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Mitochondria release many damage-associated molecular patterns (DAMPs) when cells
are damaged or stressed, with mitochondrial DNA (mtDNA) being. MtDNA activates innate
immune responses and induces inflammation through the TLR-9, NLRP3 inflammasome,
and cGAS-STING signaling pathways. Released inflammatory factors cause damage to
intestinal barrier function. Many bacteria and endotoxins migrate to the circulatory system
and lymphatic system, leading to systemic inflammatory response syndrome (SIRS) and
even damaging the function of multiple organs throughout the body. This process may
ultimately lead to multiple organ dysfunction syndrome (MODS). Recent studies have
shown that various factors, such as the release of mtDNA and the massive infiltration of
inflammatory factors, can cause intestinal ischemia/reperfusion (I/R) injury. This destroys
intestinal barrier function, induces an inflammatory storm, leads to SIRS, increases the
vulnerability of organs, and develops into MODS. Mitophagy eliminates dysfunctional
mitochondria to maintain cellular homeostasis. This review discusses mtDNA release
during the pathogenesis of intestinal I/R and summarizes methods for the prevention or
treatment of intestinal I/R. We also discuss the effects of inflammation and increased
intestinal barrier permeability on drugs.
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INTRODUCTION

Mitochondria are the power plants of eukaryotic cells and are involved in the processes of cell
proliferation, differentiation, signal transmission, apoptosis, the tricarboxylic acid cycle, and
oxidative phosphorylation. Recent studies have shown that when pathogenic microorganisms
infect host cells, mtDNA can activate the TLR-9, NLRP3 inflammasome, and cGAS-STING
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signaling pathways to induce the host innate immune response,
which is essential for protection against infections (Chan, 2006).
MtDNA contains many unmethylated CPG sequences. Damaged
mtDNA release activates pattern recognition receptors (PRRs),
which promote inflammation amplification. Intestinal
reperfusion injury is the secondary injury occurring after
intestinal I/R. It involves intestinal mucosal barrier damage
and bacterial transfer. It is accompanied by increases in ROS
levels and easily triggers SIRS and MODS (Wu et al., 2013; Zhu
et al., 2017; Sun et al., 2018). Its pathogenesis is complex and
includes oxygen-free radical damage, calcium overload, and
inflammatory reactions. Studies have shown that mtDNA is
closely related to intestinal barrier dysfunction. We focus on
the close link between mitochondrial quality control and
mitochondrial dynamics. Mitophagy eliminates dysfunctional
mitochondria, and mitophagy deficiency exacerbates
dysfunction.

Intestinal I/R Injury
Intestinal I/R injury is common in the clinic. Many pathological
processes are associated with intestinal I/R injury, such as
volvulus, intussusception, incarcerated hernia, acute intestinal
ischemia, shock, trauma; certain surgical procedures, such as
bowel resection and transplantation, are also associated (Acosta,
2010; Stone and Wilkins, 2015). Intestinal I/R is a common
pathophysiological process in many diseases and is closely
related to the structural characteristics of the intestine. First,
the small intestine is supplied mainly by the superior mesenteric
artery, and the nerve endings of the small intestine communicate
directly with the arterioles and veins. Second, in various
emergencies, the body prioritizes the supply of blood to vital
organs such as the heart and brain, and the supply of blood to the
gastrointestinal tract is correspondingly reduced, which
contributes to the occurrence of intestinal ischemia, increases
intestinal permeability, and weakens intestinal barrier function
(Liu et al., 2016). Intestinal mucosal barrier dysfunction and
increased permeability enable numerous bacteria or toxins to
enter the blood or lymphatic channels in the circulatory system,
leading to SIRS. When treatment is inappropriate or not timely,
the condition eventually develops into MODS (Wu et al., 2017).
Extensive intestinal epithelial cell death is a major cause of
intestinal mucosal barrier dysfunction, and further
development leads to systemic inflammation and distal organ
dysfunction (Cheng J. et al., 2013). Microcirculation disturbance
and organ injury after intestinal I/R are complicated pathological
processes that mainly involve metabolic injury and oxidative
stress during ischemia and reperfusion. During ischemia,
vascular closure or obstruction leads to a lack of oxygen and
nutrients in cells, impairing the expression of mitochondrial
respiratory chain ATP synthase (Lin et al., 2013; Tu et al.,
2013; Li et al., 2014a; He et al., 2014) and resulting in a
decrease in ATP synthesis coupled with continued depletion of
ATP, leading to ATP deficiency (Kalogeris et al., 2012).
Microcirculatory dysfunction induced by I/R injury may lead
to multiple organ damage (Eltzschig and Eckle, 2011), organ
fibrosis (Rai et al., 2017), and even organ failure (Katseni et al.,
2015), whose prevention and treatment are critically important.

POSSIBLE MECHANISMS BY WHICH
MODS IS INDUCED BY INTESTINAL I/R
INJURY
Superior mesenteric artery ischemia or occlusion produces
gradient ischemia along the long axis of the intestinal tract.
Figure 1 Ischemia is most severe at the distal end of the small
intestine and near the end of the colon, while blood flow in the
middle and far end of the colon is largely unaffected, with ischemia
located in themucosa and submucosa rather than in themuscularis
and serosa (Cerqueira et al., 2005; Ramos et al., 2016). Intestinal I/R
injury destroys the tight connections of mucosal epithelial cells.
Bacteria and enterotoxins enter the lymphatic circulation and
blood circulation through the damaged mucosal barrier. Sepsis
and multiple organ failure may occur when intestinal tissue
ischemia is severe or the area of ischemia is extensive (Souza
et al., 2004; Kinross et al., 2009). Local I/R injury can lead to distant
organ damage andmultiple organ failure. Intestinal I/R injury leads
to remote organ injury (Santora et al., 2010). Lung function is
susceptible to damage from distant organ ischemia; thus, remote
organ injury is prone to develop into acute respiratory distress
syndrome (ARDS) and SIRS, eventually progressing to MODS. If
the body is in an inflammatory state, local and distant cellular
responses are amplified, exacerbating primary ischemia, which is
the stage of postreperfusion intestinal injury (Courties et al., 2014).
In addition, after the gut barrier is damaged, bacteria initiate and
maintain the production of local inflammatory mediators. Bacteria
and endotoxins enter the intestinal stroma, lymphatic vessels, and
blood circulation from the intestinal lumen and travel to distant
organs, which plays an important role in the development of
MODS (Stallion et al., 2005; Deitch, 2012) Figure 1.

The extent of tissue or cell injury following intestinal I/R and
the progression to irreversible injury are directly related to
ischemia duration (Abela and Homer-Vanniasinkham, 2003).
This suggests that restoring blood flow as soon as possible
may limit cell damage and death. Almost all organs have a
common response to reperfusion injury including processes
such as activation of endothelial cells, mononuclear
macrophages, hypertrophic cells, and neutrophils and release
of reactive oxygen species (ROS), cytokines, chemokines, and
many inflammatory mediators, which mediate and activate
multiple signaling pathways forming a cellular network and
biomediator network. This response causes an inflammatory
storm leading to SIRS and progressing to sepsis or MODS.
This extends hospital stays and increases in-hospital mortality
in critically ill patients. Intestinal I/R injury can cause MODS by
disrupting the balance between inflammatory and anti-
inflammatory responses, breaking down the intestinal barrier,
increasing intestinal permeability, and promoting metabolic
disorders and oxidative stress in ischemic cells.

Systemic Inflammatory Response
Syndrome
Inflammation plays an important role in I/R. Neutrophils and
white blood cells are recruited to produce cytokines, chemokines,
and inflammatory mediators, which induce inflammatory
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responses (Kvietys and Granger, 2012; Frangogiannis, 2015).
During reperfusion, the immune cells delivered by the blood
reenter the tissue, and leukocyte sequestration increases
significantly. To save ischemic tissue, cell metabolism should
be accelerated, but during reperfusion, the influx of oxygen into
the blood promotes the production of ROS by xanthine oxidase
(XO) and NADPH oxidase. Necrotic cells in ischemic tissue emit
danger signals, and adhesion mediators are formed between
innate immune cells and postcapillary veins. Finally,
neutrophils are isolated into ischemic tissue. Neutrophils
activate NADPH oxidase-dependent respiratory bursts, release
hydrolases, produce highly toxic hypochlorite and N-chloramine
through MPO enzyme activity, and secrete pore-forming
molecules, causing extensive collateral damage to blood vessels
and parenchymal cells. Infiltrating neutrophils induce
reperfusion damage that amplifies ischemia-induced cell
damage (Ford, 2010; Kvietys and Granger, 2012;
Frangogiannis, 2015).

Studies have shown that SIRS can directly cause MODS. SIRS
refers to stimulation, by severe infectious or noninfectious
factors, of the activation of inflammatory cells. This
stimulation producing many inflammatory mediators, to
which the body has a systemic inflammatory cascade
response. MODS, caused by an uncontrolled inflammatory
response, is related not only to the overexpression and
secretion of inflammatory mediators but also to the abnormal
production of host anti-inflammatory mediators of endogenous
inhibitors. The body produces endogenous anti-inflammatory
responses that decrease immune function and increase
susceptibility when the body is injured or infected. In 1996,

Bone RC introduced the concept of compensatory anti-
inflammatory response syndrome (CARS) (Bone, 1996).
Physiologically, proinflammatory and anti-inflammatory
processes exist in a balanced state; when proinflammatory
processes become dominant, the external response and cell
damage are induced, which manifest as SIRS. In contrast,
when anti-inflammatory processes predominate, the host-to-
external stimulus response is low, which increases
susceptibility to infection and performance similar to CARS.
When both are hyperactive, the immune system exhibits are
more serious disorder known as mixed anti-inflammatory
response syndrome (MARS). Either CARS or MARS reflects
disorder of the body’s inflammatory response and destruction of
the internal environment, laying the foundation for MODS.
Infection-related or non-infection-related factors can activate
inflammatory cells to release a variety of cytokines and
inflammatory mediators, such as IL-1, IL-6, IL-8, IL-12, TNF-
α, NO, leukotriene B4, IFNα, and IFNβ (McNab et al., 2015;
Chen et al., 2017) to participate in the body’s inflammatory
immune response in order to resist external pathogenic factors.
Anti-inflammatory cytokines such as IL-4, IL-5, and IL-13 also
increase significantly to prevent excessive inflammatory injury
(Wojdasiewicz et al., 2014; Kalogeris et al., 2016; Boshtam et al.,
2017). When inflammatory and anti-inflammatory responses are
out of balance, multiple inflammatory mediators form a cascade
effect. The interactions of these mediators induce a variety of
pathophysiological processes, including the endothelial cell
inflammatory response, increased vascular permeability,
inflammatory infiltration, and tissue damage. This eventually
leads to the occurrence of MODS.

FIGURE 1 | Possible mechanisms of MODS induced by intestinal I/R injury. Intestinal I/R injury results in intestinal cells apoptosis or necrosis, mitochondrial
oxidative stress, and microcirculation disturbance. microcirculation disturbance induces blood stasis and metabolic disorders. Increasing ROS, cytokines, chemokines,
and inflammatory mediators lead to an inflammatory storm. Intestinal mucosal barrier dysfunction and increased permeability result in numerous bacteria or toxins
through the blood into the circulatory system, leading to SIRS. When the treatment is inappropriate or not timely, it eventually develops into MODS.
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Intestinal Barrier Impairment and Increased
Permeability
In the physiological state, the intestinal mucosal barrier acts as a
filter for the gut, enabling the absorption of nutrients and
preventing bacteria, macromolecules, and toxic compounds
from entering the internal environment (Camilleri et al.,
2012). Intestinal epithelial cells, microbes, and the immune
system work together to maintain intestinal homeostasis.
Impairment of intestinal integrity is an important cause of
SIRS and MODS. Breakdown of the intestinal barrier can lead
to local intestinal dysfunction and absorption of toxic substances
into the blood, resulting in bacterial translocation and systemic
abnormalities such as sepsis (Assimakopoulos et al., 2018). These
changes lead to increased intestinal permeability. Bacteria,
antigens, and toxic substances activate mucosal membrane
immune responses through the intestinal mucosa, leading to
abdominal pain and diarrhea (Farhadi et al., 2007). These
inflammatory mediators signal to epithelial cells, nerve cells,
and muscle cells, leading to intestinal dysfunction (Macdonald
and Monteleone, 2005). Increased intestinal permeability under
conditions of severe trauma, shock, and critical conditions and
barrier damage maintain an inflammatory environment, leading
to changes in microbial toxicity and acute gastrointestinal injury
(Piton et al., 2011). As intestinal permeability increases,
proinflammatory cytokines such as TNF-α, IL-1, and IL-6 are
released into the systemic circulation, fluid seeps out of the
intestine, and angioedema occurs (Angus and van der Poll,
2013). Proinflammatory cytokines also induce changes in
intestinal tight connection proteins, further increasing
intestinal permeability (Shea-Donohue et al., 2010; Zhou et al.,
2015). In addition, the toxicity and invasiveness of the gut
microbiome increases, and translocating bacteria, cytokines,
and endotoxins are released from the intestine. These factors
cause damage to distant organs, so the intestine is considered to
be the origin of sepsis and MODS (Deitch, 2010).

Disturbance of Microcirculation and
Metabolism
A series of pathophysiological changes and abnormal cell
metabolism occur in intestinal tissue due to ischemia and
hypoxia. On the one hand, microcirculation disorder manifests
as microcirculation congestion, and blood flow stasis causes tissue
hypoxia to produce metabolic acidosis, induces intravascular
coagulation, and forms microthrombi. Microthrombi aggravate
hypoxia and metabolic acidosis of tissues and organs, forming a
vicious cycle. Severe hypoxia and acidosis can damage vascular
endothelial cells, increase vascular permeability, and cause
widespread edema in tissue. In addition, the stability of
lysosomes is destroyed, the lysosomal membrane ruptures, and
cells undergo self-soluble necrosis. These processes work together
to cause systemic multiple organ dysfunction. On the other hand,
histiocyte metabolism is affected. Metabolic disorders occur due
to hypoperfusion and hypoxia of the gut. The body is in a state of
stress; therefore, catecholamine and adrenal corticosteroid release
increases, metabolic decomposition is exacerbated, and energy

consumption significantly increases. Under hypoxia, cell
anaerobic metabolism increases, and lactic acid accumulates,
leading to metabolic acidosis.

Mitochondrial Oxidative Stress and
Intestinal I/R
The human intestine is rich in mitochondria, which participate in
numerous redox reactions and produce ATP by oxidative
phosphorylation. Such energy metabolism is the main source
of oxidants. Studies have shown that mitochondria are major
participants in the process of intestinal oxidative stress. When the
intestine is exposed to oxidative stress, it produces many reactive
oxygen species (ROS) and reactive nitrogen species (RNS). This
causes the body’s oxidant and antioxidant defenses to be out of
balance, leading to aging and disease. ROS and RNS come from
many different sources, including mitochondrial respiratory
electron transport chains, xanthine oxidase, NADPH oxidase,
and the NO synthetase system (Hu C. et al., 2019). In intestine
cells, mitochondria are the main sources of ROS, mainly
mitochondrial respiratory chain enzyme complex I and
complex III (Rabbani and Thornalley, 2019). When the
process of mitochondrial oxidative phosphorylation is
disturbed, the formation of ATP is reduced significantly, and
the propensity for ROS formation is increased (Toldo et al., 2018).
In the physiological state, the body has many ways to regulate the
oxidative stress produced by mitochondrial ROS, such as the
superoxide dismutase system, which can convert reactive
superoxide radicals into hydrogen peroxide and detoxify it
further by enzyme catalysis. In the case of intestinal ischemia,
the restoration of blood supply increases ROS, leading to
mitochondrial dysfunction and intestinal mucosal cell damage.
The inflammatory response eventually disrupts intestinal
mucosal barrier function.

In addition, mitochondria can not only produce energy but
also regulate calcium homeostasis. Na+-K+-ATPase and Ca2+-
ATPase, which are essential for maintaining the normal structure
and function of mitochondria, are located on the mitochondrial
membrane. When the activity of the two ion pumps changes,
mitochondrial membrane permeability transition pores can be
activated, resulting in the functional and structural breakdown of
mitochondria and causing cell death (Yue et al., 2012). Other
studies have confirmed that when hypoxia occurs in the intestine,
the activity of the mitochondrial respiratory chain enzyme
complex decreases. This produces large numbers of ROS and
significantly reduces ATP synthesis (Duchen, 2004). In addition,
the atpase activity in intestinal mitochondria changes, Na+-K+-
ATPase activity decreases, and Ca2+-ATPase activity increases
(Baines, 2009). Changes in mitochondrial membrane potential
cause dysfunction, lead to the release of large amounts of ROS and
apoptosis-promoting factors, and eventually induce apoptosis or
necrosis of intestinal cells (Poyton et al., 2009). When intestinal
I/R occurs, the amount of mtDNA in the circulation also
increases significantly. Hu et al. (Hu et al., 2018a) revealed the
leading role of mtDNA in the pathogenesis of intestinal I/R
injury. A few experimental results have shown that after
reperfusion of the ischemic intestine, mitochondrial respiratory
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function and transmembrane potential are decreased,
mitochondrial membrane permeability is increased, and
stability is decreased.

During the ischemia or hypoxia period, electron flow through
the mitochondrial respiratory chain is inhibited, and ATP
synthetase cannot phosphorylate ADP to produce ATP
(Grover et al., 2004; Di Lisa et al., 2007). Ischemia or hypoxia
also affects ATP hydrolase, which hydrolyzes the remaining ATP
(Murphy and Steenbergen, 2008). As a result, ATP levels drop
rapidly during ischemia. Mitochondria are important sources of
oxidative stress in intestinal I/R. Excessive ROS are produced by
the electron transport chain, mitochondrial outer membrane
proteins, and other mitochondrial proteins. Under
physiological conditions, superoxide produced by electron
transport chain complexes I and III is neutralized by SOD.
However, in ischemia, mitochondrial complex I superoxide
leakage increases, breaking the dynamic balance between cell
oxidation and antioxidants and thus aggravating cell damage (Lee
et al., 2012; Dan Dunn et al., 2015). During ischemia, the
mitochondrial permeability transition pore (mPTP) is
inhibited by acidosis and is at rest. I/R induces calcium
overload in mitochondria, and the production of ROS causes
the mPTP to open (Di Lisa et al., 2009; Ong and Gustafsson, 2012;
Di Lisa et al., 2017). Thus, molecules with small molecular
weights can pass through this pore, and many H+ ions enter
the mitochondrial matrix, thereby dissipating the mitochondrial
membrane potential, uncoupling the electron transport chain,
and inhibiting ATP synthesis (Baines, 2010). At the same time,
water seeps into the organelles, causing them to swell and rupture.

When the blood supply to the ischemic organs is restored, a
large amount of oxygen influx increases the overproduction of
ROS. In recent years, it has been increasingly recognized that RNS
also contribute to I/R injury (Duan and Kasper, 2011; Kvietys and
Granger, 2012; Raedschelders et al., 2012). ROS refer to free
radicals and non-free radicals with relatively strong oxidation and
reduction properties, such as superoxide anions (O2

−), hydrogen
peroxide (H2O2), and hydroxy free radicals (OH

−). RNS is a series
of complexes produced by NO metabolism, with NO as the
center, including peroxynitrite anion (ONOO−), nitrate anion
(NO−), nitrogen dioxide (NO2), and others. The effects of ROS
and RNS are related to their concentrations in vivo. At moderate
levels, they act as mediators in signal transduction. However,
when their concentrations increase markedly, these species are
formidably destructive to lipids, proteins, nucleic acids, and the
extracellular matrix. Reactive nitrogen and oxygen species
(RNOs) promote reperfusion injury by altering the structure
or function of macromolecules, disrupting or activating signal
cascades, stimulating the production and release of
proinflammatory mediators in various cell types, and inducing
the expression of adhesion molecules.

MTDNA RELEASE AND INTESTINAL I/R

Mitochondria are divided into the mitochondrial outer
membrane, mitochondrial interspace, mitochondrial inner
membrane, and mitochondrial matrix. Mitochondrial DNA is

a small double-stranded circular molecule with a low degree of
methylation. It is a regulator of cell death, inflammation, and
oxidative stress and can promote oxidative stress, inflammation,
and apoptosis if mitochondrial dysregulation or dysfunction
occurs. Mitochondrial DNA released after intestinal I/R injury
has been found to cause an inflammatory response and intestinal
barrier dysfunction (Wu et al., 2017). MtDNA is in the
mitochondrial matrix. After mitochondrial damage, mtDNA is
released into the cytoplasm through a variety of mechanisms.
How does mtDNA reach the cytoplasm from the mitochondrial
matrix? The first step is activation of the mPTP. Activation of the
mPTP has been shown to help release mtDNA during cell death
and mitochondrial injury (García and Chávez, 2007). The
opening of the mPTP in the first several minutes of
reperfusion is an important determinant of I/R injury (Wang
et al., 2016). The release of mitochondrial components is
associated with mPTP activation. Second, mitochondrial-
derived vesicles (MDVs) mediate the transfer of mitochondrial
proteins to endosomes, thereby facilitating antigen presentation,
which can introduce mitochondrial DNA into the endocytosis
mechanism (West and Shadel, 2017). Therefore, mitochondrial
DNA can be released directly into the cytoplasm via MDVs. In
addition, the regulatory proteins BAX and BAK monitor the
release of mtDNA. White et al. (White et al., 2014) found that
BAX and BAK induce mitochondrial membrane permeability
and that mtDNA is then exposed. Oxidative stress and cell death
are key to the release of mtDNA (Hu et al., 2019c).

Studies have found that mitochondrial DNA is released after
mitochondrial outer membrane permeabilization (MOMP). How
does this process work? In the process of apoptosis, the apoptotic
genes BAXandBAK formoligomers on the outermembrane, leading
to MOMP. The mitochondrial interstitial protein is then released,
which activates caspase proteases to initiate apoptosis. This is a
noninflammatory form of cell death that does not trigger an
immune response (Arandjelovic and Ravichandran, 2015).
However, when caspase activity is blocked after MOMP occurs,
the cells activate inflammation and the type I interferon response
through themtDNA signaling-cGAS-STING pathway, leading to cell
death (Giampazolias et al., 2017). How mtDNA reaches the
cytoplasm still needs to be addressed. After the occurrence of
MOMP, the mitochondrial outer membrane forms pores.
Interestingly, the sizes of BAX-mediated pores change
dynamically. After the occurrence of MOMP, the mitochondrial
outer membrane pores widen over time, resulting in mitochondrial
membrane extrusion. Experiments by Riley JS et al. have
demonstrated this process (Riley et al., 2018). Its existence means
that after MOMP, the mitochondrial inner membrane can be
extruded through the BAX-mediated outer membrane holes.
When the mitochondrial membrane enters the cytoplasm,
mitochondrial inner membrane permeabilization (MIMP) occurs,
and mtDNA is released into the cytoplasm.

MTDNA AND SIGNALING PATHWAYS

As an important DAMP, mtDNA can activate innate immune
and inflammatory responses in a variety of ways (Figure 2).
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Figure 2 MtDNA mediates inflammation and participates in the
pathogenesis of disease through multiple signaling pathways,
including intestinal I/R injury pathways (Zhang et al., 2019).
MtDNA in the gut exacerbates inflammation and gut barrier
dysfunction during intestinal I/R injury (Hu et al., 2018a).

MtDNA and TLR-9
TLR-9 is a protein receptor encoded by the TLR-9 gene, which is
mainly expressed in immune cells such as monocytes,
macrophages, and dendritic cells. It is highly conserved and
mainly recognizes the DNA of bacteria and viruses (Hemmi
et al., 2000). MtDNA is composed of unmethylated CpG
dinucleotides and is released when mitochondria are damaged.
TLR-9 is located in the endoplasmic reticulum and can be
activated by CpG DNA (Barbalat et al., 2011). MtDNA is a
major type of DAMP that recognizes TLR-9 of immune cells and
activates the body’s innate immune response (Kausar et al., 2020).
After the released mtDNA recognizes TLR-9, it induces a strong
inflammatory response in the body (Wei et al., 2015). MtDNA
binds to TLR-9, recruits myeloid differentiation factor 88
(MyD88), activates MAPK and NF-kB, and induces secretion
of proinflammatory cytokines (Riley and Tait, 2020). Zhang et al.
observed that mtDNA is released into the circulation during SIRS
and activates TLR-9 on neutrophils (Zhang et al., 2010a; Zhang
et al., 2010b). Various studies have shown that there is a strong
correlation between the levels of mtDNA and TLR-9 and that
increasing the degradation of mtDNA can reduce the
inflammatory response that depends on TLR-9 (Oka et al.,

2012). A few studies have shown that intravenous injection of
damaged mitochondrial fragments containing a large quantity of
mtDNA can stimulate the systemic inflammatory response.
Knocking out the MyD88 gene or TLR-9 gene in rats or using
TLR-9 antagonists significantly reduces this phenomenon. The
significance of TLR9-MyD88 signaling also provides a theoretical
basis for inhibiting the systemic inflammatory response. In
addition, mtDNA can promote the inflammatory response
after I/R injury via TLR9. When cells are hypoxic, mtDNA is
complexed with high-mobility group protein B1 (HMGB1) and
can autonomously bind to TLR9 to enhance inflammation (Liu
et al., 2015). Oxidative mtDNA has been shown to trigger the
TLR9 pathway, and oxidative mtDNA released by neutrophils
induces plasmacytoid DCs (pDCs) to produce type I interferon
(Caielli et al., 2016). Mark et al. reported that the release of
mtDNA and TFAM after cell injury, which leads to TLR9-
dependent interferon secretion, plays a key role in regulating
the sterile immune response (Julian et al., 2013).

MtDNA and NLRP3
The NLRP3 inflammasome is a kind of N-like receptor (NOD-
like receptor, NLR) that is composed of NLRP3, an adaptor
protein (ASC), and aspartic protease-1 (Caspase-1). It is a
kind of pattern recognition receptor (PRR) in the cell
membrane. PRRs can recognize related pathogenic
microorganisms. Abnormally activated NLRP3 recruits and
activates caspase-1, resulting in the release of IL-1 and IL-18
into the extracellular environment and leading to progression of

FIGURE 2 | Mechanisms of released mtDNA activation of inflammation. MtDNA can be released as circular molecules or DNA fragments when mitochondria are
damaged or stressed. MtDNA release can bemediated through themPTP, the MOMP, and the apoptosis-associated protein BAX/BAK. The releasedmtDNA is involved
in the inflammatory response through a variety of signaling pathways. MtDNA binds to NLRP3, activating the NLRP3 inflammasomes, which induces caspase-1
activation, causing the maturation and secretion of pro-inflammatory cytokines and participating in the inflammatory response. MtDNA binds to cGAS to form
cGMP-AMP (cGAMP), which activates STING, and the activated STING recruits and activates TBK1. This leads to IRF3, NF-KB phosphorylation and nuclear
translocation, promoting increased expression of interferon and inflammatory genes. MtDNA binds to TLR9, promoting MyD88 pathway activation and participating in
inflammatory cytokine transcription.
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I/R damage (Guo et al., 2016). In 2011, it was first reported that
mtDNA facilitates the activation of NLRP3 inflammation, and
many reports have since reinforced the idea that mitochondrial
damage andmtDNA release are amplified by activation of NLRP3
inflammation. However, a recent study by Shimada et al. has
suggested that NLRP3 may not enhance mitochondrial DNA
release but rather stabilize mtDNA in the cytoplasm (Yu et al.,
2014; Bronner et al., 2015). Studies have confirmed that NLRP3 is
widely present in the epithelial cells of the intestinal tissue, and
the NLRP3 inflammasome is activated to participate in
inflammatory injury of the intestine. Generally, Caspase-1
exists in an inactive form in the body, and the NLRP3
inflammasome mediates its activation (Tsutsui et al., 2010).
MtDNA can directly activate the NLRP3 inflammasome (Huo
et al., 2013). Abnormal recruitment of NLRP3 activates Caspase-
1, and cells produce mature IL-1β and IL-18, triggering a specific
cell death mode called pyroptosis (Guo et al., 2015). In addition,
NF-kB can enhance the expression of NLRP3 and promote the
upregulation of NLRP3 receptor protein expression. NF-kB plays
a key role in regulating proinflammatory factors (Taniguchi and
Karin, 2018). TLRs can activate the NF-kB pathway, enhance the
expression of NLRP3, and participate in intestinal inflammatory
damage. Yang et al. found that after rat intestinal I/R, the
expression of p-NF-kB p65, NLRP3, Caspase-1, and
inflammatory factors is increased (Yang et al., 2020). This
suggests that intestinal I/R may be related to the NF-kB/
NLRP3 pathway.

MtDNA and the cGAS-STING Signaling
Pathway
The cGAS-STING pathway regulates the production of type I
interferons. STING can be activated by its DNA, which induces
the production of type I interferon in a STING-dependent
manner (Schoggins et al., 2014). The cGAS enzyme is a type
of cytoplasmic DNA that activates STING to induce an innate
immune response by producing cGAMP. STING then binds and
activates TANK-binding kinase 1 (TBK1). TBK1 phosphorylates
IRF3, facilitates its dimerization, and shifts to the cell nucleus,
resulting in a type I interferon response (Storek et al., 2015; Chen
Q. et al., 2016). Cyclic GMP-AMP synthase (cGAS) is a DNA
pattern recognition receptor that can recognize DNA to trigger
host innate immunity. MtDNA released by damaged cells is an
effective ligand that transmits signals through cGAS (Fang et al.,
2016). After cGAS recognizes DNA, it catalyzes the synthesis of
cyclic dinucleotides (cyclic GMP-AMP, cGAMP). CGAMP
combines with the adaptor protein STING (stimulator of
interferon) to activate the cGAS-STING signaling pathway and
promote the expression of type I interferon, thereby regulating
innate immunity (Sun et al., 2013). The STING pathway activates
TBK1 to induce phosphorylation of both the IRF3 and NF-kB
pathways, and the expression of IFNs (IFNα and IFNβ) and TNF-
α increases (Ishikawa and Barber, 2008). Both IFNs and TNF-α
can trigger necroptosis of intestinal epithelial cells (Wallach et al.,
2016). Necroptosis can promote intestinal barrier dysfunction
after intestinal I/R, and infection can significantly aggravate
intestinal I/R injury (Victoni et al., 2010; Mittal and

Coopersmith, 2014). STING plays an important role in
regulating the homeostasis and integrity of the intestinal
barrier (Fischer et al., 2017; Canesso et al., 2018). In the
gastrointestinal mucosal system, mtDNA is released when
mitochondrial damage is caused by ischemia or hypoxia. It
then activates the STING signaling pathway to stimulate the
production of inflammatory factors. STING is an important
molecule for cytoplasmic DNA to activate the innate immune
response. Both endogenous and exogenous DNA are recognized
by STING andmediate its downstream inflammatory signals. The
cGAS-STING signaling pathway can be regulated by adjusting the
phosphorylation and ubiquitination of STING. Mitochondrial
oxidative stress induces mitochondrial DNA release after
intestinal I/R and subsequently promotes intestinal I/R injury
(Hu et al., 2018a). Intestinal I/R injury is an important pathway
for acute intestinal barrier damage. The breakdown of the
intestinal barrier mediated by STING results in severe sepsis
(Hu et al., 2019b). MtDNA induces intestinal necroptosis, further
promoting intestinal I/R damage. In addition, mtDNA-mediated
STING signaling triggers necroptosis via synergistic IFN and
TNF-α signal transduction (Zhang et al., 2020).

Through the above signaling pathways, mtDNA induces
inflammatory activation, initiates SIRS, and damages the
intestinal mucosal system through the circulatory system (Hu
et al., 2018a).

MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

The prevailing view is that mitochondrial dynamics and
mitochondrial quality control are closely related.
Mitochondrial dynamics refers to the fact that mitochondria
are constantly undergoing fission and fusion. Mitochondrial
fission facilitates mitochondrial transport, adapts to metabolic
demands, and maintains cellular distribution (Michalska et al.,
2018; Pagliuso et al., 2018). Mitochondrial fusion is a transient
response that enables the exchange of mitochondrial contents
(Chen et al., 2010; Tam et al., 2015) and buffers acute
mitochondrial damage (Youle and van der Bliek, 2012). When
damage exceeds the limits of fusion repair, the damaged
mitochondria are cleared via mitophagy (Xian and Liou,
2021). Mitochondrial division/fusion dysregulation alters
cellular responses and causes defective mitochondrial
signaling, which may lead to mitochondrial-associated diseases
(Ban et al., 2010; Suomalainen and Battersby, 2018).
Mitochondrial quality control is a protective mechanism, and
mitophagy is an important aspect. Mitophagy copes with stress-
induced mtDNA damage (Kumar and Jurkunas, 2021).

Whether mitochondrial fission precedes mitophagy has been
debated. Many studies have suggested that mitochondrial fission
initiates mitophagy (Twig and Shirihai, 2011; Youle and van der
Bliek, 2012; Kageyama et al., 2014; Ikeda et al., 2015). The Shirihai
group describes the asymmetric fission of mitochondria (Twig
et al., 2008). Gottlieb et al. found that mitochondrial membrane
potentials differ after fission; mitochondria with high membrane
potential fuse with other mitochondria, while those with low
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membrane potential becoming targets for mitophagy (Gottlieb
et al., 2021). Isolated daughter mitochondria produced by
mitochondrial fission are cleared by mitophagy (Chen M.
et al., 2016; Burman et al., 2017; Kleele et al., 2021). It has
recently been proposed that mitochondrial fission is not
essential for mitophagy (Xian et al., 2019; Xian and Liou,
2019). Xian et al. found that Drp1-regulated mitochondrial
fission has little effect on STX17-induced mitophagy. Fused
mitochondria that are deprived of Drp1 can undergo
mitophagy (Xian et al., 2019). This finding challenges the idea
that mitochondrial fission is a prerequisite for mitophagy
(Friedman and Nunnari, 2014). Mitochondrial fusion is a
form of self-repair when acute stress occurs in mitochondria.
Mitochondrial fission may be inhibited under acute injury when
stress accumulates beyond the fusion repair threshold, at which
point the fused mitochondria can undergo mitophagy (Xian and
Liou, 2021).

Mitophagy is a form of macrophagy, or selective autophagy, of
damaged mitochondria (Mohsin et al., 2021). It is usually
divided into ubiquitin-dependent and nondependent
pathways. In mammals, there are four major mitophagy
regulatory pathways in damaged mitochondria. The PTEN-
induced PINK1/Parkin pathway regulates ubiquitin-
dependent mitophagy. The PINK1/Parkin-nondependent
pathway includes receptor-mediated, lipid-mediated, and
ubiquitin-mediated mitophagy (Sekine and Youle, 2018; Villa
et al., 2018). Mitophagy clears dysfunctional mtDNA and
reduces the occurrence of disease caused by mitochondrial
damage (Youle and Narendra, 2011). Bit-by-bit mode
mitophagy does not remove mtDNA, which is a way to
protect undamaged mtDNA (Jian et al., 2018). Disruption of
mitophagy leads to dysfunctional mitochondrial accumulation
and elevated ROS levels, and treatment with antioxidants
alleviates the functional defects in cells (García-Prat et al.,
2016). This suggests that decreased mitophagy may
exacerbate tissue damage caused by oxidative stress.
Mitochondrial damage causes a decrease in the mitochondrial
membrane potential, which maintains mitochondrial
homeostasis through mitophagy and biogenesis. Defects in
the mitophagy process lead to the accumulation of ROS in
dysfunctional mitochondria, and mtDNA is released into the
cytoplasm, activating inflammatory responses (Nakahira et al.,
2011; Deutschman and Tracey, 2014).

PREVENTION AND TREATMENT OF
INTESTINAL ISCHEMIA/REPERFUSION
INJURY
I/R injury is the result of multifactorial interactions, and
dysfunction of cells due to abnormal signaling pathways is one
of the major mechanisms of MODS (Ibáñez et al., 2015; Lu et al.,
2016; Rossello and Yellon, 2018). Table 1 Thus, a delicate balance
between apoptotic and antiapoptotic mechanisms is required
(Eltzschig and Eckle, 2011). Combining several protective
measures may be an improved strategy for minimizing injury
(Table 1).

Ischemic Conditioning
The intestinal mucosal barrier is mainly composed of a
mechanical barrier, an immune barrier, and a biological
barrier. The various parts interact to protect the body.
MtDNA release, inflammatory factors, bacterial toxin
displacement, and other factors can cause intestinal I/R injury.
This in turn destroys the intestinal barrier. Therefore, preventing
intestinal I/R injury can greatly reduce the functional damage of
the intestinal mucosal barrier. Increasing the tolerance of organs
or tissues to ischemia and reperfusion may be an important
method of preventing reperfusion injury, especially during major
surgeries directly related to ischemia and reperfusion (Hausenloy
and Yellon, 2016). Current measures to prevent intestinal I/R
mainly include ischemic preconditioning (IPC) and ischemic
postconditioning (IPO) (Camara-Lemarroy, 2014; Heusch,
2015). A meta-analysis has revealed that ischemic
preconditioning significantly improves tissue tolerance to
ischemia (Salvador et al., 2016). Postischemic treatment can
significantly reduce the degree of intestinal I/R injury (Jonker
et al., 2016). IPC is a clinical application of cell protection for key
organs (Li et al., 2013; Li et al., 2014b).

IPC involves short-term ischemia and reperfusion of the
intestinal tissue before the expected ischemia period, which
can initiate the endogenous protective mechanism to deal with
the subsequent ischemia for a prolonged period and reduce the
damage to tissues and organs. This is adaptive protective
mechanism for a transient ischemic period (Miranda et al.,
2019). Many studies have shown that IPC can reduce
intestinal tissue damage and alleviate SIRS. Hotter et al.
(Hotter et al., 1996) elucidated the protective effect of IPC

TABLE 1 | Ways of prevention and treatment of intestinal ischemia/reperfusion injury.

Therapy method Mechanism Step

Ischemic conditioning Increasing the tolerance of organs and tissues to ischemia and reperfusion Ischemic preconditioning (IPC)
Ischemic postconditioning (IPO)
Remote ischemic preconditioning (RIPC)\

Energy therapy Providing enough ATP to ameliorate the internal environment disorder Creatine supplements, fructose diphosphate (FDP), ATP\

Anti-free radical therapy Using antioxidants to reduce oxidative damage ATP, glutathione, melatonin, vitamin C, vitamin E\

Anti-leukocyte adhesion therapy Inhibiting leukocyte activation and adhesion PAF, anti-CD11 monoclonal antibody\

Glucocorticoids Regulate immunity and suppress inflammation prednisolone, betamethasone, dexamethasone
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against intestinal I/R. IPC can reduce intestinal I/R by reducing
oxidative stress and participating in signal transduction
(Avgerinos et al., 2010; Mallick et al., 2010; Xing et al., 2014).
IPC attenuates neutrophil-endothelial cell adhesion cascade
reactions; reduces intestinal oxidative damage (Ferencz et al.,
2004); and protects the intestine from I/R damage by releasing
mast cell degranulation-mediated carboxypeptidase A (Xing
et al., 2014), inhibiting heme oxygenase (Mallick et al., 2010),
and regulating arachidonic acid cascade reactions (Avgerinos
et al., 2010). IPC reduces the release of proinflammatory
cytokines (Wang et al., 2015). Results obtained by Ji, Y.Y,
et al. (Ji et al., 2015) have shown that IPC can reduce the
levels of MPO and TNF α, inhibit the expression of ICAM-1
and VCAM-1, and decrease the activity and expression of NF-kB
to protect the intestine from I/R injury. Although the protective
effect of IPC on the intestinal tract has been well established, IPC
has not been widely used in the clinic. More clinical trials are
needed to further study the use of IPC in the intestine.

IPO refers to the use of a few short reperfusion and re-
ischemia cycles after intestinal tissue ischemia and before
recovery of perfusion, which can increase tissue resistance to
I/R injury and protect intestinal tissue. It is a safe and feasible
method in the clinic. Studies have revealed that ischemic
posttreatment can effectively improve the morphology and
respiratory function of intestinal mucosal cell mitochondria
and increase mitochondrial transmembrane potential,
suggesting that the protective effect of ischemic posttreatment
may be related to mitochondria. Cheng, C.H, et al. (Cheng CH.
et al., 2013) demonstrated the protective effect of IPO against
intestinal I/R injury in rats. IPO was found to alleviate intestinal
mucosal injury and oxidative stress by regulating mPTP
formation to ameliorate intestinal I/R injury (Cheng CH.
et al., 2013). The formation of the mPTP and changes in
mitochondrial membrane potential are key determinants of
cell fate in I/R injury (Halestrap et al., 2002). Therefore,
inhibition of mPTP formation is critical. In addition, apoptosis
is an important mechanism of I/R-induced intestinal cell death.
IPO reduces intestinal injury in rat models by inhibiting
apoptosis of intestinal mucosal cells (Chu et al., 2015). This
effect is mediated by the JAK/STAT pathway, which plays an
important role in intestinal I/R injury (Wen et al., 2012). In a rat
model of intestinal I/R, IPC has been found to induce
upregulation of miR-21 through HIF-1α, inhibit apoptosis, and
lead to downregulation of the apoptotic mediators PDCD4 and
Fas-L, thereby mitigating intestinal I/R injury (Jia et al., 2017).
Both miR-21 and HIF-1α are antiapoptotic miRNAs and factors
that are upregulated during hypoxia, and further increases in the
levels of these molecules during intermittent hypoxia may be
responsible for the protective mechanism.

Remote ischemic preconditioning (RIPC) involves transient,
repeated nonlethal ischemic treatment of organs or limbs to
protect the distal organs/limbs from I/R injury (Hausenloy
and Yellon, 2008). In addition to neurogenic pathways and
systemic anti-inflammatory responses, the release of humoral
mediators stimulated by RIPC may play a key role in its effects
(Hausenloy and Yellon, 2008; Pickard et al., 2015). Several
researchers have shown that RIPC reduces cell death from I/R

injury in different organs (Cheng et al., 2014; Hu et al., 2016; Xu
et al., 2017) and increases the antioxidant capacity of the tissue to
mediate organ protection (Zitta et al., 2015; Jin et al., 2016;
Motomura et al., 2017). Several studies have shown the
beneficial effects of RIPC on the intestine (Candilio et al.,
2013). IIn a rat model, Dickson et al. showed that RIPC
increased intestinal tolerance to hypoxia after I/R injury. Saeki
et al. found that in a rat model of small intestine transplantation,
three cycles of 15 min of RIPC reduced intestinal injury (Toldo
et al., 2018), while a single cycle had no significant protective
effect on the hindlimbs (Yue et al., 2012). The potential mediators
of RIPC include HIF-1α, ADAMTS1, Cited2, and cytochrome C,
but the interactions of these molecules require further
confirmation (Hummitzsch et al., 2019).

Energy Therapy
ATP deficiency during intestinal I/R is the main cause of
intestinal mucosal injury due to intestinal cell death. Providing
enough ATP can ameliorate the disorder of the internal
environment and maintain cell membrane stability. Mueller
et al. (Mueller et al., 2018) injected creatine supplements into
the intestinal lumens of SD rats to provide ATP for the ischemic
intestine and observed that intestinal I/R could alleviate intestinal
mucosal injury. Hansen et al. (Hansen et al., 2016) found that
elevating mitochondrial levels in ischemic tissue can reduce
intestinal mucosal damage induced by I/R. It may be useful to
inhale two standard atmospheric pressures of oxygen and arterial
infusion fructose diphosphate (FDP) during ischemia. This
therapy reduces intestinal tissue damage by improving cellular
energy metabolism and maintaining the integrity of the intestinal
mucosal structure and function.

Anti-free Radical Therapy
In many animal experiments, the use of antioxidants can
significantly reduce I/R-induced tissue injury, and antioxidant
free radicals are important treatments for intestinal I/R injury.
Akgür et al. (Akgür et al., 1996) demonstrated that allopurinol
inhibits the production of oxygen free radicals and attenuates
intestinal mucosal injury after I/R injury. Mitochondrial oxidative
damage may induce the release of mtDNA, activate pattern
recognition receptors, and damage the intestinal barrier.
Therefore, mitochondrial antioxidants can effectively prevent
damage to intestinal barrier function. Recent studies have
shown that pretreatment with the mitochondrial-targeted
antioxidant MitoQ protects mitochondria from oxidative
damage, reduces ROS production and stabilizes mitochondrial
transcription factor A (TFAM) and that MitoQ activates the
Nrf2/ARE pathway. MitoQ also prevents oxidative stress from
damaging mtDNA, ultimately enhancing the integrity of the
intestinal barrier (Hu et al., 2018b). Commonly used
antioxidants include ATP, superoxide dismutase, glutathione,
melatonin, vitamin C, vitamin E, and pyruvic acid.

Anti-leukocyte Adhesion Therapy
When intestinal I/R injury occurs, the body initiates an
inflammatory response. White blood cells are activated and
adhere to the inner walls of blood vessels with
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microcirculation disorders, further leading to tissue and organ
damage (Gordeeva et al., 2017). Gordeeva et al. (Gordeeva et al.,
2017) found that inhibiting leukocyte activation, hindering
leukocyte adhesion molecule synthesis, and reducing
leukocyte-endothelial adhesion can reduce intestinal I/R injury.
At present, there are leukocyte chemotactic drugs, such as PAF
and anti-CD11 monoclonal antibodies.

Glucocorticoids
Glucocorticoids (GCs) have strong effects on inflammatory and
immune processes. They are commonly used to treat
autoimmune and chronic inflammatory diseases (Cain and
Cidlowski, 2017; Ronchetti et al., 2020). GCs are
immunomodulatory, and acute exposure to GCs activates the
immune system, whereas long-term use of GCs may lead to
immunosuppression (Dhabhar, 2002). GCs exert anti-
inflammatory effects by inhibiting proinflammatory cytokines
and transcription factors and inhibiting anti-inflammatory gene
activation (Ronchetti et al., 2015). Other studies have reported
proinflammatory effects of GCs, such as induction of the
expression of the NLRP3 inflammasome (Ronchetti et al.,
2018). A large number of glucocorticoid receptor
transcriptional effects contribute to the anti-inflammatory and
immunomodulatory effects of GCs (Cain and Cidlowski, 2017).
In the early stages of inflammation, circulating GCs can modulate
cytokines involved in the immune response (Ji et al., 2016;
Ronchetti et al., 2017). Therefore, GCs are widely used in the
treatment of inflammatory diseases.

Synthetic GCs, such as prednisolone, betamethasone, and
dexamethasone, are now commonly used clinically (Ronchetti
et al., 2018). However, long-term GC use causes a wide range of
adverse reactions (Ayroldi et al., 2014; Cain and Cidlowski, 2017),
and rational use of GCs requires a deeper understanding of GC
interactions in various systems. In addition, alternative molecules
with the same efficacy as GCs with fewer side effects, such as
glucocorticoid-induced leucine zipper (GILZ), have been shown
to regulate immune cell activation and promote anti-
inflammatory phenotypes (Berrebi et al., 2003; Ronchetti et al.,
2020).

EFFECTS OF INFLAMMATION ON DRUG
TRANSPORTERS

Pathology may directly affect the functions of drug transporters
(Drozdzik et al., 2020). Drug transporters, which are expressed in
various cells, affect drug absorption, distribution, metabolism,
and excretion (Müller et al., 2017). Drug transporter expression in
the intestine and liver is critical in influencing oral
pharmacokinetics and is directly related to drug efficacy and
safety (Giacomini et al., 2010). The activities of drug transporters
and drug-metabolizing enzymes are different in various
pathological states. Here, we focus on the effects of
inflammation on drug transporters.

Studies have shown that inflammation is an important factor
altering drug action (Ling and Jamali, 2005; Clements and Jamali,
2007). Inflammation is associated with alterations in the gene

expression of drug-metabolizing enzymes (Aitken et al., 2006),
drug transporters, receptors (Hanafy et al., 2008), and plasma
proteins. Hanafy et al. explored the overall effects of
inflammation on target receptors using animal models of
chronic inflammation. They found that inflammation led to
significant decreases in the expression of the genes oct1,
oatp4a1, and mrp1 in the liver; the genes oatp2b1, mrp6, and
bsep in the kidneys; and the genes oct1, mdr1a, and mrp3 in the
intestine. However, inflammation led to significantly elevated
expression of the genes mdr1a and oatp4a1 in the heart (Hanafy
et al., 2012). These molecular targets and transporters are
associated with the pharmacodynamics and pharmacokinetics
of some drugs. Therefore, inflammation alters the gene
expression of drug transporters, which affects the expression
and activity of drugs in vivo. However, little is known about
the interactions between drug transporters and drug-
metabolizing enzymes. The exact mechanism of the effect of
inflammation on drug action remains to be investigated. In
addition, studies on drug bioavailability in pathological states
lack clinical validation.

EFFECT OF INCREASED PERMEABILITY
OF THE INTESTINAL BARRIER ON DRUG
ABSORPTION
The intestinal absorption of drugs involves multivariate
processes, so predicting drug permeability in the intestine is
difficult. Related articles have summarized the physicochemical
parameters for estimation of intestinal permeability in vivo and
in vitro models (Estudante et al., 2013). The limitations are that
these methods do not consider the influences of physiological
factors such as the gastric emptying rate and gastrointestinal
transit rate. However, these methods can still be used as screening
tools to assess gastrointestinal permeability.

Dixit et al. used hydrogen peroxide to induce oxidative stress
to form a model of increased intestinal permeability. They further
investigated how increased intestinal permeability affected drug
absorption. They found that increased intestinal permeability
elevated the apparent permeability of atenolol but had no effect
on the apparent permeability of metoprolol (Dixit et al., 2012).
Studies have demonstrated that atenolol is transported via the
paracellular pathway (Brouwers et al., 2010), and that metoprolol
is transported via the transcellular pathway (Hilgendorf et al.,
2000). Therefore, the effect of increased intestinal permeability on
the apparent permeability of drugs may be related to drug
transport pathways, which needs to be supported by more
research.

DISCUSSION

Intestinal I/R injury is an important problem in ischemic
bowel disease. Mucosal damage and intestinal barrier
disruption caused by I/R injury usually result in a systemic
inflammatory response (Huang et al., 2011) and multiple
organ dysfunction (Deitch et al., 2006). The intestinal tract
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is rich in mitochondria, which are among the most sensitive
organelles to I/R injury. The pathogenesis of intestinal barrier
dysfunction includes mitochondrial damage, inflammation,
calcium overload, and free radical damage. Mitochondria
and intestinal mucosal barrier function have a strong
correlation. As an important DAMP, mtDNA has relatively
low methylation and high sensitivity to oxidative damage.
When released, mtDNA activates the TLR-9, NLRP3
inflammasome, cGAS-STING, and other signaling pathways.
This induces inflammatory activation and the type I interferon
response, which then damages the intestinal mucous
membrane barrier.

In addition, mitochondrial oxidative stress produces many ROS
and RNS. ATP synthesis is reduced, and the mitochondrial
membrane potential changes, which is involved in intestinal
apoptosis and necrosis and results in intestinal mucosal damage
followed by intestinal mucosal barrier dysfunction. Damaged
mitochondria can be cleared by mitophagy, preventing ROS
accumulation and inflammation. In addition, mitochondrial
antioxidant treatment is a feasible way to protect the function
of the intestinal mucosal barrier. The intestinal mucosal barrier can
also be protected by reducing intestinal I/R injury. Inflammation
can alter the gene expression of drug transporters, thereby affecting
drug absorption and activity in vivo. It is important to study the
effects of inflammation on drug transporters. The effects of
increased intestinal barrier permeability on various drugs may
be closely related to drug transport pathways. More in-depth
studies are needed to illustrate the effects of both inflammation
and intestinal permeability on drugs.

Many questions related to intestinal I/R injury remain to be
solved. For example, the mechanism of direct release of mtDNA
through mitochondrial pores is not clear, and the methods for the
prevention and treatment of intestinal I/R are not routinely used
clinically. Looking to the future, the specific molecular
mechanism between mitochondria and intestinal mucosal
barrier dysfunction needs further study. Mitochondrial damage
and mitochondrial release play important roles in the process of
I/R injury. Further research to clarify the effects of mitochondrial
DNA release on a variety of pathological processes may help with
targeted organ protection.
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