines have been lost
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et al. 2022). The underlying mechanisms of this damage are
closely related to complex factors such as energy metabolism
dysfunction, enhanced oxidative stress, and the accumula-
tion of excitatory amino acids triggered by hypoxia (Kelley
et al. 2022). For instance, functional abnormalities in actin
(which is externally regulated by secretory cues, contact-
mediated factors, and neuronal activity) and microtubules
(with Sox11, N-cadherin, Sema3E, and Rho GTPases serv-
ing as transcriptional factors) can exacerbate dendritic dam-
age. Additionally, the increase in ROS and the overactivation
of glutamate may lead to the atrophy or even disappearance
of dendritic spines (Holland et al. 2024).

During the mid-to-late stage of hypoxia, different patterns of
dendritic changes are observed in the infarct core region and its
surrounding areas (Xu et al. 2023a, b). Specifically, dendrites
in the infarct core region suffer severe and irreversible damage,
leading to their complete disappearance. This phenomenon is
likely closely related to severe energy metabolism dysfunction
and enhanced oxidative stress in the core region (Mira et al.
2020). In the peripheral infarct zone, located around the infarct
core, dendrites are preserved, but most of their dendritic spines
have been lost (Giusti et al. 2019). This significantly reduces the
number of synaptic connections, severely compromising neural
signal transmission (Claiborne et al. 2024). Such damage may
be associated with relative insufficiency in energy supply and
persistent oxidative stress in this region (Harbin et al. 2023). In
contrast, dendritic spines in regions far from the infarct bound-
ary exhibit relative stability in length and density. This may be
attributed to the smaller impact of hypoxia on neurons in these
areas, resulting in relatively mild energy metabolism and oxi-
dative stress responses (Dromard et al. 2021). Consequently,
dendritic spines in these regions are able to maintain a certain
number and structure, thereby preserving relatively normal neu-
ral signal transmission function (He et al. 2022).

In the later stage of hypoxia, the evolution of dendritic spines
accelerates, undergoing a remarkable regenerative process. Over
time, the number and density of dendritic spines gradually return
to pre-hypoxic levels. This recovery is not only reflected in quan-
tity, but also in the integrity of structure and function (Tang
et al. 2023a, b). Stable dendritic spines significantly enhance
the efficiency of neuronal communication by establishing new
synaptic connections (Dubey et al. 2024). Notably, the forma-
tion and enlargement of dendritic spines play a pivotal role in
this process, not only indicating the enhancement of synaptic
connections, but also serving as a key mechanism for neurons
to adapt to and repair hypoxic damage (Acufia-Hinrichsen et al.
2021). With the increase in the number and size of dendritic
spines, the signal transmission capacity of neurons is signifi-
cantly improved, and the function of neural networks gradually
recovers (Gellner et al. 2022). Concurrently, dendrites them-
selves undergo significant remodeling, exhibiting more complex
morphologies and parallel alignments with newly formed blood
vessels. This facilitates the exchange of substances and energy
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supply between dendrites and blood vessels, further promoting
the recovery and regenerative process of neurons (Yamauchi
et al. 2022).

The Mechanism of Action of Postsynaptic Markers
on Dendritic Spines

Dendritic spines, tiny yet crucial protrusions on neurons, exhibit
diverse morphologies, including slender, mushroom, stubby, and
filopodia types. They are responsible for receiving neural signals
from axons and play a pivotal role in information transmission
and processing within neural networks (Rasia-Filho et al. 2023).
These different types of dendritic spines may exhibit distinct
dynamic changes and adaptability in response to external stim-
uli and internal signals. Mushroom-shaped dendritic spines are
characterized by their large head structures, enabling them to
receive synaptic connections from multiple axons. Therefore,
in response to external stimuli, mushroom-shaped dendritic
spines can simultaneously integrate signals from multiple
axons, increasing the diversity and complexity of signals. This
characteristic makes mushroom-shaped dendritic spines play a
significant role in information processing, learning, and mem-
ory. Slender dendritic spines, due to their elongated structure,
enable the formation of longer connections between neurons.
This feature makes them adept at long-distance transmission
of neural signals. In response to external stimuli or internal sig-
nals, slender dendritic spines can quickly transmit signals from
axons to dendrites or from dendrites to the cell body, achieving
efficient signal transmission. Stubby dendritic spines have rela-
tively short and stout structures, allowing them to form stable
connections between neurons. In response to external stimuli,
stubby dendritic spines can rapidly transmit signals to the cell
body, and due to their structural stability, they can maintain con-
nections for extended periods, ensuring stable signal transmis-
sion. Furthermore, stubby dendritic spines may also participate
in local signal processing and regulation in neurons. Filopodia-
type dendritic spines exhibit elongated, filamentous structures,
enabling them to form extensive neural network connections.
In response to external stimuli, filopodia-type dendritic spines
can rapidly propagate signals throughout the network, achiev-
ing rapid signal diffusion and sharing. Additionally, due to their
structural flexibility, filopodia-type dendritic spines can undergo
morphological changes to adapt to different signal transmission
requirements.

Specifically, dendritic spines involve critical biological pro-
cesses such as the regulation of excitatory receptor-mediated
currents, the conduction of postsynaptic potentials, and the
diffusion of intracellular calcium ions from the spine head to
the dendrite (Fernholz et al. 2024). Due to their high plastic-
ity, dendritic spines can undergo adaptive changes in response
to environmental stimuli, such as excitatory toxicity, LTP, or
LTD, thereby enabling fine-tuning of neural network functions.
These adaptive changes are crucial for the normal function
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and plasticity of the nervous system (Pérez-Acufia et al. 2023).
Research has confirmed that immature and elongated dendritic
spines are closely associated with brain hypoxic diseases (Taylor
et al. 2023a, b). That is, under hypoxic conditions, the normal
development of dendritic spines is severely disrupted, leading
to the formation of unstable synapses with immature dendritic
spines. These synapses lack complete postsynaptic markers,
such as PSD-95 and Gephyrin, resulting in impaired neural
function (Fok et al. 2024).

PSD95, as the core scaffold protein in the excitatory PSD
region, is crucial for maintaining the structure and function
of mature excitatory glutamatergic synaptic dendritic spines
(Wang et al. 2023a, b, ¢, d). Under hypoxic conditions in the
brain, the expression of PSD95 is significantly downregulated
due to hypoxia, leading to adverse effects on the morphology of
dendritic spines and cognitive function (Zhang et al. 2022a, b).
Cirbp, a cold shock protein, can regulate the post-transcription
of PSD95 by binding to its 3'-UTR region. In the hippocampus,
overexpression of Cirbp can attenuate the negative impact of
hypobaric hypoxia on PSD95 expression, thereby alleviating
dendritic spine injury and cognitive developmental delay caused
by hypoxia. Studies have shown that the Cirbp-PSD95 axis plays
a pivotal role in protecting neurons from hypoxia-induced mor-
phological abnormalities and cognitive defects in hippocampal
dendritic spines (Zhou et al. 2021). Further investigation of this
mechanism is expected to provide new strategies for the treat-
ment of neurodegenerative diseases such as cerebral ischemia.

Gephyrin, similar to PSD95, is also a postsynaptic protein
that occupies a central position in the excitatory PSD of neu-
rons and is an indispensable component of the postsynaptic
membrane (Li et al. 2024). Gephyrin closely collaborates with
scaffold proteins such as PSD-95 to maintain the structural sta-
bility and functional integrity of synapses (Marcos et al. 2022).
Generally speaking, brain hypoxia does not affect brain weight,
brain morphology, body weight, the number of neuronal cells,
or neuroglial activation. However, it can lead to increased spon-
taneous neurotransmitter release, which impairs coordinated
synaptic activities and results in abnormal spontaneous synaptic
activities (Zhang et al. 2022a, b). Hypoxia can directly interfere
with the expression levels and spatial distribution of Gephy-
rin, thereby affecting the structure and function of dendritic
spines. This is mainly manifested as a decrease in the density
of dendritic spines in DG granule cells, an increase in dendritic
diameter, a reduction in dendritic length, and a decrease in the
width of the stratum lucidum in the hippocampal CA3 region
(Rosenberg et al. 2023). Particularly, when the expression of
Gephyrin is downregulated, the stability of the postsynaptic
membrane is compromised, synaptic transmission efficiency is
reduced, and the morphological development and plasticity of
dendritic spines are disrupted. This poses a serious challenge
to neuronal information transmission and cognitive function
(Moreno-Jiménez et al. 2023).

Moreover, NL1, as one of the critical postsynaptic proteins,
plays a vital role in regulating the structure and function of
neural synapses (Zhang and Zhang. 2023). Studies have shown
that NL.1 can affect the efficiency of neural signal transmission
by increasing the number of glutamatergic synapses (Sell et al.
2024). Additionally, NL1 can tightly bind to PSD95 and interact
directly with NMDA receptors, thereby precisely regulating the
transmission process of excitatory synapses (Luo et al. 2020).
The two major classes of molecules, NRXs and NLs, play piv-
otal roles in synapse formation and stability (Ducrot et al. 2023).
However, under hypoxic pathological conditions, the expression
levels of NRXs decrease, while the expression of NLs increases
(Yin et al. 2020). Such changes in expression patterns disrupt
the original balance between inhibitory and excitatory synap-
tic transmission, profoundly affecting the normal function of
the nervous system (Feller et al. 2023). Notably, hypoxia not
only affects the expression of NRXs and NLs but also reduces
the levels of PSD95, with this impact being particularly signifi-
cant in the hippocampus, a brain region closely associated with
advanced neural activities such as learning and memory (Wang
etal. 2020a, b).

The Impact of Hypoxia on Dendritic Spine Plasticity

Hypoxia not only significantly impacts the morphology, number,
and density of dendritic spines but also impairs their plastic-
ity—the ability of dendritic spines to adjust their morphology
and function in hypoxic environments, crucial for learning and
memory (Fu et al. 2024). Actin exists in dendrites in two forms:
G-actin and F-actin. The latter is essential for the formation, sta-
bilization, and regulation of dendritic spines through interactions
with ABPs and postsynaptic signaling molecules such as acetyl-
choline, glutamic acid, glycine, and GABA. Hypoxia disrupts
actin dynamics, upsetting the balance of interactions between
F-actin and ABPs, thereby affecting the structural stability of
dendritic spines (Guo et al. 2019). This alteration weakens the
mechanisms of dendritic spine formation and maintenance, and
interferes with their regulatory processes (Li et al. 2021).

As the plasticity of dendritic spines underlies LTP—a crucial
molecular and cellular model related to learning and memory, its
impairment directly leads to the blockade of LTP, concurrently
reducing AP discharge and increasing the current of SAHP chan-
nels (McClendon et al. 2019). When LTP signals are triggered,
CaMKI1I is activated and dissociates from F-actin, resulting in
decreased stability of F-actin (Tullis and Bayer 2023). Simul-
taneously, actin depolymerizing factor/cofilin (ADF/Cofilin)
enters and severs F-actin, initiating its breakdown (Dinet and
Michelot, 2023). Additionally, the decreased concentration of
proteins that stabilize F-actin (e.g., Drebrin, gelsolin, villin,
thymosin p4, profilin, cortactin, adducin, and a-actin) further
promotes the decomposition of F-actin (Greve et al. 2024).

Once F-actin is severed, its new free ends promote the polym-
erization of G-actin, leading to the formation of new F-actin
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(Appalabhotla et al. 2023). Additionally, Aipl and Arp2/3 com-
plex enter the spines and bind to F-actin, promoting the branch-
ing of F-actin and resulting in a more complex F-actin structure,
which contributes to the enlargement of dendritic spines (Gon-
zalez Rodriguez et al. 2023). Furthermore, cerebral ischemia
further affects the regulation of ABPs by disrupting calcium
signaling (e.g., CaM, calpains, NFAT) and intracellular path-
ways (e.g., CAMP-PKA pathway and MAPK pathway), exac-
erbating the reduction in dendritic spine plasticity (Schneider
et al. 2021). Extensive research confirms that cerebral ischemia
comprehensively impairs dendritic spine plasticity by affecting
actin dynamics, postsynaptic signaling molecule interactions,
and LTP-related mechanisms, thereby exerting profound effects
on the brain's learning and memory functions.

Post-hypoxic Consequences on Structural Synaptic
Changes

In recent years, with the in-depth study of neurobiological
mechanisms under hypoxic conditions, we have gradually
recognized the significant impact of hypoxia on the mor-
phology, number, and density of dendritic spines, as well as
its profound influence on synaptic structural changes. As the
crucial nodes for information transmission between neurons,
synaptic structural changes are directly linked to the function
and efficiency of neural networks.

During the initial stages of hypoxia, the compensatory
elongation and broadening of dendritic spines not only
adapt to the needs of neural signal transmission in hypoxic
environments but also trigger changes in synaptic structure.
Specifically, the presynaptic membrane releases increased
neurotransmitters to compensate for the decreased synaptic
transmission efficiency caused by hypoxia (Turlova et al.
2023). Meanwhile, the number of receptors on the post-
synaptic membrane may also change to adapt to the altered
neurotransmitter concentrations. This adaptive adjustment
of synaptic structure helps maintain the stability of neural
networks and promotes neuronal survival.

However, as hypoxia persists, synaptic structural
changes gradually become negative. During the mid-
dle stages of hypoxia, severe damage to dendrites in the
core infarct area leads to the weakening and disruption of
synaptic connections. This damage not only reduces the
number of synapses but also alters their morphology and
distribution. Some synapses may disappear completely due
to the fragmentation and degeneration of dendrites, while
others may lose function due to the atrophy of dendritic
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spines (Holland et al. 2024). This destruction of synaptic
structure has profound effects on neural signal transmis-
sion, further exacerbating neurological dysfunction.

In the later stages of hypoxia, despite irreversible dam-
age to dendrites in the core infarct area, the synaptic struc-
ture in the peri-infarct zone exhibits a degree of plasticity.
Although most dendritic spines are lost, the remaining
synapses may compensate for the reduction in numbers
by enlarging and enhancing their functions (Claiborne
et al. 2024). This plasticity of synaptic structure provides
potential for neural network recovery but also poses new
challenges. Excessive enlargement and enhancement of
synapses may lead to the formation of abnormal neural
circuits, triggering a series of neurological dysfunctions.

Finally, during the post-hypoxic period, as dendritic
spines regenerate and remodel, the synaptic structure
gradually returns to normal levels. Stable dendritic spines
significantly enhance the efficiency of information trans-
mission between neurons by establishing new synaptic
connections. This restoration of synaptic structure is not
only reflected in quantity but also in structural and func-
tional integrity (Dubey et al. 2024). Newly formed syn-
apses exhibit higher transmission efficiency and stronger
plasticity, contributing to the recovery and remodeling of
neural networks.

In conclusion, the impact of hypoxia on synaptic structure
is a complex and dynamic process. From initial compen-
satory adjustments to middle-stage structural damage and
later-stage recovery and remodeling, the changes in synaptic
structure are closely related to the function and efficiency
of neural networks. Therefore, in future research, we need
to further explore the mechanisms of synaptic structural
changes under hypoxic conditions to better understand
the effects of hypoxia on the nervous system and provide
new ideas and methods for the prevention and treatment of
related diseases.

Therapeutic Strategies

Cerebral hypoxia exerts significant regulatory effects on the
morphology and function of neurons and dendritic spines. Cur-
rently, researchers are dedicated to developing drugs that can
intervene in hypoxia-induced changes, aiming to protect the
integrity of neurons and dendritic spines and provide novel
therapeutic strategies for the treatment of cerebral hypoxia.
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Molecular Drug/Technol- Cerebral hypoxia Model In vivo/In Regulatory Factors References
Mechanism  ogy disease vitro
MAPK IHT AD 8-Month-old APP/ In vivo+In The activation of TFEB induced by IHT =~ Wang et al.
PS1 mice+PAM vitro is associated with the inhibition of the (2023a, b,
model AKT-MAPK-mTOR pathway c,d)
HP-BMSCs  Cardiac arrest can a cardiac arrest rat In vivo HP-BMSCs attenuate brain injury by Tang et al.
result in cerebral model reducing the expression of HMGBI1, (2023a, b)
ischemia-reper- TLR4, NF-kB p65, p38 MAPK, and JNK
fusion injury and in the cerebral cortex
poor neurologi-
cal outcomes
Intermit- ischemic stroke  sub-acute hypoxia- In vivo Subacute hypoxia can promote behavioral Bindal et al.
tent fasting induced ischemic changes, free radical production, and (2024)
along with stroke in adult alterations in brain tissue oxidative stress
hydroalco- zebrafish status (SOD, GSH-Px, and LPO) in
holic extract zebrafish, accompanied by mitochondrial
of Centella- dysfunction (complexes I, II, and IV),
asiatica neuroinflammation (IL-10, IL-1p, and
TNF-a), and alterations in signaling mol-
ecules (AMPK, MAPK, GSK-3f, Nrf2)
Sanpian decoc- cerebral ischemia—the rat model of  In vivo Sanpian decoction upregulates SIRT1 Yang et al.
tion reperfusion MCAO/R expression, downregulates p-ERK/ERK  (2024a, b, ¢)
injury and HIF-1a levels, increases cerebral
blood flow, improves neurological func-
tion, and reduces neuronal apoptosis
rhEPO TBI and delayed murine model of  In vivo rhEPO enhances neural regeneration and ~ Celorrio and
hypoxemia TBI and delayed repair after cerebral ischemia by activat-  Friess (2023),
hypoxemia ing the MAPK/CREB signaling pathway, Celorrio et al.

Naoluoxintong cerebral ischemia—MCAO/R rats with In vivo

formula and
its split pre-

scriptions

Hydrogen Gas Neonatal HIE

AMPA recep- Ampakines
tors

two PHDIs,

INJ-4204193

and roxa-
dustat

reperfusion QDBS

In vivo
+ In vitro

a rat model
of neonatal
HIBI+ OGD/R
nerve growth
factor-differenti-
ated PC12 cells

repeated hypoxic adult male In vivo
episodes Sprague-Dawley

rats

acute ischemic In vitro

stroke

isolated rat hip-
pocampal slices

aiming to affect neurogenesis, neuropro-  (2022)
tection, and synaptic density following

cerebral ischemia

Xiao et al.
(2023)

Naoluoxintong formula and its split pre-
scriptions effectively promote cerebro-
vascular regeneration in a rat model
of cerebral ischemia reperfusion by
significantly inhibiting the activity of p38
MAPK and effectively activating a series
of factors closely related to angiogenesis,
including VEGFA, VEGFR2, CD31,
Angl, Ang2, and Tie2

Hydrogen attenuates hypoxic-ischemic
brain injury in neonatal rats by regulat-
ing the MAPK/HO-1/PGC-1a pathway.
Hydrogen activates MAPKSs, leading to
the induction of HO-1 expression. Subse-
quently, HO-1 upregulates the expression
of PGC-1a and SIRT]1, thereby enhancing
cellular antioxidant defense capabilities
and mitigating brain injury

Wang et al.
(2020a, b)

Thakre and
Fuller (2024)

Ampakine regulates AMPA receptors
through allosteric modulation, affecting
the efficiency and intensity of synaptic
transmission, thereby enhancing the
promoting effect of hypoxia on diaphrag-
matic movement

Moreton et al.
(2023)

APHDISs regulate synaptic transmission
and plasticity by influencing the quantity,
trafficking, and expression of the GluA2
subunit of AMPA receptors, thereby
exerting neuroprotective effects during
ischemic stress
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Molecular Drug/Technol- Cerebral hypoxia Model In vivo/In Regulatory Factors References
Mechanism  ogy disease vitro
Taxifolin ischemic stroke  hippocampal cell In vitro Taxifolin potentially enhances the function Turovskaya
cultures after 40 of AMPA receptors by increasing the et al. (2019)
min of OGD/R expression of genes encoding AMPA

receptor subunits, thereby affecting neu-
ronal signal transmission and excitability,
while also reducing the expression of
pro-oxidant enzyme NOS and pro-inflam-
matory cytokine IL-1p

Icariin neonatal epilepsy hypoxia-induced In vivo Icariin protects against neuronal damage  Guo et al.
neonatal epilepsy and improves cognitive function in neo-  (2020)
rats natal epileptic rats induced by hypoxia

through modulation of the AMPA recep-
tor GluR2/ERK I/II pathway

Fingolimod  neonatal epilepsy hypoxia-induced In vivo Fingolimod may affect memory function  Hajipour et al.
neonatal seizure and synaptic transmission by regulat- (2023)
pups ing the expression or function of AMPA
receptors, particularly their GluR2
subunit
NMDA recep- Telaprevir Ischemic Stroke ischemic stroke In vivo Terawer alleviates cerebral ischemic injury Zhang et al.
tors mice by affecting NMDA receptors (particu- (2023a, b, ¢)

larly the GIuN2B subunit) and inhibiting
MALT1, thereby improving neural func-
tion in mice

Carbamathione stroke PC-12 cell cultures In vivo+In  Carbamathione attenuated NMDA-medi- Modi et al.
as a cell-based vitro ated glutamate currents, resulting in the ~ (2023)
model and BCAO activation of the AKT signaling pathway.
for stroke This led to an increase in the expres-

sion of cell survival biomarkers such as
Hsp 27, P-AKT, and Bcl-2, as well as a
decrease in the expression of cell death
markers like Beclin 1, Bax, and cleaved

caspase-3
brain machine neurocognitive  mice In vivo Training mice through brain machine Shi et al. (2024)
interface disorders interface techniques to enhance their low
techniques gamma power in local field potentials led
to an increase in the transcriptional level
of NMDA receptors
Amantadine  brain injury SH-SY5Y and In vitro Amantadine alleviates hypoxia-induced ~ Ocal et al.
HEK?293 cells mitochondrial oxidative neurotoxicity, (2022)

apoptosis, and inflammation by regulating
NMDA receptors to reduce Ca2 +influx,
and inhibiting TRPM2 and TRPV4 chan-

nels
esketamine and panic disorder male Wistar rats  In vivo Esketamine and buprenorphine exhibited Maraschin et al.
buprenor- exposed to acute similar anti-panic effects in acute hypoxic (2022)
phine hypoxia rats, with esketamine potentially acting

through antagonism of NMDA receptors,
while the effects of buprenorphine were
primarily related to its interaction with
opioid receptors

Fingolimod  neonatal epilepsy hypoxia-induced In vivo Fingolimod may exert neuroprotective Hajipour et al.
neonatal seizure effects by regulating the expression or (2023)
pups function of NMDA receptors, particularly

the NR2A subunit, through mechanisms
such as modulating calcium influx and
altering receptor phosphorylation states
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Molecular Drug/Technol- Cerebral hypoxia Model In vivo/In Regulatory Factors References
Mechanism  ogy disease vitro
BDNF Asiatic acid ~ Prenatal hypoxia intrauterine In vivo Asiatic acid may exert neuroprotective Ariani et al.
hypoxia-exposed effects by increasing the expression of (2023)
zebrafish BDNF, which plays a crucial role in the
growth, differentiation, and survival of
neurons
Sub-dose Cerebral ischemia-CCH model In vivo Sub-dose anesthetics combined with Yang et al.
anesthetics hypoxia chloride regulators can significantly (2024a, b, ¢)
combined reduce hypoxic injury, improve cognitive

with chloride

chronic intermit- CIH mouse model In vivo

tent hypoxia

Pterostilbene

hypoxia/ischemia ICR mice In vivo

injury

Hypoxic Pre-
conditioning

In vitro+In
vivo

A new peptide, spinal cord injury PC12 cells sub-
VD11 jected to hypoxia
+rats with spinal
cord injury

Dexmedetomi- HIBD in neonates HIBD was induced In vivo
dine in postnatal day
7 rats

function, decrease intracellular chloride
accumulation, reduce cell death, restore
the compensatory effect of GABA, and
increase the expression of BDNF

Pterostilbene alleviates chronic intermit-  Liu et al. (2023)
tent hypoxia-induced oxidative stress

injury in neural cells by upregulating

BDNF expression, modulating immune

responses (increasing the levels of anti-

inflammatory Th2 cells and Treg cells

while decreasing the levels of proinflam-

matory Thl cells and Th17 cells), and

inhibiting glial cell activation through the

p-ERK signaling pathway

Zhang et al.
(2023a, b, ¢)

Hypoxic Preconditioning downregu-
lates the expression of DNMT3A and
DNMTS3B, resulting in decreased DNA
methylation levels in the BDNF gene pro-
moter region. This reduction in methyla-
tion levels leads to upregulation of BDNF
expression. The upregulated BDNF
further activates the BDNF/TrkB signal-
ing pathway, exerting positive effects
on neuronal growth, differentiation, and
function, ultimately promoting learning
and memory capabilities in mice

VD11 promotes the secretion and expres- Li et al. (2023a,
sion of BDNF, upregulating its levels b)
in injured spinal cords. BDNF subse-
quently binds to its receptors, activating
downstream signaling pathways (such as
AMPK and AKT signaling pathways),
thereby promoting neuronal growth,
differentiation, and survival. Ultimately,
this leads to improved structural and
functional recovery following spinal cord
injury

Dexmedetomidine upregulates the expres- Chen et al.
sion of BDNF, subsequently activating (2024)
its receptor TrkB and downstream CREB
signaling pathway. This series of signal
transduction processes promotes hip-
pocampal neurogenesis and affects the
polarization of astrocytes, thereby alle-
viating neuronal damage and cognitive
dysfunction caused by HIBD

@ Springer



58 Page 18 of 23

Cellular and Molecular Neurobiology (2024) 44:58

Table 1 List of abbreviations (according to alphabetical order)

Table 1 (continued)

Abbreviations  Full name Abbreviations  Full name
ABPs Actin-Binding Proteins OGD/R Oxygen—glucose deprivation/reperfusion
AD Alzheimer's disease PHDIs Prolyl-4-hydroxylase domain enzyme inhibitors
AMPA a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic PSD Postsynaptic density
acid PTEN Phosphatase and tensin homologue
AP Action potential PVTI1 Plasmacytoma variant translocation 1
ATP Adenosine triphosphate QDBS Qi deficiency with blood stasis
BCAO Bilateral carotid artery occlusion rhEPO Recombinant human EPO
BDNF Brain-derived neurotrophic factor Rn Cell input resistance
BLA Basolateral amygdala ROS Reactive oxygen species
CaM Calmodulin sAHP Slow afterhyperpolarization
CaMKII Calcium/calmodulin-dependent protein kinase 11 SGZ Subgranular zone
CCH Chronic cerebral hypoxia SIRT1 Sirtuin 1
CIH Chronic intermittent hypoxia SPAR Spine-associated Rap-specific GTPase
Cirbp Cold inducible RNA-binding protein SVZ Subventricular zone
DG Dentate gyrus TBI Traumatic brain injurie
DNMT DNA methyltransferase TFEB The transcription factor EB
EEG Electroencephalogram
EPC Endothelial progenitor cell
EPO Erythropoietin
. . Summary and Outlook
EPSCs Excitatory postsynaptic currents
EXs Exosomes . . .
. ) . The molecular changes induced by cerebral hypoxia and their
F-actin Fibros actin . ¢ the phvsiol f d dendriti .
GABA J-aminobutyric acid 1mpacts on the physio Og}.f of neurons and dendr1 lC Splges rep-
. . resent a complex yet crucial research field. Dendritic spines, as
G-actin Globular actin . . L .
delicate protrusions on neurons, serve as crucial sites for infor-
GLAST Glutamate-aspartate transporter fi ti d . d th ti "
GLT-1 Glial glutamate transporter-1 mation reception and processing, an. e syr}ap 1C StI'U('J u.res
. formed on them are the core hubs for information transmission
GSH Glutathione b Under h . hological diti h
HIBD Hypoxic-ischemic brain damage etween' neurons. Under hypoxic pathological conditions, the
. . o metabolism and function of neurons are profoundly affected,
HIBI Hypoxic-ischemic brain injury . .. ] ) .
. . leading to significant alterations in synaptic structure and func-
HIE Hypoxic-ischemic encephalopathy ion. M derh . diti dmi
HIF-1 Hypoxia inducible factor-1 tl?n. 1 Oreover, lll’.l cr yp(l)XIC con glOHS, asFrocyt;:s .an mlCI‘(;i
HP-BMSCs Hypoxic preconditioned BMSCs gliaplay a Protectlve, regu atory? an. reparatlve role I}europ
. . and synaptic structures. By delving into the causal relationships
IHT Intermittent hypoxia therapy . .
o of these changes, we can gain a deeper understanding of the
1L Infralimbic area h i< of related logical di d d
IncRNA Long non-coding RNA pat Ogenfesml(: r;: ate1 neuro Og}c 1Slealsles an pFOVI e strf)ng
LTD Long-term depression support for the development of novel therapeutic 'strategles.
L Future research should further focus on the dynamic changes
LTP Long-term potentiation ¢ d dendriti . der h . diti d
MALTI Mucosa-associated lymphoid tissue lymphoma 0 I'lel.lI'OI.IS an en lt.lc Spln'es un eI: ,yp OXIC ?On lt,logs an
translocation protein 1 their intrinsic connections with cognitive function, aiming to
MAPK Mitogen-activated protein kinase provide new breakthroughs in the prevention and treatment of
MCAO/R Middle cerebral artery occlusion/reperfusion related neurological diseases. (The complete abbreviations are
NFAT Nuclear Factor of Activated T Cells shown in Table I).
NGF Nerve Growth Factor
NLI Neuroligin-1 Author contributions Chao Cui, Youzhen Wei, and Qingbin Ni wrote
NLs Neuroligins the main manuscript text, Xue Jiang and Yumei Wang prepared fig-
NMDA N-Methyl-p-aspartic acid ures 1-4, Chao Li and Zhaochen Lin prepared figures 5—7. All authors
NO Nitric oxide reviewed the manuscript.
NPCs Neural progenitor cells ) Funding The Project Supported by Chinese Medicine Science and
NR2A N-methyl-p-aspartate receptor 2A subunit Technology Project of Shandong Province (No. M-2022082) and Shan-
NRXs Neurexins dong Provincial Natural Science Foundation (No. ZR2021MH025) and

@ Springer



Cellular and Molecular Neurobiology (2024) 44:58

Page190f23 58

Tai’an Science and Technology Innovation Development Project (No.
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