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Abstract: Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America.
Since the first description of the disease by Lutz up to the present day, Brazilian researchers have
contributed to the understanding of the life cycle of this pathogen and provided the possibility of
new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides.
In this context, in silico approaches have selected molecules that act on specific targets, such as the
thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are
already in advanced development stages. In addition, the application of nanostructured systems has
addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution
of molecular biology and biotechnology to the advances achieved is unquestionable. However,
it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and
pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment
of fungal diseases.

Keywords: genomic; new species discovery; new targets; antifungal

1. From the First Description of the Disease to Functional Genomics—112 Years of
Gathered Knowledge. A Brazilian Middle West Perspective

First described in 1908 by Adolpho Lutz as “A Pseudococcidic Mycosis Localized in the
Mouth and Observed in Brazil” [1], paracoccidioidomycosis is the most prevalent systemic
mycosis in South America. This fungal disease was named Brazilian blastomycosis, South
American blastomycosis, paracoccidioidal granuloma, Lutz or Lutz-Splendore-Almeida
disease but only in 1971 was it officially named paracoccidioidomycosis after a meeting of
medical mycologists in Medellin, Colombia [2]. PCM was confused with coccidioidomy-
cosis for about two decades. However, after a precise microbiological characterization of
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the dimorphic and multi-budding nature of the fungus, the disease was ranked as a new
mycosis by identifying its etiological agent as Paracoccidioides brasiliensis [3]. Historically,
the disease has been extensively investigated in the Brazilian Southeast, Colombia and
Venezuela regarding the etiological agent, epidemiological characteristics, disease variation,
immunological aspects, cell wall components, diagnostics and treatment, as well as the
biological aspects of this saprophytic fungus.

PCM primarily affects the lungs upon the inhalation of airborne infectious propagules
named conidia. These cells produced during the filamentous phase of the fungus are dis-
lodged and aerosolized after soil perturbation. Most natural infections are asymptomatic
and characterized by a self-resolved disease in humans and other mammalian hosts [4].
Inside the host lungs, the fungus switches its morphology to multi-budding yeast cells, trig-
gering the infection and leading to an acute/subacute disease (also known as the juvenile
form) predominantly reported in infants/adolescents, or into a chronic-to-disseminated
polymorphic disease. A detailed review can be found at Shikanai-Yasuda et al., 2017 [5].

Past relevant studies carried out by Willian Barbosa, comparing clinical PCM in
different parts of Brazil, suggested that lymphatic-abdominal forms of Paracoccidioides
were predominant among patients in Midwestern, especially in Goiás state, compared
to Southeastern states [6,7]. The Brazilian Midwest is composed of the Federal District
and Goiás, Mato Grosso and Mato Grosso do Sul states, harboring two predominant
ecosystems (Brazilian Savanna and Pantanal) and is a key ecological area of transition
to the Amazon. These observations drove several research groups to investigate local
clinical and microbiological determinants of PCM in Brazil. It is worth noting that in
the last three decades, there has been massive deforestation of the Brazilian savanna and
Amazon landscapes in Brazil and surrounding countries due to agricultural practices
and pasture [8,9]. Consequently, PCM cases increased in those areas, redrawing the
epidemiological map of this fungal disease. A discussion of this topic can be found
in Martinez, 2017 [8]. Notably, those patients from Goiás, Mato Grosso and Rondônia
(Midwestern Brazil) had apparent clinical symptomatology of PCM and microbiological
features of Paracoccidioides, but a high percentage of negative serological tests was observed
by utilizing the well-characterized Pb339 antigen obtained from a strain isolated in São
Paulo (Southeast) [10–12]. An antigenic preparation using a local strain, named 510B,
was proposed and was crucial to improving antibody detection assays in Midwestern
Brazil [12].

Although studies had already indicated a high degree of genetic divergence among iso-
lates of P. brasiliensis, at that moment there was no geographical correlation with these find-
ings [13–15]. By Random Amplification of Polymorphic DNA (RAPD) markers, Molinari-
Madlum et al. [13] were able to identify two groups with different virulence degree and
a high of genetic diversity. Despite the study focusing on the analysis of genetic markers
related to virulence, the Pb01 isolate already presented a different pattern to well-known
P. brasiliensis isolates, such as Pb18 [13]. The RAPD studies continued to show high genetic
variability among clinical isolates, including atypical forms [14]. Next, Hahn et al. [15]
reported the same observations comparing the RAPD profiles of Mato Grosso and other
areas of the disease range in Brazil. The genetic variability was characterized, but it was
not possible to establish a geographical differentiation pattern [15]. Thus, despite the
suspicions of clinicians, who had already observed in practice that P. brasiliensis isolates
from the Midwestern were different, confirmation was only possible later with advances in
fungal genotyping methods.

At the beginning of the 2000s, fungal systematics and taxonomy dramatically changed
when the phylogenetic species concept (PSC) was implemented, which relied on the
phylogenetic concordance of several loci in a given population [16,17]. PSC was used
to delineate phylogenetic species with Histoplasma sp., Coccidioides sp., and at least three
phylogenetic species diagnosed with P. brasiliensis: S1—widely distributed in Latin America;
PS2—less abundant and prevalent in southeastern Brazil and Venezuela; and PS3 and
PS4—restricted to Colombia and Venezuela respectively [18]. These authors did not
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include any isolates from the Brazilian Midwest. Another set of strains were investigated
in parallel by other groups, and it was observed that the Pb01 strain did not cluster
in any P. brasiliensis phylogenetic species reported at that time [19]. The isolation and
microbiological characterization of the Paracoccidioides Pb01 strain were carried out at the
Instituto de Patologia Tropical e Saúde Pública, Federal University of Goiás (IPTSP-UFG)
by Dr. Maria do Rosário at the beginning of the 1990s. Since this strain was collected in
Goiás and presented a unique intron insertion at the hsp70 gene [20], researchers screened
the genetic background of 54 strains from Midwestern Brazil, aiming to find the shared
genomic patterns [21]. Seventeen isolates from Mato Grosso, Goiás and a single occurrence
in Ecuador were found to carry the same genomic insertion compared to the Pb01 strain,
and these were named “Pb01-like” [21]. It was found that the Pb01-like strains were
phylogenetically distinct from the P. brasiliensis species complex using PSC. These authors
also demonstrated that conidial cells from strains belonging to the “Pb01-like” group were
morphologically longer than the barrel-shaped P. brasiliensis conidia. This key finding led
to the proposal of a new species comprising the Pb01-like population and this was named
Paracoccidioides lutzii as an honor to the disease’s discoverer, Adolpho Lutz [22]. These
observations were vital to understanding and explaining the serological immunodiagnostic
challenges in PCM patients from Midwestern Brazil infected by P. lutzii, which sometimes
was mis-diagnosed as tuberculosis. In the same fashion, the three other phylogenetic
species within P. brasiliensis strictu sensu were proposed as follows: P. americana (PS2),
P. restrepiensis (PS3) and P. venezuelensis (PS4) [23].

Through an initiative of the Broad Institute and several researchers, the reference
genome of three species of Paracoccidioides were sequenced using Sanger Technology: Pb18
(P. brasiliensis), Pb03 (P. americana) and Pb01 (P. lutzii). The structural genomes ranged in
size from 29.1 Mb to 32.9 Mb and encoded 7610 to 8130 genes. The comparative genomics of
members of the Onygenales order contributed to understanding the clinical, biological and
genetic differences among the species of Paracoccidioides. They also allowed phylogenetic
studies to be carried out that estimated the divergence of this genus from other dimorphic
fungi. This work provided, furthermore, a collection of unique genes and metabolic path-
ways conserved among Paracoccidioides dimorphic relatives [24]. More recently, the genome
of 77 strains representing the five species of Paracoccidioides was sequenced using short-read
Illumina technology and used for evolutionary analysis. The results reinforced that all Para-
coccidioides species are reciprocally monophyletic, and gene flow (or hybridization) between
species is infrequent [25,26]. Today, five structural draft genomes of Paracoccidioides isolates
(Pb18, Pb03, Pb01, PbCnh and Pb300) have been sequenced, assembled, annotated and de-
posited in genomic databases. To improve and standardize the current genomic functional
annotation, the Paracoccidioides genomic database (ParaDB, http://Paracoccidioides.com/)
was recently launched, in which all data were compiled and manually curated, and can
now be accessed for any in silico analysis. The availability of this resource will undoubtedly
facilitate post-genomic studies of the Paracoccidioides [27,28].

From the 1990s, molecular studies aiming to explore the biology of Paracoccidioides had
begun, even before the deduction of the full genomes. In 1995, Goldani et al. [29] cloned and
sequenced the first genomic fragment related to a surface glycoprotein from P. brasiliensis
for diagnostic purposes and differentiation of P. brasiliensis clinical isolates. In the following
year, the gene encoding the 43 kDa glycoprotein (gp43) was characterized and cloned [30].
Historically it is important to note that, this immunodominant antigen of P. brasiliensis
found in patients with PCM, was first described by Yarzabal L et al., as band E [31]. Later,
this band was elegantly characterized by Dr. Travassos’ group, as the gp43 antigen. In the
following decade, a significant advance in the understanding of Paracoccidioides sp. biology
took place. Many studies have explored at the proteomic and genomic levels the differences
between the two forms of the fungus, the infective (mycelial and saprophytic) and the
pathogenic (yeast), as well as the morphogenetic events that culminate in the temperature-
dependent dimorphic transition. Salem–Izaac et al. [32] identified more homogeneous
protein synthesis patterns and gene expression in yeast cells than in the mycelial phase after
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evaluating several P. brasiliensis isolates. Through two-dimensional protein electrophoresis,
Cunha et al. [33] identified and characterized differentially expressed proteins from each
dimorphic stage of the fungus (Pb01); among them, PbM46, an enolase-like protein, was
very abundant in the mycelium while PbY20 was only found in the yeast phase, which later
was identified as a member of the flavodoxin-like WrbA family [34]. In parallel, Venâncio
et al. [35] identified about 20 differentially expressed genes between P. brasiliensis yeast and
mycelium cells and three regulated cDNAs during the transition from the infective to the
pathogenic phase by using the differential display (DD) approach.

By in silico electronic subtraction, the expressed sequence tag (EST) sequencing project
was started in 2001. Researchers characterized the functional genome of the Paracoccidioides
Pb01 isolate, actually known as P. lutzii. The project resulted in the sequencing of 6022 genes
differentially expressed between the forms of mycelium and yeast, and boosted the under-
standing of the metabolic and molecular events that Pb01 induces in its lifecycle, which
enable it to adapt to the conditions found in the natural environment as a saprophytic
form or in the host in its pathogenic phase. This study also provided categorized and
comprehensive data related to cell cycle, stress responses machinery, signal transduction
pathways, virulence genes, and drug targets for this pathogen [36–39].

At the same time, by EST sequencing, researchers from southeastern Brazil (São Paulo
state) started the transcriptomic characterization of isolate Pb18, which is a P. brasiliensis
stricto sensu individual. By sequencing 4692 expressed genes and comparative analysis
with the Candida albicans database, these authors pinpointed potential homologues of P.
brasiliensis essential for virulence and pathogenicity [40]. Among preferentially expressed
yeast genes, some were required for metabolism, signal transduction pathways, growth
and morphogenesis, and sulfur metabolism [41].

The abundant data generated by the functional genome projects of P. brasiliensis and
P. lutzii (at that time it had not yet been defined as the P. lutzii species) were pivotal for
further studies exploring the molecular mechanisms developed during the temperature-
dependent dimorphic transition of these fungi, which is considered the main morpho-
genetic event required for the establishment of the disease [42,43]. Aiming to take the next
step in understanding the metabolic adaptation of P. lutzii within the host, Tavares et al. [44]
evaluated the gene expression of yeast cells after six hours of interaction with peritoneal
murine macrophages. From 1152 genes evaluated by cDNA microarray technology,
152 genes were differentially transcribed in this condition. The collected data show that
the fungus (Pb01) has a strong capacity to adapt to the harsh phagocyte environment,
modulating the genes required for glucose and amino acid assimilation/production, cell
wall remodeling, and oxidative stress response to evade and counteract the immune system.
This plasticity guarantees its survival and continuation in the host.

Bailão et al. [45] identified by cDNA Representational Difference Analysis (cDNA-
RDA) several genes required by yeast cells for dissemination via the hematogenic route.
Among these, genes related to copper and iron metabolism were found, in addition to those
necessary for cell wall/membrane remodeling. Next, Bailão et al. [46], when exposing
Pb01 yeasts cells to blood and plasma, also observed changes of the transcriptional profile
response to these conditions that would mimic the host environment. Other studies
prompted a greater understanding of the survival and adaptation of Paracoccidioides in
different sites and environments encountered inside the host [47,48].

Amid the progress made by transcriptomes, the genetic manipulation of Paracoc-
cidioides was still something to be mastered. Two studies were published, the first in
2004. Here, Leal et al. [49] describe the technique of genetic transformation, mediated
by Agrobacterium tumefaciens, to insert into the P. brasiliensis genome the gene responsible
for Hygromycin B resistance. In parallel, Soares et al. [50] reported electroporation to
deliver the Hygromycin B resistance gene to the Pb01 genome. Both studies reported
low transformation efficiency and low mitotic stability of the recovered transformants.
Among the factors that can be attributed are the multi-budding and multinuclearity of
Paracoccidioides yeast cells observed among the isolates used as background strains.
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It was only in 2009 that the first functional study of genes was published, to the
enthusiasm of the Paracoccidioides scientific community. Almeida et al. [51] used antisense
technology to knock-out the expression of CDC42 in P. brasiliensis yeast cells, an impor-
tant protein for the control of yeast cell growth and virulence. The authors reported a
49%–88% efficiency in silencing the CDC42 gene. Despite this breakthrough, there is still
no efficient gene deletion system based on classical genetic techniques and homologous re-
combination. The scientific community looks forward to seeing the CRISPR/CAS9 system,
which is widely used for functional study of genes in fungal kingdom members, being
applied to Paracoccidioides shortly. Even with this delay in the development of appropriate
molecular tools compared to other human pathogenic fungi, several studies have been
published in the past few years, using the gene expression modulation approach described
by Almeida et al. [51–60].

From the first description of the disease in 1908 by Lutz to the present day, a period
of more than one century, much progress has been made in understanding the life cycle
of this human pathogen. The development of molecular techniques boosted the number
of publications related to Paracoccidioides and PCM. Today, more than 2300 published
studies can be explored on the Pubmed database (https://pubmed.ncbi.nlm.nih.gov/),
which clearly demonstrates the enormous efforts and impressive advance of researchers in
understanding this pathogen and its disease. Figure 1 highlights the pioneering studies
that paved the way on this long journey. There is still much to clarify and to explore. In
this article, we will discuss how all these data accumulated to date can contribute even
more to the development of new antifungal strategies to expand the therapeutic range for
fighting the disease.

https://pubmed.ncbi.nlm.nih.gov/
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2. Search for New Therapeutic Options—A Journey
2.1. A Starting Point—Available Therapeutic Options

The achievements of the primary research on Paracoccidioides are undeniable, a history
built by various hands. However, issues related to the treatment of patients with PCM
still have a distance to travel. PCM treatment is restricted to three groups: polyenes,
sulfa derivatives and azoles [61]. Generally, treatment consists of two phases: induction
and maintenance. The induction treatment corresponds to the immediate control of the
signs and symptoms and the fungal burden reduction to recover cellular immunity, a
fundamental step for therapeutic success. The drugs used in this phase are usually more
active and of intravenous administration but have more adverse side-effects. Therapy
maintenance is usually performed with oral administration drugs and more extended
treatment regimes. The reduction of antibody titers is generally a criterion used to start this
phase. The treatment usually continues until cure criteria are reached, seeking to reduce
the risk of disease recurrence. These criteria are based on four parameters: clinical (absence
or regression of disease signs and symptoms), mycological (negative direct mycological
examination), radiological (stabilization of pulmonary radiological image patterns), and
immunological (antibody titer—negative or stabilized at low levels) [5].

Amphotericin B (AmB), a drug of the polyene class, has a fungicidal effect. The
mechanism of action of Amphotericin B, the most commonly studied and well-known,
is the interaction with ergosterol, the main sterol in the plasma membrane of fungi. In
this case, there is the formation of pores and, consequently, the leakage of small ions
and water molecules [62]. Despite studies using computerized modeling of the formed
channel [63], other AmB action models have been proposed [64,65]. Anderson et al. have
suggested that amphotericin B activity is due to the ergosterol depletion from the lipidic
bilayer of the yeast membrane by large extra-membranous aggregates of AmB [64]. Besides,
Mesa-Arango et al. [65], demonstrated that reactive oxygen species are essential mediators
in the fungicidal effect of AMB. Since 1958, AmB has been a recommended drug for
severe PCM cases. In recent years, it has been considered the antifungal of choice for
the treatment of PCM, especially in the attack phase. However, it should be noted that
this drug has several limitations, such as administration only by intravenous route and
nephrotoxicity [66,67]. Although there are currently liposomal forms of Amphotericin
B (LAmB), these present high costs, and maintain several adverse effects, such as fever,
chills, tachycardia, tachypnea, and hypertension or hypotension [68]. However, there is no
doubt that LAmB has a significantly improved toxicity profile compared with conventional
AmB. This fact has encouraged several clinical studies with LAmB, in different situations in
which treatment with AmB is clinically indicated, but the conventional formulation cannot
be administered [69].

Several sulfa derivatives have been used since 1940. Sulfamethoxazole-trimethoprim
(SMX-TMT) or cotrimoxazole is frequently used, especially in the maintenance phase [70].
This drug is distributed by the Brazilian public healthcare system and its use offers advantages
such as low cost, acceptable toxicity profile, the achievement of adequate concentrations in
several organs and availability by both oral and intravenous routes [5]. However, therapeutic
failure has been described in 5% of patients, and the main disadvantage is the need for long-
term treatments (more than 12 months), followed by adverse effects such as hypersensitivity
reactions, leukopenia, megaloblastic anemia and thrombocytopenia [70,71].

In the same fashion, a randomized study performed in three Brazilian hospitals
showed a similar therapeutic effect between itraconazole, ketoconazole and sulfadiazine [72].
The antifungal activity of triazoles is predominantly by CYP51 inhibition, a cytochrome
P450 enzyme (sterol 14-alpha-demethylase), which prevents the conversion of lanosterol
to ergosterol [73,74]. The therapeutic success of itraconazole in several patients with ac-
tive PCM was reported, with a significant reduction in inflammatory infiltrates. The role
of itraconazole in the pulmonary fibrosis control caused by PCM is still unclear, since
few reports in the literature are available. Among them is one in which fibrosis became
more evident after therapy, reaching 81% of patients treated [75]. In addition, the use
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of itraconazole involves several drug interactions: Warfarin, Calcium channel blockers,
Carbamazepine, Cyclosporine, Simvastatin, Midazolam, Rifampicin, Sirolimus, Tracolimus
and several antiretroviral drugs [5]. It is important to highlight that co-infection reports
of PCM and tuberculosis are described in the literature, as well as of HIV patients with
PCM. Thus, drug interaction is a limiting factor that should be taken seriously. Despite the
advent of newer-generation triazoles, such as voriconazole and posaconazole, itraconazole
is considered the main azole derivative used in clinical practice, with satisfactory results in
non-hospitalized PCM patients [76,77]. This generation of antifungals can be considered
as potential substitutes for itraconazole; however, they are still high cost and new clinical
evidence needs to be published [5,66]. Another point to consider is that several azoles have
renal excretion. In this sense, the dose should be adjusted in patients with renal disease [5].

The cell wall is in fact a drug target with great therapeutic potential. Glucan synthase
(fks1) is listed among the potential targets for the further development of antifungals [78].
A recent review has reaffirmed the potential of this target [79]. However, the cell wall of
Paracoccidioides is altered when this pathogen changes from mycelium to yeast form. β-1,3-
glucan is replaced by almost entirely α-1,3-Glucan when this species enters the pathogenic
yeast phase [80]. Thus, echinocandins showed no promising antifungal activity in the
in vitro assays against Paracoccidioides sp., especially against yeast [81,82]. In addition, the
most recent inhibitors Ibrexafungerp [83] and rezafungin [84] have not yet been evaluated
for in vitro or in vivo activity in the PCM model.

In the specific case of PCM, even though treatment achieves success using the available
therapeutic options, limitations related to nephrotoxicity, prolonged treatment and inability
to control pulmonary sequelae are a reality among patients. Fortunately, the technological
progress of the last few decades has made a large number of genomes from human fungal
pathogens available. Therefore, the advances that the “-omics” era provided are undeniable,
and a start has been made in which basic knowledge is widely used in applied research,
such as new antifungal development [78,85–89].

2.2. Comparative Genomics Searching for Drug Targets

The development of antifungal agents with a broad action spectrum and minimal
human toxicity is an urgent demand [87]. Currently, several approaches are available in
the search and development of drugs [90–93]. Planning based on structure and mechanism
of action has proven to be an efficient and less expensive strategy for developing new
drugs [94]. A critical study showed that the most common drug targets are enzymes,
particularly oxidoreductases, transferases and lyases. These protein targets are involved
in binding, signaling and cellular communication. Usually, they are found in the cell
membrane and in the cytoplasm, and are rarely present in organelles [95].

Comparative genomics is an important tool for the initial step in searching for new
compounds for treating severe mycotic diseases, including PCM. One strategy for search-
ing for new antifungal targets is identifying essential genes that are important for the cell
viability of the pathogen. The access to the complete genomic sequences of pathogenic
fungi, including P. brasiliensis and P. lutzii, allowed target genes to be identified using
bioinformatics techniques [78]. A comparative genomic analysis was performed using
57 orthologous genes present in P. brasiliensis, P. lutzii, C. albicans, Aspergillus fumigatus, Blas-
tomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum.
Among these selected genes, 55 are essential for C. albicans and/or A. fumigatus [96,97]
and two are required for fungal survival within the host [98,99]. The alignments of these
gene sequences and manual curation following the criteria, such as essential or needed
for fungal survival, found in all the pathogenic fungi, and absent in humans, provided a
list of 10 potential antifungal drug targets [78]. This work proposed a starting point in the
search for new therapeutic options to treat fungal infection, cited more than 63 times, ac-
cording to the metrics of Web of Science. Since that time, essential genes, pathogen-specific
metabolic pathway enzymes and virulence and pathogenicity factors have been widely
explored [87,100,101]. Thus, identifying essential genes preserved in several pathogens,
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which has also been used as a strategy, pointed to a very accurate way forward when
selecting proteins from the thioredoxin system as potential drug targets (Figure 2A).

J. Fungi 2021, 7, x FOR PEER REVIEW 9 of 27 
 

 

search for new therapeutic options to treat fungal infection, cited more than 63 times, ac-
cording to the metrics of Web of Science. Since that time, essential genes, pathogen-spe-
cific metabolic pathway enzymes and virulence and pathogenicity factors have been 
widely explored [87,100,101]. Thus, identifying essential genes preserved in several path-
ogens, which has also been used as a strategy, pointed to a very accurate way forward 
when selecting proteins from the thioredoxin system as potential drug targets (Figure 2A). 

 
Figure 2. Thioredoxin system, an important means to control oxidative stress. (A) Cyto-localization of the thioredoxin 
system in Paracoccidioides sp. Three isoforms of thioredoxin were identified, namely Trx1 (cytoplasmatic) and Trx2 and 
Trx3 (mitochondrial). Thioredoxin reductase (TrxR) also participates in this system, which presents two forms, one in each 
compartment. (B) Schematic representation of the mechanism of action. The oxi-reduction reaction occurs so that cellular 
proteins are constantly available to control situations of the reactive species inside the fungus. (C) Comparison from thi-
oredoxin systems between human and fungi. 

2.3. Thioredoxin System—A Promising Approach 
2.3.1. General Definition 

Prokaryotic and eukaryotic cells have different redox systems, and among them is 
the thioredoxin system [102]. In this complex system, two elements are essential: the pro-
tein thioredoxin (Trx) and the enzyme thioredoxin reductase (TrxR, EC 1.6.4.5, named in 
many articles as Trr1). Trx are thermostable and low molecular mass proteins. The struc-
ture of this protein has a fold consisting of a central B-sheet, with five flanked by four α-
helices. The Trx is an antioxidant known as a redox-sensitive molecule with a highly con-
served active site (-Cys-Gly-Pro-Cys-), and catalyzes oxidation-reduction reactions by 
electron transfer dynamics (Figure 2B) [103]. This protein is reduced by TrxR, a selenocys-
teine containing protein and belonging to the flavoprotein class which binds flavin ade-
nine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) 
[103–107]. The pattern of binding and electron transference between NADPH and its FAD 
cofactor, besides the presence of TrxR (which catalyzes the reduction of Trx), are im-
portant for the maintenance of the reduced form of Trx [106], since most of the actions of 
Trx are performed when it is in the reduced state, stable and functional [108]. The active 
site of TrxR is found in the binding domain to NADPH, and the transfer of electrons from 
NADPH to the FAD-binding domain is essential for protein stability [109]. When the FAD 
domain receives electrons, it promotes protein rotation to allow the electrons to transfer 
to the active site and, in this way, the transitory binding of the NADPH-mediated TrxR to 
the oxidized Trx occurs [110]. The reduced Trx acts as a protein disulfide reductase and, 

Figure 2. Thioredoxin system, an important means to control oxidative stress. (A) Cyto-localization of the thioredoxin
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2.3. Thioredoxin System—A Promising Approach
2.3.1. General Definition

Prokaryotic and eukaryotic cells have different redox systems, and among them is the
thioredoxin system [102]. In this complex system, two elements are essential: the protein
thioredoxin (Trx) and the enzyme thioredoxin reductase (TrxR, EC 1.6.4.5, named in many
articles as Trr1). Trx are thermostable and low molecular mass proteins. The structure of
this protein has a fold consisting of a central B-sheet, with five flanked by four α-helices.
The Trx is an antioxidant known as a redox-sensitive molecule with a highly conserved
active site (-Cys-Gly-Pro-Cys-), and catalyzes oxidation-reduction reactions by electron
transfer dynamics (Figure 2B) [103]. This protein is reduced by TrxR, a selenocysteine
containing protein and belonging to the flavoprotein class which binds flavin adenine
dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) [103–107].
The pattern of binding and electron transference between NADPH and its FAD cofactor,
besides the presence of TrxR (which catalyzes the reduction of Trx), are important for
the maintenance of the reduced form of Trx [106], since most of the actions of Trx are
performed when it is in the reduced state, stable and functional [108]. The active site of
TrxR is found in the binding domain to NADPH, and the transfer of electrons from NADPH
to the FAD-binding domain is essential for protein stability [109]. When the FAD domain
receives electrons, it promotes protein rotation to allow the electrons to transfer to the
active site and, in this way, the transitory binding of the NADPH-mediated TrxR to the
oxidized Trx occurs [110]. The reduced Trx acts as a protein disulfide reductase and, when
the active dithiol site interacts with oxidized cysteines of proteins, there is a thiol-disulfide
exchange process forming an oxidized Trx [106].

The molecular weight of TrxRs classifies them into two important groups (Figure 2C).
Those of high molecular weight (55 kDa for each subunit) are present in higher eukaryotes,



J. Fungi 2021, 7, 106 10 of 26

and contain a selenocysteine in their active site [107]; furthermore, they can reduce various
substrates in addition to thioredoxin [106]. This protein is part of the class I family of
the pyridine nucleotide-disulfide oxidoreductase and has an active redox site composed
of a seleno-protein forming the Gly-Cys-Sec-Gly domain. This is required to form a
selenony-sulfide in the oxidized enzyme which is reduced by the active site of the other
subunit in the dimeric enzyme [111]. In comparison, those of low molecular weight
(35 kDa for each subunit) are present in prokaryotes, archaea and lower eukaryotes, such
as fungi [106]. This enzyme is a member of the class II family of the pyridine nucleotide-
disulfide oxidoreductase [112]. In the redox system, they are restricted to the reduction of
thioredoxin [107] and, in addition, do not have selenium in the active site, leaving only
cysteine [113]. Despite the similar function of isoforms, the molecular structure is different
and these characteristics are essential for target selectivity [114].

The functions of the thioredoxin system are directly involved with cellular homeostasis.
Various pieces of scientific evidence demonstrate the importance of this system in redox
cell balance, repair of mutagenic DNA, cell growth and survival [106,115,116]. In mammals,
three isoforms of Trx and TrxR have already been identified, differentiated by cyto-location.
Trx1 and TrxR1 are present in the cytoplasm and are dominant forms [117,118]. In the
mitochondrial location, Trx2 and TrxR2 are present [117,118]. Another Trx isoform localized
in the mitochondria is Trx3. This 14-kDa protein was described in Saccharomyces cerevisiae
containing the characteristic thioredoxin active site (WCGPC) [119]. Trx3 possesses two
additional cysteine residues Cys57 and Cys6, overlaying the activity of the glutathione
reductase system [120]. The sequences of all Trx and TrxR isoforms were predicted for
Paracoccidioides sp. (Figure 2A).

In humans, increased Trx expression has already been seen in different types of cancer
such as colorectal [121], lung [122], pancreatic [123], and gastric [124]. Increased oxidative
stress increased in cancer cells may contribute to reduced apoptosis, up-regulation of cell
growth, increased invasion, or even regulation of angiogenesis. Therefore, a strategy used
in anti-cancer therapy is to obtain inhibitors that work selectively on the cytosolic isoform
of thioredoxin reductase, reducing damage in normal cells [125].

2.3.2. Fungus Selectivity

Research using the thioredoxin system as a target for treatment for fungal infections
has increased in recent years [97,114,126–131]. The identification of essential genes is a
strategy that elucidates new targets for antifungal therapy, and when widely conserved in
fungi, there is an increased interest in acting as new targets for drug design [97]. Blocking
the thioredoxin system is an excellent strategy that makes the fungus vulnerable to reactive
oxygen species [129] and, therefore, its performance is essential for the vitality of fungi
such as C. neoformans [126], C. albicans [114] and A. fumigatus [97].

Studies with C. neoformans have confirmed that this protein is induced during oxidative
stress and showed that Trr1 is an essential gene for this species. C. neoformans TrxR is
present in mitochondria and cytoplasm, participating imperatively in virulence [126,132].
The knowledge of the three-dimensional crystallized structure of this protein has been
established, and it is a key point for future studies aimed at understanding the structural
properties, catalytic activity and molecular mechanisms of Trx in C. neoformans [133]. As for
C. neoformans, studies also show the importance of essential genes for the fungal genus
Aspergillus. Hu et al. [97] identified the trr1 gene as essential for A. fumigatus vitality,
and in addition this characteristic directly reflects the virulence of the pathogen [131].
For A. fumigatus, the thioredoxin system also acts in the maintenance of cellular redox
homeostasis and, therefore, TrxR also presents a potential target for new antifungals [134].
Although other authors have already mentioned TrxR as a good target for antifungal
therapy against C. albicans, it was only in 2016 that Godoy et al. [127] demonstrated the
structural and functional characterization of the recombinant thioredoxin reductase from
C. albicans. This recombinant protein effectively induced anti-CaTrxR antibodies that
reduced the fungal burden in a disseminated candidiasis experimental model.
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Historically, the Trx system is an important drug target for Paracoccidioides spp. [78,
114,128,129,135]. The thioredoxin system investigation started in 2003 [35] in which genes
that were supposedly involved in oxidative stress response expressed in P. brasiliensis were
identified, including the trx gene. Additionally, Abadio et al. [78] used the comparative
genomic tool and outlined the identification of potential antifungal therapy targets. Four
drug targets were selected, including the enzyme Trr1. Recently, Oliveira et al. [129]
showed the presence of Trr1 in the P. lutzii cell wall, highlighting it as an important
target for therapeutic antibodies. The accumulated evidence that the TrxR enzyme of
the thioredoxin system is required for the intracellular redox balance and, consequently,
influences fungal viability, prompted researchers to search intensely for specific inhibitors
against TrxR as a strategy for the development of new antifungals.

2.4. In Silico Strategy for New Antifungal Development

Computational methods have come to play a significant role in drug design. Simula-
tions based on the target structure bring a greater chance of success for drug development
in less time [136] (Figure 3). The target prediction for drug discovery can be based on
structural models available in databases, resulting from X-ray crystallography or NMR
spectroscopy [137]. The best binding sites are identified by computational tools, according
to physical-chemical properties, and thus the docking for selection of inhibitors can start
by virtual screening [138]. The number of three-dimensional structures that have been
resolved experimentally is growing exponentially, totaling 171,588 structures deposited by
November 2020. This situation is not the same for fungi, much less for the genus Paracoc-
cidioides. The Protein Database statistical data (https://www.rcsb.org/stats) indicate that
fungal proteins represent about 6% (10,295 structures). Until now, only one structure from
Paracoccidioides has been solved by X-ray crystallography, a nucleotidyl-transferase-like
antigen, named Pb27 [139].
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Thus, by homology modeling, protein structure prediction is a reality for the groups
working with Paracoccidioides spp. Indeed, Abadio et al. [77] obtained three-dimensional
structures of two proteins by homology modeling from P. lutzii: thioredoxin reductase and
alfa-1,2-mannosyltransferase. The three-dimensional models allowed the identification of
relevant information about these proteins, such as the conserved domains and the residues
of the active site [77]. The 3D-structure of other Paracoccidioides proteins was built by
in silico tools for virtual screening application, such as homoserine dehydrogenase (EC
1.1.1.3) [140], chorismate synthase (EC 4.2.3.5) [141] and isocitrate lyase [142].

2.4.1. Virtual Screening

Virtual screening allows a search for several chemical libraries of small molecules
and selects those that best interact with the specific target’s catalytic site [94,143–145]. The
application of this technique is well accepted, mainly in the lead discovery phase [146,147].
Unlike the empirical choice of compounds, the selection of these specific target compounds
reduces the amount of in vitro and in vivo assays performed to prove their activity, reduc-
ing costs, as well as the time spent comparing with chosen compounds without a rational
selection [148,149]. The search for potential inhibitors of target enzymes can be performed
in different chemical libraries, with thousands of molecules. After selection, hit compounds
could then be synthesized and acquired for in vitro and in vivo validation (Figure 3). In
recent years, the identification of thioredoxin system inhibitors by virtual screening has
been a success story.

In collaboration with Maigret’s group (Loria, France), the best twelve small molecules
that interact with the Trr1 from P. lutzii were virtually selected. These molecules were
purchased and three presented specific antifungal activity against P. lutzii and P. brasiliensis.
By using enzymatic assays, the recombinant thioredoxin reductase from P. lutzii was also
inhibited by these molecules [114]. Afterward, molecules with an extended action spectrum
for other fungal species of worldwide relevance—Candida and Cryptococcus—were selected
as potential ligands of the active conformation of Trr1 by virtual screening. Crystallogra-
phy studies revealed that the NADPH and FAD domains are located on opposite sides
of the molecule, requiring a significant conformational change for electron transport to
occur [150,151]. In this approach, two small molecules (from the oxadiazoles class) were
selected as Trr1 inhibitors of three pathogenic fungi: Candida spp., Paracoccidioides spp.
and Cryptococcus spp. [152]. These new compounds proved to be broad-spectrum with
antifungal activity against C. albicans. The inhibitory activity in vitro was 64.9 µM, without
cellular toxicity and, most importantly, significantly reduced the fungal burden on the
kidneys of mice in the candidemia experimental model [128]. One of these oxadiazole
compounds, named LMM11, showed activity against C. krusei with MICs ranging from
65 to 129.9 µM, and it also succeeded in reducing colony-forming unit (CFU) recovered
from the kidneys of infected mice with this clinically-relevant pathogen, mostly involved
in hospital infections [130]. The two oxadiazoles (LMM5 and LMM11) selected against
TRR1 showed a range of inhibitory action from 2.03 to 71.99 µM against nine isolates of
Paracoccidioides spp. They also showed a significant reduction in CFU recovered from
infected and treated mice and found no toxicity in a murine PCM model [135].

Another molecule selected by virtual screening against Paracoccidioides protein was
CP1, a derivative of quinolinic alkaloids. This molecule targeting chorismate synthase
from P. brasiliensis showed excellent antifungal activity against many clinical isolates from
Paracoccidioides spp. [139]. In this same sense, Bagatin et al. [140] selected inhibitors of
homoserine dehydrogenase (HSD) from a library of natural products, which showed
specific antifungal activity against Paracoccidioides spp. The two new amino acid derivative
compounds, HS1 and HS2, exhibited MICs of 260.9 and 123.4 µM, respectively, against
P. brasiliensis (Pb18 isolates) and 246.81 µM against P. lutzii. In addition, synergic activity
with itraconazole was observed [140]. Given the promising results using HSD as a target, a
new virtual screening was performed to search for optimized compounds. The molecule
HS9 (Zinc2123137) presented fungicidal activity that was more promising than HS2, with
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MIC values of 23.44 µM and low cytotoxicity in human cell lines [153]. Two recent studies
indicate the synthesis of lead molecules from these hit molecules selected by virtual
screening [154,155].

From the theoretical model of malate synthase, four compounds were selected by
virtual screening against this enzyme present in fungi and absent in mammals. The
compounds selected presented moderate antifungal activity, with MIC values varying
from 8.76–249.57 µg/mL. Unfortunately, these compounds present specific toxicity in cell
lineage [146]. A promising hit molecule was selected by virtual screening against alpha-1,2-
mannosyl transferase from P. lutzii [156]. This molecule, named MOL3, presented in vivo
antifungal activity against Paracoccidioides spp. (data not shown), and for many Candida
species, especially Candida parapsilosis [157]. Virtual screening to search for compounds
chemically related to a molecule with known antifungal activity may be an interesting
approach. Three chalcone derivatives, selected by this approach, showed promising results
in vitro, with MIC values varying from 2.9–12.6 µM against different Paracoccidioides spp.
isolates and low cytotoxicity [158]. Recently, isocitrate lyase from P. brasiliensis was modeled
by homology modeling, and the virtual screening was performed with many natural com-
pounds from the ZINC database. The best-selected compound (ZINC4559339) presented
values MIC of 19.1 µM in P. brasiliensis with a fungicidal effect at this concentration [142].
Therefore, ten different molecules showed promising values of antifungal activity and
absent of toxicity in vitro (Figure 4).
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Figure 4. Comparison of selected molecules by virtual screening. Ten different molecules showed promising values
of antifungal activity and absent of toxicity in vitro. Only three molecules were tested in an experimental model of
paracoccidioidomycosis (PCM). F3307-0100 [114], LMM5 and LMM11 [135], HS1 and HS2 [153], HS9 [140], CP1 [141],
alkaloid 4 [146] Zinc4559339 [142], Compound 3 [158].

2.4.2. Drug Repositioning

Drug repurposing or repositioning aims at a new indication for drugs already ap-
proved to treat other diseases and/or whose mechanism of action or targets are already
known [159]. This methodology directly reduces time and costs for the drug to reach
the clinical trial stage [160], since, for example, data on pharmacokinetics and pharmaco-
dynamics may already be available [161]. Satisfactory results have already been shown
in therapy for parasitic diseases [162] and cancer [163]. Drug repositioning appears as a
viable alternative for discovering new drugs against mycoses [164] and other neglected
diseases [165].
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Concerning new antifungals in the literature, we found a significant number of studies
on targeted drug repositioning in mycoses caused by Candida spp. [166] or Cryptococcus
spp. [167]. However, with dimorphic fungi, such as Paracoccidioides spp., there are still
few studies described. In this context, the antiviral raltegravir showed activity against
Paracoccidioides isolates [168]. Ligand-based and structure-based (molecular docking) com-
putational methods were used for repositioning. The selected compounds were chemically
similar to two-hit compounds previously selected against thioredoxin reductase, with
promising antifungal activity. All the six compounds evaluated showed antifungal activity
against the genus Paracoccidioides, particularly raltegravir (MIC: 36 µM for P. brasiliensis and
MIC: 72 µM for P. lutzii). Additionally, this antiviral drug showed promising antifungal
activity against experimental murine paracoccidioidomycosis, with a significant reduction
of the fungal burden and decreased alterations in the lung structure of treated mice [168].

Oliveira et al. [169] developed computational drug repurposing—chemo-genomics—
to identify anti-PCM activity drugs. The goal of chemo-genomics is to establish the
molecular relationships of ligands and targets using genome data [170], within the concept
that “similar targets have similar ligands” [171]. Studies with chemo-genomics in silico
have already appeared satisfactory for drug repositioning in species of parasitic Schisto-
soma mansoni [172]. The old-drugs that have been repositioned belong to antineoplastic
(vistusertib and BGT-226) and azole compounds (bifonazole, luliconazole, butoconazole
and sertaconazole). These compounds presented significant antifungal activity [169].

2.5. Drug Targets Discovered from Natural Products

Natural compounds and derivatives are still widely used in the search for molecules
with antimicrobial potential [101]. The variety of bioactive secondary metabolites present
in plants has been an inexhaustible source of compounds with antifungal activity [173],
including against PCM. Since 1993, the antifungal activity of ajoene (natural garlic com-
pound) against P. brasiliensis has been known [174]. In 1997, the same authors suggested
that the anti-P. brasiliensis activity may be due to the blocking of phosphatidylcholine
biosynthesis [175]. Maluf et al. [176] confirmed the activity in vivo of ajoene in experi-
mental PCM and Thomaz et al. [177] indicated the additive effect between ajoene and
sulfamethoxazole/trimethoprim.

Recently, OMICs tools have helped describe the action mechanisms of these natural
products and their possible molecular targets. Oenothein B (OenB), a macrocyclic hydrolyz-
able tannin dimer extract of Eugenia uniflora L. (a Brazilian Cerrado plant), inhibited the
1,3-β-D-glucan synthase (PbFKS1) transcript accumulation in the P. brasiliensis isolate Pb01.
This natural compound interferes with the fungal cell morphology [178]. Other enzymes
that also participate in cell wall synthesis have been modulated by OenB, such as those
expressed by GLN1 and KRE6 genes [179]. Enzymes that participate in cell wall synthesis
and those involved in the protein mannosylation process have been described as targets of
drugs by Abadio et al. [78].

A series of β-carboline alkaloids isolated from Rubiaceae and Apocynaceae species
showed activity against Paracoccidioides spp. and in silico experiments suggest interaction
with malate synthase (MLS) [180]. PbMLS acts on the glyoxylate cycle and in the allantoin
degradation pathway [181] and it is considered a multifunctional and versatile protein [182].
Argentilactone is the principal constituent of the essential oil from the Brazilian savanna
plant Hyptis ovalifolia. This compound and its semi-synthetic derivatives were able to inhibit
the activity of isocitrate lyase from P. lutzii (PbICL), yeast cell growth, and differentiation
from mycelium to yeast [183]. This is another enzyme of the glyoxylate cycle that could be
exploited as a drug target [184].

Antifungal activity of thiosemi-carbazide camphene derivative (TSC-C) in isolates
of Paracoccidioides spp. was also demonstrated. The transcriptome analysis suggests this
derivative was related to the induction of the ROS formation in Paracoccidioides spp. [185].
By chemo-proteomics, Borba et al. [186] suggest that thiosemi-carbazides (TSCs) and TSC-C
were multitarget compounds with an effect on several essential mechanisms for Paracoccid-
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ioides such as electron-transport chain, cell cycle, ROS formation, cellular metabolisms and
mycelium-yeast transition. Thus, the crucial enzymes and metabolic processes were de-
scribed as potential targets of promising antifungal molecules, mainly natural compounds
and synthetic derivatives.

3. Nanotechnology as an Approach for Alternative Therapies

Different strategies to improve PCM therapy are under development, many using the
benefits promoted by nanotechnology (Table 1), whether carrying molecules that act as
immunomodulatory boosts such as the peptide P10 [187,188], a DNA vaccine [189] or the
scFv fraction from a recombinant antibody [190]. These carriers may also carry conventional
drugs, such as amphotericin B [191,192] and itraconazole [191]. Such strategies were able
to improve murine treatment for PCM significantly, demonstrating that the formulation
of these compounds in nanostructured systems had benefits such as reduced dosage and
side effects as well as positive modulation of the immune response of animals in the fight
against fungal infection.

Table 1. Different strategies using nanotechnology for the treatment of experimental PCM.

Type of Nanostructures Encapsulated Compound Reference

PLGA + DMSA Amphotericin B Amaral et al. [191]
PLGA + DMSA P10 peptide Amaral et al. [187]

Liposome and PLGA DNA Hsp65 vaccine Ribeiro et al. [189]
Magnetic nanoparticles Amphotericin B Saldanha et al. [192]

PLGA scFv Jannuzzi et al. [190]
PLGA + DMSA Itraconazole Cunha-Azevedo et al. [193]

Chitosan P10 peptide Rodrigues et al. [188]
PLGA: copolymer of lactic-co-glycolic acids; DMSA: dimercapto-succinic acid.

Nanostructured drug delivery systems have been developed considering the prin-
ciples of nanotechnology, which deals with materials or tools on a small scale (10−9 m).
In this dimension, materials exhibit different physical and chemical properties, allowing
an efficient association with other materials, including antifungals [194,195]. For the con-
struction of these systems, a diversity of materials is used, chosen from the characteristics
required for the final formulation.

Because of the small size of these drug delivery systems, the molecules (drugs and
natural compounds) associated with these nano-formulations also perform differently,
reaching body regions that would not be possible or would be reached less efficiently if
administered in a conventional formulation. These nanostructured systems are appreciated
for being used to deliver molecules that can be easily degraded when administered in vivo,
such as peptides or unstable molecules [196]. In the case of polymeric nanoparticles, these
molecules can be surrounded by a polymeric matrix protecting them from the action of
enzymes present in the physiological environment, thus increasing their half-life [197]. In
addition, nanoparticles can be functionalized by binding, on their surface, those molecules
that exhibit tropism for specific organs or cells, resulting in a sophisticated and efficient
drug delivery system.

As far as we know, one of the first studies using nanotechnology for drug delivery
in experimental PCM was carried out by our group [191]. In this strategy, it was possible
to incorporate the antifungal amphotericin B in a polymeric formulation prepared using
the copolymer of lactic-co-glycolic acids (PLGA) and functionalized with dimercapto-
succinic acid (DMSA), which presents tropism to the lungs [198]. Amphotericin B was
chosen because it is a drug that, despite its excellent fungicidal activity, in the conventional
formulation of sodium deoxycholate causes unwanted and severe side effects, such as
nephrotoxicity and hepatotoxicity [199].

In this drug delivery system, it was possible to incorporate three times the daily dose
prescribed for the treatment of PCM using amphotericin B [191]. This strategy proved
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to be effective and it was possible to administer the treatment every three days since the
degradation of the PLGA was slow, releasing the drug for up to six days. Complementary
studies to evaluate the biodistribution of nanoparticles labeled with technetium-99 showed
that these nanoparticles were distributed to different organs, not only in the lungs, as
expected by the fact they were functionalized with DMSA [200]. These nanoparticles may
have slowly degraded in organs and the amphotericin B was released in the circulation,
exerting the antifungal activity.

The association of amphotericin B with magnetite nanoparticles pre-coated with a
double layer of lauric acid was also investigated [192]. This system proved to be an
alternative to the conventional formulation of sodium deoxycholate for this drug, since
in vivo treatment results were similar. An interesting point for this type of nanostructure
is its ability to reach extremely specific regions of the organism. In some situations, such
as granulomatous lesions, magnetic nanoparticles can be submitted to an alternating
magnetic field for better drug action at the site of infection [201]. This technology is still
under development and improvement, but it can bring benefits when generating heat,
since an alternating magnetic field influences these magnetic nanoparticles. However, the
toxic potential of this type of nanostructure must be considered, mainly concerning the
coating and functionalization of this type of nanoparticle [202], as they are prepared from
iron oxide and, considering the long duration of the antifungal treatment with multiple
doses, can cause accumulation and be harmful to the patient.

Polymeric nanoparticles functionalized with DMSA were also evaluated to encap-
sulate itraconazole [193]. The nanoencapsulation of fungistatic compounds, such as itra-
conazole, is an important therapeutic option because of the nature of these drugs, whose
mechanism of action works by inhibiting the growth of new cells, which could be con-
sidered a risk for the development of drug resistance [203,204]. The incorporation of
itraconazole in these nanoparticles promoted a more significant accumulation in the lungs,
liver and spleen, sites of Paracoccidioides spp. infection, which increases the efficiency of
this class of antifungals.

Some materials used in the preparation of nanoparticles slightly stimulate the immune
system. Once in contact with biological fluids, the nanoparticles may be captured by
macrophages [205,206]. In some cases, this is desirable, when working with vaccines or
immunomodulatory molecules. Some studies have explored the potential of nanoparticles
as an adjuvant in the treatment of PCM.

In one of these studies [190], the adjuvant capacity of PLGA was investigated for single-
chain variable fragments (scFv) of a recombinant antibody for gp43, the main antigen for
PCM [207]. When incorporated within PLGA, scFv presented an increase in its protective
capacity in animals challenged with P. brasiliensis. The results were also observed when the
P10 peptide, also a fragment of gp43, was incorporated into PLGA [187], in which a 20-fold
reduction in the amount of P10 needed to trigger the immune response was achieved. It
is important to highlight that when complexed within the polymer, other adjuvants such
as Freud’s were not needed, although these are necessary when using the free molecules.
This is auspicious, since there is no need to use adjuvants in a possible therapy using
this strategy.

Whereas both scFv and the P10 are very unstable molecules for application in a
physiological environment, as they can be easily degraded by peptidases, once incorporated
in these polymeric nanoparticles they are protected, while remaining in circulation for a
prolonged time [196]. On the other hand, nanoparticles may be phagocytized and thus
deliver the antigen directly to phagocytes, allowing efficiency in triggering the protective
immune response [205]. This type of nano-formulation can be administered by different
routes, such as intramuscular or intranasal. In a study comparing the immunomodulatory
potential of a DNA vaccine, DNAHsp65, for the treatment of PCM [189], liposomes and
PLGA nanoparticles were evaluated for delivery of DNA Hsp65. Both formulations were
shown to be effective in treating infection, although they received a dose four times lower.
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The systems proved to be efficient, but the group treated with liposomes received it
intranasally, making this vehicle more attractive for antifungal therapy in humans.

The intranasal administration route was also chosen to evaluate a nanostructured
formulation for the P10 peptide considering the mucosa present in the nasal route. Thus,
polymeric nanoparticles were prepared with chitosan [188], Chitosan is a natural cationic
polymer, biocompatible, biodegradable and mucoadhesive, which can interact electrostati-
cally with the anionic mucin present in the airway [197]. The results indicated a 20-fold
reduction in the amount of peptide needed to present an efficient protective immune
response in animals. Considering the potential of nanotechnology presented by studies
using nano-formulations for the treatment of PCM, it could be explored to develop an even
safer and more efficient therapy for the treatment of diverse fungal infection.

4. Challenges and Prospects

Despite the relevance of fungal infections, especially with the increase in life ex-
pectancy of individuals affected by chronic degenerative diseases and, consequently, more
people in conditions of immunosuppression, interest from the pharmaceutical industry is
still limited. This fact is due to several issues, such as the absence of notification of fungal
infections, the type of population affected and the endemic character of some mycoses, as is
the case of PCM. Additionally, PCM was recognized as a neglected disease by the scientific
community only a short time ago, not being included on the list of neglected diseases of
the World Health Organization. Therefore, the development of new therapeutic options for
fungal infections is a challenge for academia.

Historically, development of a new drug from laboratory research to its arrival on
the market takes around 10 to 15 years and requires a high investment (Food and Drug
Administration). The cost of a new drug is the sum of the values of the pre-clinical
and clinical phase, and the cost of developing new drugs has increased over the years.
Therefore, to place an antifungal drug in the big pharmaceuticals’ pipeline does not seem to
be something that attracts interest. In this context, rational drug design has been pointed out
as a cost-effective alternative to traditional approaches. The in silico methods have reduced
the costs and time associated with the initial stages of drug development. These advances,
which catalyze the drug design process, were only possible with the rapid development
of computer hardware, software and algorithms. These tools allowed researchers to
think about the possibility of making viable new therapeutic options for fungal diseases,
among them paracoccidioidomycosis, the object of study of many researchers in Brazilian
medical mycology.

This process was only possible with advances in basic research into this fungus. The
contribution of researchers working with Paracoccidioides to progress in medical mycology
is undeniable, as much data was generated in the areas of genomics, proteomics, in silico
methodologies, nanotechnology, diagnostic tools and even vaccine development. Com-
parative genomics, as well as proteomics, enables studies and description of new drug
targets that have been rapidly explored in the search for new therapeutic options. These
approaches have contributed to a crucial point, which is the activity profile of molecules.
Several authors have discussed the importance of antifungal activity as a fungicide. How-
ever, combining fungicidal activity and low side effects or toxicity is still a challenge when
working with fungi, eukaryotic microorganisms that share very similar biological systems
as hosts.

In fact, several publications and patents have described promising compounds and
molecules for PCM treatment, some of which have already passed important stages, such
as the initial pre-clinical trials. However, some bottlenecks must be overcome in order
for these promising molecules to work more effectively and reach the next level, the
much-dreamed-of clinical trials. First is the need for large quantities of these molecules,
purchased or synthesized, to move forward in the next stages. Second is the need to
develop pharmaceutical formulations that provide an adequate administration route and
sufficient bioavailability. In addition, pharmacokinetic and pharmacodynamic studies,
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either through computer simulations or laboratory analysis, are essential. Finally, the costs
need to be lower, so that all these obstacles can be effectively overcome.

To this end, researchers working specifically on paracoccidioidomycosis disease con-
tinue to search for new therapeutic options. Researchers continue to try to overcome the
obstacles so that some of the studied molecules may be in the final stage of development in
the near future and contribute to the patient’s well-being, which is the end of the chain.
Research is focused on the individual, who needs appropriate treatment, capable of con-
trolling the infection and the after-effects of PCM, with few or no side effects, in a fast and
effective manner. A new therapeutic option against Paracoccidioides opens new perspectives
for the treatment of other mycoses.
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