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Abstract: Oxalis corniculata L. (family Oxalidaceae) is a small creeper wood sorrel plant that grows
well in moist climates. Despite being medicinally important, little is known about the genomics of this
species. Here, we determined the complete chloroplast genome sequence of O. corniculata for the first
time and compared it with other members of family Oxalidaceae. The genome was 152,189 bp in size
and comprised of a pair of 25,387 bp inverted repeats (IR) that separated a large 83,427 bp single copy
region (LSC) and a small 16,990 bp single copy region (SSC). The chloroplast genome of O. corniculata
contains 131 genes with 83 protein coding genes, 40 tRNA genes, and 8 rRNA genes. The analysis
revealed 46 microsatellites, of which 6 were present in coding sequences (CDS) regions, 34 in the
LSC, 8 in the SSC, and 2 in the single IR region. Twelve palindromic repeats, 30 forward repeats,
and 32 tandem repeats were also detected. Chloroplast genome comparisons revealed an overall
high degree of sequence similarity between O. corniculata and O. drummondii and some divergence
in the intergenic spacers of related species in Oxalidaceae. Furthermore, the seven most divergent
genes (ccsA, clpP, rps8, rps15, rpl22, matK, and ycf 1) among genomes were observed. Phylogenomic
characterization on the basis of 60 shared genes revealed that O. corniculata is closely related to
O. drummondii. The complete O. corniculata genome sequenced in the present study is a valuable
resource for investigating the population and evolutionary genetics of family Oxalidaceae and can be
used to identify related species.

Keywords: Oxalidaceae; chloroplast genome comparison; inverted repeats; divergence; SSRs;
phylogeny

1. Introduction

The largest genus of family Oxalidaceae is Oxalis L., which is distributed mostly in Southern
Africa and South America, and comprises of more than 500 species. About one-half of the total species
(>200 spp) growing in Southern Africa share a bulbous or tuberous in herbaceous taxa [1–3]. A huge
morphological variation have been observed among approximately 250 species in South America,
where this genus seems to have originated and diversified [2,4]. However, Oxalis sections Corniculatae
DC. consist of creeping herbs, and many of the species grows in the temperate and humid areas of
the Americas [5]. A cytogenetic study showed that Corniculatae tends to be categorized into two
sub-groups: (1) a large number of diploid and polyploid species with a base chromosome number of
x = 6, symmetrical karyotypes, and medium and small chromosomes size, and (2) a minor number of
diploid species having x = 5, more asymmetrical karyotypes, and average to large chromosomes [3,6,7].
The taxonomy has been suffering with similarities in phenotypes across different species.
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Among species from genus Oxalis, Oxalis corniculata L. is a small creeping herb that is adaptive
to moist conditions with yellow flowers and cylindrical fruits [4]. The origin of O. corniculata L. has
been unknown until now. O. corniculata was first described by Carl Linnaeus from the Mediterranean
region and various others suggested that this region is the native range [4,8]. Currently, among
vascular plant species, O. corniculata has the third largest distribution [9]. The early spread and global
distribution of O. corniculata has contributed to the difficulty in identifying its native range [4]. It is
highly persistent in the horticulture industry and commonly found in gardens and as a hitchhiker
in plant pots in gardens and nurseries [10]. Additionally, O. corniculata had medicinal values to treat
various infectious diseases [11]. It has been known as antifungal, antibacterial, anti-inflammatory,
anthelmintic, antidiuretic, astringent, emmenagogue, depurative, febrifuge, lithontriptic, stomachic,
and styptic [12]. It has sticky seeds, explosive capsules, persistent flowers, and a brief life cycle,
which make it an effective colonizer and constant weed. O. corniculata is not a strong competitor;
however, its abundance and enormous range increase its overall impact as a weed.

Chloroplasts (cp) are important plant organelles that carry out photosynthesis and the biosynthesis
of amino acid, fatty acids, and pigments [13,14]. Similarly, cp genomes have proven to be a valuable
resource for species identification, plant phylogenetics, population genetics, and genetic engineering.
Its DNA is inherited maternally in not all but in the majority of angiosperm species [15]. As a
result of its inheritance approach, cp DNA plays a significant role in population genetics and
molecular evolution. Therefore, its DNA can not only be used for species discrimination but can
also be used solved many questions related to taxonomy [15,16]. Chloroplasts contain their own
independent genomes and genetic systems, and DNA replication and transmission to daughter
organelles result in a cytoplasmic inheritance of characteristics associated with primary events in
photosynthesis [17,18]. The cp genome structure of angiosperms is circular—about 120–217 kb in
size—and contain a quadripartite conformation [19,20]. It has small single copy (SSC) and large single
copy (LSC) regions that are generally segregated by double copies of an inverted repeat region (IRa
and IRb) [20]. In terms of gene order and content, the cp genome is usually conserved in various
families of the angiosperm, such as Campanulaceae, Fabaceae, Geraniaceae, and Oleaceae [21–23].
Due to its conserved structure, small size, and recombination-free nature, the chloroplast genome is
broadly used in plant phylogenetic analysis [24,25]. Similarly, the cp genome has a highly conserved
structure that simplifies sequencing and primer designing, and chloroplast DNA can be used for the
identification of plants as a barcode [26,27].

Molecular phylogenetic tools were broadly used to assess previous taxonomy and evolutionary
processes. The number of chromosomes and contents of DNA (cytogenetic data) are usually associated
with phylogenetic trees in order to understand the karyological differences involved in the group
diversification [28,29]. Molecular phylogenomic studies using cp genome sequence data from the genes
and slowly evolving inverted repeat regions have been applied to reveal the deep-level evolutionary
relationships of plant taxa [30], producing robust phylogenies that are corroborated by sequence data
from mitochondrial and nuclear genomes [31]. With the advancement of different genomic methods and
tools, next-generation technologies have provided the rapid sequencing of different cp genomes from
both angiosperms and gymnosperms in recent years, which enabled the confirmation of evolutionary
relationships and detailed phylogenetic classifications to be conducted at the group, family, genus,
and even species levels in plants [32,33]. Therefore, cp genome-scale data have increasingly been used
to infer phylogenetic relationships at high taxonomic levels, and even at lower levels, great progress
has been made [27,34–36].

The phylogenetic analysis of various Oxalis taxa has been reported previously by using nuclear
Internal Transcribed Spacer (ITS) regions [37]; however, more detailed insight is still missing, keeping
in view the complex taxonomy of O. corniculata. It is variable cytologically and genetically, but it is also
phenotypically plastic [38,39]. Its taxonomy is complicated by the description of many subspecific
taxa and other species now considered to be synonyms [5]. Furthermore, there has been taxonomic
confusion of O. corniculata with closely related species, such as O. stricta and O. dilleniid [4]. Similarly,
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there is little information available on their genetic structure, especially their chloroplast genomes
or their detailed phylogenetic placement. Hence, the current study was performed with the aim to
sequence and analyze the complete chloroplast genome of O. corniculata and compare it with related
species from the family Oxilidaceae (Oxalis drummondii, Averrhoa carambola and Cephalotus follicularis).
We also aimed to elucidate and compare the global pattern of structural variation in the cp genome
of O. corniculata and related three species. In addition, we compared the IR region contraction and
expansion, intron contents, regions of high sequence divergence, and phylogenomic of O. corniculata
with related species cp genomes to reveal more insight regarding the comparative genome architecture.

2. Results

2.1. Chloroplast Genome Structure of O. corniculata

The chloroplast genome of O. corniculata is 152,189 bp and displays a distinctive quadripartite
structure with a pair of 25,387 bp inverted repeats (IRs) that separate 83,427 bp single copy regions
and 16,990 bp single copy regions (Figure 1). The total GC content is 36.7% with uneven distribution
across the whole genome. The GC contents of IRs are higher (42.6%) than the large single copy and
small single copy regions (34.4% and 30.3%, respectively). Furthermore, the O. corniculata cp genome
consists of 131 genes and among all these genes, 82 are protein-coding genes, 40 are tRNA, and 8 are
rRNA (Figure 1; Table 1). The protein-coding genes present in the O. corniculata cp genome included
nine genes for large ribosomal proteins (rpl2, 14, 16, 20, 22, 23, 32, 33, 36), 11 genes for small ribosomal
proteins (rps2, 3, 4, 7, 8, 11, 12, 14, 15, 18, 19), five genes for photosystem I (psaA, B, C, I, J), 15 genes
for photosystem II (psbA, B, C, D, E, F, H, I, J, K, L, M, T, Z) and six genes (atpA, B, E, F, H, I) for
ATP synthesis and the electron transport chain (Figure 1, Table 2). Similarly, 17 genes contain introns
(11 protein-coding genes and 6 tRNA genes), of which three comprised of two introns (rps12, clpP,
ycf 3), while the rest have a single intron (Table 3). The small ribosomal protein 12 gene (rps12) is
trans-spliced with a single intron. Its 5’ exon is located in the LSC region, while is 3’ exon is located in
the IRb region and duplicated in the IRa region (Figure 1). The largest intron was present in trnK-UUU
(2558 bp), whilst trnL-UAA contains the smallest intron (492 bp) (Table 3). The protein-coding region
accounts for 52%, while the tRNA and rRNA regions constitute 1.99% and 5.94%, respectively, in the cp
genome. The length of the protein-coding region is about 79,239 bp while those of tRNA and rRNA are
3042 bp and 9048 bp, respectively. Similarly, the rps16 gene, which is found in most angiosperm plastid
genomes, is absent in O. corniculata. Furthermore, inf A is also absent in the O. corniculata cp genome.

Table 1. Summary of complete chloroplast genome of O. corniculata and its comparison with related
species from family Oxalidaceae.

A. carambola C. follicularis O. drummondii O. corniculata

Size (bp) 155,965 142,706 152,112 152,189

Overall GC contents 36.5 37.1 36.5 36.7

LSC size in bp 86,218 81,071 83,341 83,427

SSC size in bp 17,497 8739 16915 16,990

IR size in bp 25,626 25,949 25,429 25,387

Protein coding regions size in bp 78,528 66,672 77,826 79,239

tRNA size in bp 2790 2790 2790 3042

rRNA size in bp 9046 9050 9046 9048

Number of genes 131 122 127 131

Number of protein coding genes 83 71 82 83

Number of rRNA 8 8 8 8

Number of tRNA 37 37 37 40
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Figure 1. Gene map of the O. corniculata cp genome. Thick lines in the red area indicate the extent of the 
inverted repeat regions (IRa and IRb; 25,387 bp), which separate the genome into small (SSC; 16,990 bp) and 
large (LSC; 83,427 bp) single copy regions. Genes drawn inside the circle are transcribed clockwise, and those 
outsides are transcribed counter clockwise. Genes belonging to different functional groups are color-coded. 
The dark gray in the inner circle corresponds to the GC content, and the light gray corresponds to the AT 
content. 

Table 1. Summary of complete chloroplast genome of O. corniculata and its comparison with related species 
from family Oxalidaceae. 

 A. carambola C. follicularis O. drummondii O. corniculata 
Size (bp) 155,965 142,706 152,112 152,189 

Overall GC contents 36.5 37.1 36.5 36.7 
LSC size in bp  86,218 81,071 83,341 83,427 
SSC size in bp  17,497 8739 16915 16,990 
IR size in bp  25,626 25,949 25,429 25,387 

Protein coding regions size in bp 78,528 66,672 77,826 79,239 

Figure 1. Gene map of the O. corniculata cp genome. Thick lines in the red area indicate the extent of the
inverted repeat regions (IRa and IRb; 25,387 bp), which separate the genome into small (SSC; 16,990 bp)
and large (LSC; 83,427 bp) single copy regions. Genes drawn inside the circle are transcribed clockwise,
and those outsides are transcribed counter clockwise. Genes belonging to different functional groups
are color-coded. The dark gray in the inner circle corresponds to the GC content, and the light gray
corresponds to the AT content.
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Table 2. Genes in the sequenced O. corniculata chloroplast genome.

Category Group of Genes Name of Genes

Self-replication

Large subunit of ribosomal proteins rpl2 *, rpl14, rpl16, rpl20, rpl22, rpl23 *, rpl33, rpl36

Small subunit of ribosomal proteins rps2, rps3, rps4, rps7 *, rps8, rps11, rps12 *, rps14, rps15, rps18, rps19

DNA dependent RNA polymerase rpoA, rpoB, rpoC1, rpoC2

rRNA genes rrn4.5, 5, 16, 23

tRNA genes
trnA-UGC *, trnC-GCA, trnD-GUC, trnE-UUC , trnF-GAA, trnfM-CAU, trnG-GCC *, trnH-GUG, trnI-GAU *,
trnK-UUU, trnL-CAA *, trnL-UAA, trnL-UAG, trnM-CAU *, trnN-GUU *, trnP-UGG, trnQ-UUG, trnR-ACG *,

trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU *, trnV-GAC *, trnW-CCA, trnY-GUA

Photosynthesis

Photosystem I psaA, B, C, I, J

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ

NadH oxidoreductase ndhA, ndhB *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Cytochrome b6/f complex petA, petB, petD, pet G, petL, petN

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

Rubisco rbcL

Other genes

Maturase matK

Protease clpP

Envelop membrane protein cemA

Subunit Acetyl- CoA-Carboxylate accD

c-type cytochrome synthesis gene ccsA

Unknown Conserved Open reading frames ycf1 *, 2 *, 3, 4,

* Duplicated genes.
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Table 3. The genes with introns in the four species chloroplast genome and the length of exons and introns.

Gene Location Exon I (bp) Intron 1 (bp) Exon II (bp) Intron II (bp) Exon III (bp)

O. c O. d A. c C. f O. c O. d A. c C. f O. c O. d A. c C. f O. c O. d A. c C. f O. c O. d A. c C. f

atpF LSC 144 145 145 145 717 714 714 717 411 410 410 410

petB LSC 6 6 6 6 746 746 785 793 645 642 642 642

PetD LSC 8 8 7 7 746 778 707 721 645 475 473 473

rpl2 * IR 391 391 391 391 658 661 659 671 434 434 434 525

rps16 LSC – – 40 40 – – 935 929 – – 224 227

rpoC1 LSC 430 432 453 459 727 729 751 759 1634 1629 1608 1617

rps12 * IR/LSC 391 527 232 434 25

clpP LSC 71 71 69 69 808 812 833 833 289 289 291 291 603 612 568 228 228 228

ndhA SSC 557 557 559 – 1077 1067 1037 – 541 541 557 –

ndhB* IR 777 777 777 – 685 685 685 – 756 756 756 –

ycf3 LSC 124 124 126 126 718 712 718 714 228 230 228 228 684 678 685 678 155 153 153 150

trnA-UGC * IR 38 38 38 38 799 798 763 811 35 35 35 35

trnI –GAU * IR 37 37 37 37 925 924 932 946 35 35 35 35

trnL-UAA LSC 35 35 35 35 497 497 507 492 50 50 50 50

trnK -UUU LSC 37 34 37 35 2519 2515 2545 2558 35 37 35 37

trnG-GCC LSC 71 71 71 71 – – – – – – – –

trnV-UAC LSC – – 35 35 – – 617 618 – – 39 39

O. c = Oxalis corniculata, O. d = Oxalis drummondii, A. c = Averrhoa carambola, C. f = Cephalotus follicularis.
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2.2. Comparative Analysis of O. corniculata Chloroplast Genome with Related Species

The O. corniculata chloroplast genome was compared with three already sequenced genomes
from family Oxalidaceae i.e., O. drummondii, A. carambola, and C. follicularis (Table 1). Variations
were observed in cp genomes where C. follicularis has the smallest cp genome, 142,706 bp, whilst the
A. carambola cp genome was the largest, 155,965 bp, amongst analyzed species. We also compared
the O. corniculata cp genome for pairwise sequence divergence (Table S1). Results showed that
O. corniculata exhibited the lowest pairwise sequence divergence as compared to O. drummondii (0.044)
and A. carambola (0.057; Table S1). Similarly, the whole cp genomes of O. corniculata were compared
to identify sequence divergence via mVISTA (Figure 2). Results showed that the coding regions of
all cp genomes are conserved compare to non-coding regions, whilst non-coding regions showed
a higher divergence rate than the coding regions. The most divergence was observed in intergenic
spaces. The matK gene exhibited a high degree of divergence in all genomes, but it was higher in
A. carambola and C. follicularis as compared to others. Similarly, rpoC1, rpoC2, and rpoB exhibited more
divergence in four cp genomes with the highest in C. follicularis. The region between rpoB and psbD
genes showed a high degree of divergence in all species in the LSC. The ndhK and rpl16 genes showed
significant divergence compared to the ycf 2 gene with lesser values. The ndhB is less divergent in
all species except C. follicularis, where it showed high divergence. Similarly, the ndhF gene is highly
divergent in all cp genomes, while it is absent in the C. follicularis cp genome. In the SSC, the region
between ndhG and ndhH is highly divergent and the cp genome of C. follicularis lack most of the NadH
oxidoreductase genes. Furthermore, about 63 protein-coding gene sequences were compared to obtain
the average pairwise sequence distance among these species. The results showed that a majority of the
genes maintained low levels of average sequence divergence. A relatively lower sequence identity was
observed between the chloroplast genomes of O. corniculata with related species, especially in the ccsA,
clpP, rps8, rps15, rpl22, matK, and ycf1 genes (Figure 3).



Plants 2020, 9, 928 8 of 20

  

Plants 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/plants 

2.2. Comparative Analysis of O. corniculata Chloroplast Genome with Related Species 

The O. corniculata chloroplast genome was compared with three already sequenced genomes from 
family Oxalidaceae i.e., O. drummondii, A. carambola, and C. follicularis (Table 1). Variations were observed 
in cp genomes where C. follicularis has the smallest cp genome, 142,706 bp, whilst the A. carambola cp genome 
was the largest, 155,965 bp, amongst analyzed species. We also compared the O. corniculata cp genome for 
pairwise sequence divergence (Table S1). Results showed that O. corniculata exhibited the lowest pairwise 
sequence divergence as compared to O. drummondii (0.044) and A. carambola (0.057; Table S1). Similarly, the 
whole cp genomes of O. corniculata were compared to identify sequence divergence via mVISTA (Figure 2). 
Results showed that the coding regions of all cp genomes are conserved compare to non-coding regions, 
whilst non-coding regions showed a higher divergence rate than the coding regions. The most divergence 
was observed in intergenic spaces. The matK gene exhibited a high degree of divergence in all genomes, but 
it was higher in A. carambola and C. follicularis as compared to others. Similarly, rpoC1, rpoC2, and rpoB 
exhibited more divergence in four cp genomes with the highest in C. follicularis. The region between rpoB 
and psbD genes showed a high degree of divergence in all species in the LSC. The ndhK and rpl16 genes 
showed significant divergence compared to the ycf2 gene with lesser values. The ndhB is less divergent in 
all species except C. follicularis, where it showed high divergence. Similarly, the ndhF gene is highly 
divergent in all cp genomes, while it is absent in the C. follicularis cp genome. In the SSC, the region between 
ndhG and ndhH is highly divergent and the cp genome of C. follicularis lack most of the NadH 
oxidoreductase genes. Furthermore, about 63 protein-coding gene sequences were compared to obtain the 
average pairwise sequence distance among these species. The results showed that a majority of the genes 
maintained low levels of average sequence divergence. A relatively lower sequence identity was observed 
between the chloroplast genomes of O. corniculata with related species, especially in the ccsA, clpP, rps8, 
rps15, rpl22, matK, and ycf1 genes (Figure 3). 

 
Figure 2. Visual alignment of plastid genomes of O. corniculata and three other members (O. drummondii,
A. carambola, and C. follicularis) from the family Oxalidaceae. VISTA-based identity plot showing
sequence identity among three species, using O. corniculata as a reference. The vertical scale indicates
percent identity, ranging from 50% to 100%. The horizontal axis indicates the coordinates within the
chloroplast genome. Arrows indicate the annotated genes and their transcription direction. The thick
black lines show the inverted repeats (IRs).
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2.3. Expansion and Contraction of IR Regions

A detailed comparison was performed of the four junctions (JLA, JLB, JSA, and JSB) amongst
IRs (IRa and IRb) and the LSC/SSC regions for the O. corniculata, O. drummondii, A. carambola,
and C. follicularis (Figure 4). We carefully analyzed and compared the exact IR border positions and
the adjacent genes among these cp genomes. The results revealed that at the LSC/IRb (JLB) border
rps19 gene is present 22 bp away from the JLB junction and located in the LSC region in O. corniculata.
However, in O. drummondii, the rps19 gene is located 16 bp away, while in A. carambola, it is 1 bp
away from the JLB junction. On the other hand, in C. follicularis, rps19 is located in the JLB junction
and extended 67 bp in the IRb region. The ycf 1 gene is located 45 bp away from IRb/SSC (JSB) in
O. corniculata, while in O. drummondii and A. carambola, the ycf 1 gene is located 1 bp away in the
IRb region. However, in C. follicularis, the ycf 1 gene is absent in the IRb region and located 976 bp
apart from the JSA junction and located in the IRa region. Similarly, the ndhF gene is located in the
(JSA) border and extended 23 bp and 20 bp in the IRa region in both O. corniculata and O. drummondii
genomes, respectively, revealing the expansion of the IR region. In A. carambola, the ndhF gene is
located 55 bp away from the JSA junction in the SSC region. However, the ndhF gene is completely
absent in the C. follicularis cp genome. Similarly, the rpl2 gene is located 53 bp away from the IRa/LSC
(JLA) junction in both O. corniculata and O. drummondii, while in A. carambola and C. follicularis, it is
78 bp and 124 bp away from the JLA junction, respectively (Figure 4).Plants 2020, 9, x FOR PEER REVIEW 9 of 19 
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sequence length, and it only shows relative changes at or near the IR/SC borders.

2.4. Repeat Sequence Analysis

We investigated the repeat sequences of the O. corniculata chloroplast genome with the related
species. The results revealed that O. corniculata contains 12 palindromic, 30 forward, and 32 tandem
repeats, O. drummondii contains 19 palindromic, 20 forward, and 23 tandem repeats, A. carambola
contains 15 palindromic, 18 forward, and 27 tandem repeats, and C. follicularis contain s20 palindromic,
30 forward, and 32 tandem repeats (Figure 5A). In O. corniculata, out of these repeats, the sizes of 9
palindromic repeats were 30–44 bp, while the sizes of 4 repeats were 45–59 bp. Likewise, the size of 28
and 3 tandem repeats were 15–29 bp and 30–44 bp, respectively, whereas the size of 21 forward repeats
was found to be about 30–44 bp (Figure 5B–D). Amongst all these cp genomes 74 repeats (the highest)
were detected in both A. carambola and O. corniculata. In all types of repeats, tandem repeats are the
highest in number in all the cp genomes, followed by forward and palindromic repeats.
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2.5. Simple Sequence Repeat (SSR) Analysis

In simple sequence repeats (SSRs) analyses, a total of 46 SSRs were detected in the O. corniculata
genome; among them, 42 are mononucleotide repeats, 3 are trinucleotide repeats, and 1 is a
pentanucleotides repeat (Figure 6). There are no dinucleotides, tetranucleotides, and hexanucleotides
in the O. corniculata genome. In O. corniculata, 13% SSRs are present in the CDS region, 73.9% is
present in the LSC region, 15.2% is present in the SSC region, and 2.1% is present in the IR region
(Figure 6B–E). Similarly, the highest numbers of SSRs in the other three species are located in the
intergenic regions; i.e., O. drummondii (70%), A. carambola (87.6%), and C. follicularis (78.5%) followed
by the LSC region—that is, 67.5%, 84.6%, and 73.2%, respectively (Figure 6B–E). On the other hand,
in the cp genome of O. drummondii, a total of 40 SSRs were found, of which 37 are mono and 3
are trinucleotide, while di, tetra, Penta and hexanucleotides were not detected. In A. carambola and
C. follicularis, 56 and 49 are mononucleotide repeats (Figure 6F). A. carambola have 5 trinucleotides,
3 penta, and 1 hexanucleotides repeat, while di and tetranucleotides repeats were missing. Similarly,
in C. follicularis, 4 tri, 1 penta, and 2 hexanucleotides repeats were found, while di and tetranucleotides
repeats were absent in this cp genome. Among the four cp genomes, A. carambola has a high number of
SSRs; i.e., 56.
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2.6. Phylogenetic Analysis

For the phylogenetic analysis of O. corniculata, we have downloaded about 191 genomes from the
20 families mentioned in the Materials and Methods section. We inferred the phylogenetic position
of O. corniculata on the basis of 60 shared genes among these genomes. The study revealed that
O. corniculata forms a single clade with O. drummondii and A. carambola in the family Oxalidaceae
(Figure 7). These results also showed that O. corniculata is closer to O. drummondii than A. carambola,
which is a different genus. Furthermore, the phylogenetic tree also inferred that the Oxalidaceae
family is close to Cephalotaceae and Celastraceae with high bootstrap support (100%), followed by
Zygophyllaceae and Euphorbiaceae. The phylogenetic trees in this study also exhibited that Rosaceae
is highly interlinked to Moraceae. Similarly, the phylogenetic trees also indicate the close relationship
of Fabaceae with Apodanthaceae.
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3. Discussion

In case of genetic and evolutionary relationship assessments among plant species, chloroplast DNA
sequences have been extensively used [40–42]. The complete chloroplast genome sequences provided
sufficient information to reconstruct both current and prehistoric diversifications [43]. The powerful
and flexible nature of Next Generation Sequencing (NGS) has permeated many areas of study, enabling
the development of a broad range of applications that have transformed study designs capable of
unlocking information of the genome, transcriptome, and epigenome of any organism [44]. In the
current study, we have sequenced the complete genome of O. corniculata chloroplast for the first time.
The results revealed that the chloroplast genome size of O. corniculata is in line with the chloroplast of
those flowering plants, which ranges from 125,373 bp to 176,045 bp in Cuscuta exaltata and Vaccinium
macrocarpon, respectively [45,46]. The CG content of O. corniculata is 36.7% (Table 1), which is slightly
lower than C. follicularis and Paeonia obovata (38.43%) [47]. The GC content in the IR region is higher
(42.6%) than that of the LSC and SSC regions. As a result of the presence of the rich GC nucleotide,
higher GC content was present in the IR region of rRNA genes such as rrn5, rrn4.5, rrn23, and rrn16,
which is consistent with what has been investigated in other cp genomes [48–50].

In most angiosperms, it is believed that the gene(s) of the chloroplast genome and their organization
are extremely conserved [51]. In correlation, we detected 131 genes in the cp genome of O. corniculata
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while other studies also show that many angiosperms have retained these genes [52,53]. With the
increasing number of chloroplast genome sequences, the diverse organization of the chloroplast
genome is becoming more evident, as demonstrated by genome rearrangement and gene losses in the
chloroplast genomes of Oxiladaceae. For example, the rps16 gene, which is found in most angiosperm
plastid genomes, has been lost in O. corniculata. Similar results have been reported in various cp
genomes previously [54]. Furthermore, in O. corniculata, the cp genome the infA gene was lost,
as reported previously by various researchers, the infA gene has been independently lost multiple times
from angiosperms and especially in most Rosids [32,51]. Moreover, we found 11 protein-coding genes
and 6 tRNAs genes containing introns in the O. corniculata cp genome. Among them, three genes, clpP,
rps12, and ycf 3 have two introns, while the others have one intron. Similar results were also reported
previously in the Manihot esculenta chloroplast genome [32] and Oresitrophe chloroplast genome [55].
In this study, genes ccsA, clpP, rps8, rps15, rpl22, matK, and ycf1 were found to have high evolution rates
among the four cp genomes (Figure 3), which agreed with earlier reports of Cuenoud et al. [41]. Similar
results of these genes were reported previously among 17 vascular plants and Panax species [56].

In the terrestrial plants, the cp genome is very conserved structurally, and the large inverted
repeats (IRs) junction is not essential to the function of the cp genome [57]. It is believed that IRs are
the most conserved region due to which the rate of natural nucleotide substitution in IRs is lesser
as compared to single copy regions, and the variation in IR/LSC and IR/SSC boundaries is the key
reason for the size variation among the cp genomes of different groups. The variation in size among
four genomes was exhibited by the slight expansion of the IRb (JLB border) in C. follicularis compared
to O. corniculata (Figure 4). These results are in agreement with previous work where IRs are one of
the efficient tools for conformational reorganizations within the plastids genomes and are regularly
subjected to expansion, contraction, or even complete loss [20]. Similarly, previous results showed
that contractions and expansions of the IR regions triggered the diversification of size among the cp
genomes [58].

The study of different repeats (palindromic, forward, and tandem) in our sequenced cp genome
showed variation in the number of repeats, which is similar to other species previously studied [59].
In all types of repeats, tandem repeats were found more than palindromic and forward repeats in
four cp genomes; these results are consistent with previous reports of Teucrium and Commiphora
species [60,61], as well as S. miltiorrhiza [62]. Similarly, simple sequence repeats (SSRs) usually
have a higher rate of mutation compared with other neutral regions of DNA due to slipped strand
mispairing. In genetic studies, due to the haploid and nonparental inheritance nature of cp SSRs,
they are commonly used for the assessment of population structure as molecular markers [63,64]. In this
study, we comparatively studied the ideal SSRs among the four species O. corniculata, O. drummondii,
A. carambola, and C. follicularis (Figure 6). The largest number of SSRs was found in A. carambola,
followed by C. follicularis. Mononucleotide repeats were found to be the most common type of SSR in
all four species; the A or T mononucleotide repeats are most abundant SSRs in O. corniculata (Figure 6),
which is congruent to the previous result that SSRs in the chloroplast genome are commonly composed
of A or T repeats and rarely G or C repeats [62,65].

Recently, cp genomes information has provided a large amount of data for improving phylogenetic
resolution. Chloroplast genome sequences have been widely used for the reconstruction of phylogenetic
relationships among plant lineages [66–69]. The phylogenetic evaluation of plant species might not be
easy to resolve evolutionary relationships, specifically at taxonomic levels while using a small number
of loci [70,71]. Previous phylogenetic studies based on the complete cp genomes and shared genes
have been used to explain problematic phylogenetic relations among nearly associated species [34,68]
and to increase our concept related to evolutionary relations of angiosperms [72,73]. Phylogenetic
relationships of O. corniculata were inferred by using 60 shared genes datasets by using the ML
method. The results showed that O. cornicualata form a single clade with O. drummondii. Similarly,
the phylogenetic tree also inferred that Oxalidaceae family is close to Cephalotaceae and Celastraceae
with high bootstrap support (100%), followed by Zygophyllaceae and Euphorbiaceae (Figure 7).
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Further cp genomes from the family Oxalidaceae should be explored to determine the phylogenetic
position of O. corniculata within the section Corniculatae.

4. Materials and Methods

4.1. Chloroplast DNA Extraction, Sequencing, and Assembly

Young and immature leaves of O. corniculata were ground into fine powder in liquid nitrogen,
and pure DNA was isolated through a DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA). The resultant
chloroplast DNA, by using an Illumina HiSeq-2000 platform (San Diego, CA, USA) at Macrogen
(Seoul, Korea) was sequenced. A total of 43,453,336 raw reads were generated for O. corniculata,
and CLC Genomics Workbench v7.0 (CLC Bio, Aarhus, Denmark) was used to trim and filter reads
for the de novo genome assembly. Trimmomatic 0.36 was used for filtering the reads and trailing
and leading nucleotide with a Phred score of <20 or when the Phred score dropped below 20 on
implementing a 4-bp sliding-window approach. Similarly, reads of <50 bp were discarded after quality
filtering and adaptor trimming. The first assembly was formed using SPADES v3.9.0, with an additional
switchover to SOAP denovo v2.04. The resulting contigs were compared against the chloroplast
genomes of O. drummondii using BLASTN with an E-value cut-off of 1 × 10−5. The uncertain regions
in these genomes, such as IR junction’s region, were chosen from the already published genome
mentioned above to adjust the sequence length using the iteration method and by employing the
Geneious v11.1.2 software [74]. The chloroplast genome sequence of O. corniculata has been submitted
to GenBank (accession number: MN998500).

4.2. Genome Annotation

The Dual Organellar Genome Annotator (DOGMA) [75] was used to annotate the cp genomes of the
sequenced species and through BLASTX, the number and position of ribosomal RNAs, transfer RNAs,
and other coding genes present in chloroplast genomes were identified and analyzed, while BLASTN
tRNAscan-SE version 1.21 was used for tRNA annotation [76] software. Furthermore, Geneious (v11.0)
and tRNAscan-SE [76] were used for manual adjustment to compare with the reference genomes
reported previously. Similarly, the start and stop codon and intron boundaries were also manually
adjusted and compared with the reference chloroplast genome already published. Additionally,
by using Organellar Genome DRAW (OGDRAW) [77], the structural characteristics of chloroplast
genomes of O. corniculata were demonstrated. Beside this, to determine the relative synonymous codon
usage and deviations in synonymous codon usage by avoiding the effect of amino acid composition,
MEGA6 software [78] was used.

4.3. Characterization of Repetitive Sequences and SSR

REPuter software [79] was used to determine the repetitive sequences (palindromic, reverse
and direct repeats) within these four cp genomes (O. corniculata, O. drummondii, A. carambola,
and C. follicularis). Subsequent settings were used for repeat identification through REPuter: (1) a
minimum repeat size of 30 bp, (2) ≥90% sequence identity, and (3) a Hamming distance of 1.
Tandem Repeats Finder version 4.07 b was used to find tandem repeats by using default settings [80].
The MIcroSAtellite (MISA) identification tool was used for the microsatellite analysis of O. corniculata and
another three species’ (O. drummondii, A. carambola, and C. follicularis) cp genomes [81]. The parameters
such as unit_size and min_repeats were defined as follows: 1–10, 2–8, 3–4, 4–4, 5–3, and 6–3; the smallest
distance between two SSRs was set to 100 bp. The following conditions were set for parametric
significance: 10 or more repeats of one base, 6 or more repeats of two bases, 5 or more repeats of three
bases, 5 or more repeats of four bases, 4 or more repeats of five bases, and 4 or more repeats of six bases.
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4.4. Sequence Divergence and Phylogenetic Analysis

In the O. corniculata chloroplast genome, the average pairwise sequence divergence with three
related species (O. drummondii, A. carambola, and C. follicularis) from the family Oxalidaceae was
determined. After a comparison of gene order and multiple sequence alignment, comparative
sequence analysis was used to recognize missing and unclear gene annotations. For whole genome
alignment, MAFFT version 7.222 [82], with default parameters were used, and pairwise sequence
divergence was calculated by the use of the selected Kimura’s two-parameter (K2P) model [83].
MEGA 6 software [78] was used to evaluate the relative synonymous codon usage by avoiding the
effect of amino acid composition. Finally, the divergence of the new O. corniculata cp genomes from
related species of family Oxalidaceae was determined using mVISTA [84] in Shuffle-LAGAN mode
and by employing the genome of new O. corniculata as a reference. To resolve the phylogenetic
position of O. corniculata within the family Oxalidaceae and to check the relationship of 20 families
(Fabaceae, Apodanthaceae, Zygophyllaceae, Cephalotaceae, Oxalidaceae, Celastraceae, Euphorbiaceae,
Malpighiaceae, Chrysobalanaceae, Violaceae, Passifloraceae, Salicaceae, Cucurbitaceae, Fagaceae,
Juglandaceae, Betulaceae, Elaeagnaceae, Ulmaceae, Cannabaceae, Moraceae, Rosaceae) in monophyletic
clade rosids, about 60 share genes from 191 cp genomes were downloaded from the National Center
for Biotechnology Information (NCBI) database. For the alignment of 60 shared genes, MAFFT version
7.222 [82] with default parameters was used. The maximum likelihood (ML) method was adopted
to infer the phylogenetic trees with MEGA 6 [78], and parameters were adjusted with a BIONJ tree
with 1000 bootstrap replicates using the Kimura two-parameter model with gamma-distributed rate
heterogeneity and invariant sites.

5. Conclusions

The current findings reveal detailed understandings of the complete cp genome of O. corniculata
for the first time through sequencing on Illumina HiSeq-2000 platform. The gene order and gene
structure of O. corniculata was found to be similar with three related species from the family Oxalidaceae.
Through detailed bioinformatic analysis and comparative assessments, we retrieved essential genetic
features such as repetitive sequences, SSRs, codon usage, IR contraction and expansion, sequence
divergence, and phylogenomic placement. Whole cp genome comparisons revealed an overall high
degree of sequence similarity between O. corniculata and O. drummondii and some divergence in the
intergenic spacers of other species. No major structural rearrangement in these four cp genomes was
observed. Phylogenomic analyses of the complete plastid genomes revealed that O. corniculata is closely
related to O. drummondii. A current plastome genomic dataset and the detailed analysis of O. corniculata
and related species and their comparative analysis provide a powerful genetic resource for the future
molecular phylogeny, evolution, population genetics, and biological functions of genus Oxalis.
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