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Many biomolecular systems depend on orderly sequences of chemical transformations or
reactions. Yet, the dynamics of single molecules or small-copy-number molecular systems are
significantly stochastic. Here, we propose state sequence analysis—a new approach for predict-
ing or visualizing the behaviour of stochastic molecular systems by computing maximum
probability state sequences, based on initial conditions or boundary conditions. We demonstrate
this approach by analysing the acquisition of drug-resistance mutations in the human immuno-
deficiency virus genome, which depends on rare events occurring on the time scale of years,
and the stochastic opening and closing behaviour of a single sodium ion channel, which
occurs on the time scale of milliseconds. In both cases, we find that our approach yields novel
insights into the stochastic dynamical behaviour of these systems, including insights that are
not correctly reproduced in standard time-discretization approaches to trajectory analysis.
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1. INTRODUCTION

Stochasticity is a well-documented phenomenon in bio-
molecular systems. Advances in microscopy techniques
and elegant experiments have revealed inherent stochasti-
city in the expression of genes and the localization of their
products [1-3]. Indeed, there has been an explosion of
work on stochasticity in gene expression over the past
decade [4—7]. The signalling pathways that allow cells
to sense and react to their environments are also subject
to molecular stochasticity. For example, the well-known
‘run and tumble’ behaviour of Escherichia coliin response
to chemical gradients [8,9] is influenced not only by the
external gradient but also by stochastic molecular noise
in ligand binding to receptors and in the internal protein
interactions that convey the signal to the flagellar motor
[10,11]. At an entirely different time scale, we observe
stochastic mutations to the DNA, either within an indi-
vidual or at the species level. Such mutations enable
evolution, and thus phylogenetic modelling and inference
are often based on probabilistic formalisms [12,13]. In
neuroscience, apparently stochastic behaviour is observed
at many levels of organization, including the stochastic
opening and closing behaviour of single ion channels,
which became clear with the advent of single-channel
patch clamp current recordings [14,15].
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Many stochastic molecular systems are modelled for-
mally using continuous-time Markov chains [16]. Such a
chain can exist in a discrete set of possible states. A
state may represent a particular conformation of a
protein molecule, the set of proteins bound in a com-
plex, the binding state of a gene’s promoter, the
number of mRNAs or proteins expressed from a certain
gene in a particular cell, the mutational state of a single
nucleotide in the genome or even the sequence of the
entire genome itself. A continuous-time Markov chain
transitions randomly through a sequence of different
states at random moments in time. At any time, the
current state of the system probabilistically influences
both how long the system will ‘wait’ before transition-
ing to a new state, and to which state the system will
transition next. Using the continuous-time Markov
chain formalism, it is possible to model things such as
the relative stability or instability of different molecular
states, energetic barriers to different transformations,
concentration-dependence of certain reactions and so
on. Stochastic chemical kinetic models [17], which are
popular in the stochastic gene expression literature,
implicitly define continuous-time Markov chains. Typi-
cal formulations of stochastic Petri nets do the same
[18]. So, either directly or indirectly, the formalism
of continuous-time Markov chains underlies much
modelling and analysis of stochastic chemical systems.

If we have a continuous-time Markov chain model of
a real-world system, then we can use the model to make
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predictions about the system. For instance, we might
take the steady-state probabilities of the chain as predic-
tions of what we would likely see if we were to observe
the state of the real system at some arbitrary time. Alter-
natively, if we knew the state of the real system at some
time, then we could use the model to compute the prob-
abilities of different possible states at future times.
However, a deeper understanding of the system can be
gleaned by analysing its pathwise behaviour. For
instance, protein folding and protein complex assembly
are inherently sequential processes in which each stage
sets up the possibilities for the next stage. Similarly,
gene regulation can depend not just on the factors
present, but also on the order in which they bind.
Phenomena such as cooperative binding, DNA-looping
and histone modifications make the achievement of a
given regulatory state an inherently sequential process.

Traditionally, there are two main approaches to study-
ing the pathwise behaviour of a continuous-time Markov
chain, each with its strengths and weaknesses. One
approach is to discretize time and to use discrete-time
path analysis methods [19]. For instance, once time has
been discretized, it is easy to compute the most probable
path the system will follow, using dynamic programming.
However, there is some arbitrariness in choosing the time
step for the discretization, and this choice can influence
both one’s results and the complexity of the compu-
tations. The behaviour in the limit of infinitesimal time
step size can be computed efficiently, mollifying these
problems [20]. However, as we have argued before [20],
and as we explain again in the next section, approaches
based on time discretization, even in the infinitesimal
limit, often produce implausible or non-representative
system paths with poor biological relevance.

The other main approach for studying paths of
continuous-time Markov chains is to use stochastic
simulation algorithms [17,21,22]. By simulating a large
number of random trajectories, one can visualize sys-
tem paths and estimate various aspects of pathwise
behaviour. Moreover, simulation is computationally
straightforward and readily parallelized. However,
methods based on random simulations are inherently
approximate; they do not produce exact answers. The
most straightforward simulation methods also deal
poorly with low-probability events or situations in
which we have boundary conditions to satisfy. For
instance, suppose we observe the state of a system at
two different times, and we are interested in paths
between those two states. We can simulate paths from
the initial state, but many or even all of them may not
reach the proper final state, so that none of them helps
us to understand what the real system might have done
between our two observations.

We propose a new approach to studying the pathwise
behaviour of continuous-time Markov chains that we dub
state sequence analysis. Our key innovation is to focus on
which sequences of states are likely to occur, and not to
concern ourselves with the exact timing with which
those states are visited. For instance, if we knew that
a protein molecule folded in a certain amount of time,
we could ask what folding path it likely took, without
worrying about the exact times that it entered each inter-
mediate state. Often, the exact timing of events is not
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nearly as important as which events occur, hence our
focus on the state sequence. It turns out that focusing
on the state sequence also avoids some of the difficulties
involved in simulation-based and time-discretization
approaches mentioned in the previous paragraphs.
Those methods, it must be pointed out, do not focus on
the state sequence alone. For instance, when we simulate
a random trajectory, we generate not just a sequence of
states, but also the exact amounts of time spent in each
state. Similarly, if we discretize time and compute a maxi-
mum-likelihood path, that path specifies the state of the
system at every time step—again, both a sequence of
states and the exact amounts of time spent in each one.
In our approach, a state sequence implicitly represents
a whole family of such system trajectories, but ones
that differ only in how much time they spend in each
state. In §2.1, we define more carefully what the prob-
ability of a state sequence means and how to find the
most probable state sequence, given initial and/or final
states. In §2.2, we contrast our approach with the more
traditional approaches mentioned earlier. We then
demonstrate the value of state sequence analysis as an
investigative tool by analysing the evolution of drug
resistance in human immunodeficiency virus (HIV)
(§2.3) and stochastic ion channel dynamics (§2.4). In
both domains, we find that state sequence analysis pro-
vides novel insights into the dynamics of these systems,
which are not captured by previous analysis approaches.
Software implementing our approach in both Matlab and
R, and scripts that analyse all examples in the paper, can
be found at www.perkinslab.ca.

2. RESULTS

2.1. State sequence analysis for continuous-time
Markov chains

A continuous-time Markov chain is a discrete-state con-
tinuous-time stochastic dynamical system [16]. We
restrict attention to finite-state chains. Thus, at every
real-valued time ¢ > 0, the chain is in some state X(t)
from a finite set of possible states X. The dynamics of
the chain work as follows. Suppose at time ¢ the
system is in state X. A dwell time parameter Ax controls
how long the system will stay in that state. If Ay =0,
then X is called a terminal or absorbing state. The
system never leaves such a state. If Ax > 0, then X is
non-terminal or non-absorbing. The system will stay
in state X for a random amount of time that is exponen-
tially distributed with parameter Ay (thus, mean time
1/Ax), and then transition to a new state X’ with prob-
ability Tyx. A state can never transition to itself; so
Txx =0 for all X € X. Together, the dwell time
parameters A and transition probabilities T fully
define the dynamics of the chain.

A trajectory of a continuous-time Markov chain is
a random realization of its dynamics, either for all
time t > 0 or over some interval of time. Figure 1b
shows 10 random trajectories generated from the
chain specified in figure la, all starting from state
1. For instance, the first trajectory (the top-most)
shows the system residing in state 1 for a little less
than 1s, briefly visiting state 3, returning to state 1
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Figure 1. Alternative approaches to analysing probable pathwise behaviours of continuous-time Markov chains. (a) An example
chain with three states. Dwell time parameters and transition probabilities are shown. (b) Ten randomly sampled trajectories of
the system, starting from state 1, for a period of 6 s. Each trajectory comprises a specific sequence of states and dwell times.
(¢) The probabilities that the system transits different sequences of states as a function of time, after averaging over the possible
transition times. The coloured bar at the top indicates the single most probable state sequence as a function of time, obtained
using state sequence analysis. (d) A discrete-time Markov chain approximating the continuous-time chain. (e) Maximum prob-
ability trajectories for the time-discretized chain, obtained using standard dynamic programming techniques. Results differ from
(c) because (e) represents single trajectories, whereas the sequences analysed in (c¢) represent integration over all possible trajec-
tories having the same state sequence. (f) Stochastic simulation can be used to estimate state sequence probabilities, but there
are uncertainties in the estimates, which sometimes results in incorrect identification of the maximally probable sequence.

for about 3 s, briefly visiting state 2, and then transi-
tioning to state 3, where it stays until the end of the
simulation at ¢t = 6 s. It so happens that the last trajec-
tory in figure 1b (the bottom-most) visits the exact
same sequence of states, (1,3,1,2,3), although it
visits each for a different amount of time. Other
random trajectories visit states in different orders.
Intuitively, different sequences of states occur with
different probabilities. The trajectories shown in
figure 10 suggest another important point—that the
probability of the chain visiting a sequence of states
depends on the duration of the trajectory. For instance,
if we imagine cutting off the trajectories at t=0.5s,
about half of them will not have even left the initial
state. However, by time t=6s, all trajectories have
left state 1 at least once. The fundamental idea of
state sequence analysis is that, over a given period of
time, different state sequences will occur with different
probabilities, and that the most probable sequence pro-
vides an important and useful characterization of the
dynamics of the system.

Consider an arbitrary state sequence S= (X,, X,
..., Xy). Let us assume that the chain starts in state
Xy at time zero. What is the probability that the
chain traverses precisely the sequence of states .S, and
no additional states, in time ¢? In other words, if the
system randomly follows one of its infinitely many
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possible trajectories, what is the chance that the trajec-
tory transits the sequence of states S during the first ¢
amount of time? This event requires three things to
happen: (i) each time the system transitions to a new
state, the next state must be the one specified by the
sequence S, (ii) the system must arrive to the final
state Xy before time ¢, and (iii) the system must not
leave state X until some time after t. If we let 7, ...,
Ty be the random amounts of time the system spends
in states Xy,..., Xu, then the time-dependent prob-
ability of seeing the state sequence S can be written as

N-1 N—-1 N
Py(S) = (H TXZXM>P<Z 7, <t and Zn>t>.
=0 =

=0 =0

The first term accounts for condition (i) and the second
term accounts for conditions (ii) and (iii). Figure 1c
shows these time-dependent probabilities for several
possible state sequences, based on the chain in
figure 1a. For example, the dark blue curve shows that
the probability of the trivial state sequence S= (1)
decreases exponentially. Indeed, it is equal to precisely
e~!, which is just the probability of the system remain-
ing in the initial state Xy =1 until at least time ¢. The
orange curve shows the probability of the state sequence
S'=(1,3), meaning that the system transitions to state 3
sometime before time ¢, and remains in state 3 until at
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least time t. This probability is zero at ¢ = 0's, peaks at
around ¢= 1.65s, and then slowly declines. (The exact
probability is 3e7/3 — 2e~".) For all the state sequences
shown except S= (1), the probabilities start at zero,
increase up to some time and then fall again towards
zero. The exact shapes of these curves depend on the
dwell time parameters of the states in the sequence
and the transition probabilities between them. Intuiti-
vely, their unimodal shape represents a trade-off
between the two time-dependent conditions, (i) and
(iii). With increasing time, it is more likely that the
system has time to visit all the states in the sequence
(thus, Zf\;l 7; < t); however, it is decreasingly likely
that the system will not have gone on to visit other
states as well (invalidating Zf\io 7; > t). These opposing
influences on the state sequence probability result in the
unimodal shape of the curve as a function of time.

In 8§4.1, we explain in detail how curves such as those
in figure 1c¢ can be computed. Briefly, for the one-state
sequence S= (Xp), assuming the chain starts in state
Xy, the probability is simply P;(S) =e*%’. For a
longer state sequence S = (Xp, X1, ..., Xy), and letting

S = (Xo,X1,...,Xy-1) be the one-step-shorter
sequence, the probability obeys the differential equation
d ’
&Pt(s) = )‘XNA TXN—IXNPt(S) - )‘XNPt(S)' (21)

Intuitively, the probability of the state sequence S
increases to the extent that the shorter sequence, S,
is probable and a transition from Xy 1 to Xy is likely.
The probability of S decreases to the extent that a tran-
sition out of Xy is likely. The curve for P;(.S) can thus
be computed by recursively solving a system of N linear
differential equations, which can be done by various
analytical or numerical means.

The core idea of state sequence analysis is to com-
pute the most probable state sequence that a
continuous-time Markov chain follows, given an initial
state X, and allowing for total time ¢,.,. Because
there can be infinitely many possible state sequences,
it is impossible to simply evaluate the probability of
each one. Therefore, the search for a maximum prob-
ability state sequence must be somehow limited. Our
approach is described fully in §4.2, but we highlight
the key ideas here.

Suppose that S and S’ are two state sequences with
the same starting and ending states, Xy and X..
Further, suppose that P, (S)> Pi(S") for all
t € (0, tmax]- In other words, for the time period of
interest, S is a strictly more probable way for the
chain to go from X; to X, than S’ is. In this case, we
say that S dominates S’. When this happens, neither
S’ nor any single- or multiple-state extension of S can
be part of a maximum probability state sequence,
and so can be ignored. (See proofs in §§4.2 and 4.3.)
Thus, we propose to find maximum probability state
sequences by starting to enumerate all sequences from
shorter to longer. However, any time we find a sequence
that is dominated by one we have already enumerated,
or that dominates any one we have already enumerated,
the dominated sequence and any extension of it are dis-
carded. The state sequences whose probability curves
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are shown in figure 1c are precisely those that remain
after the enumeration—all other possible sequences
are dominated by at least one of these, and are dis-
carded. We prove in §§4.2—4.4 that this approach
finds all maximum probability state sequences over
the time interval ¢ € [0,#,.]. For example, in
figure 1c, one can easily read off the most probable
state sequence for any point in time based on the non-
dominated probability curves. Up until about 1.27s,
it is the trivial state sequence (1). From 1.27 to 3.66 s,
it is the sequence (1,3), and from 3.66 s until the final
time of 6s, it is the sequence (1,2,3).

Several generalizations of the core state sequence
analysis problem are natural. For instance, we may
want to restrict attention to a specified final state at
time ¢pay. We may want to impose initial and/or final
probability distributions over the possible states. We
may even be interested in the K most probable
sequences, instead of the single most probable sequence.
These can all be solved as straightforward extensions of
our core algorithm, as we describe in §4.2.

2.2. State sequence analysis differs from
traditional approaches based on time
discretization or stochastic simulation

As mentioned in §1, a more traditional approach to path
analysis for continuous-time Markov chains is to discre-
tize time and to use dynamic programming procedures
to compute maximum probability paths. Let us illustrate
this approach, and how it differs from state sequence
analysis, for the chain depicted in figure 1a. Suppose we
discretize time to a resolution of At=0.1s. Then, the
continuous-time chain of figure 1a is well approximated
by the discrete-time Markov chain shown in figure 1d.
This chain has the same set of possible states as the con-
tinuous-time chain, and it has transition probabilities
between states, but no waiting time parameters. How-
ever, it is allowed for a state to ‘transition’ to itself, and
this reflects the tendency of the continuous-time chain
to remain in the same state. For example, letting T’
denote the transition probabilities of the discrete-
time chain, T'y; = 0.9048 = exp(—A;A¢), which is the
probability that the continuous-time chain does not
leave state 1 during At time. Transitions to a different
state also reflect the probability of the continuous-
time chain making that transition. For example,
T,12 = 0.0476 = T12(1 — exp(—)qAIf)), which is the
probability that the continuous-time chain would leave
state 1 in A¢ time, and would transition next to state 2.*

A trajectory of a discrete-time Markov chain is a
random sequence of states generated according to the
transition probabilities 7”. Assuming the chain starts
in a given state X, the probability of an N-step trajec-
tOI’y S = (.X()7 Xh ey XN) iSjUSt P(S) = Hfi?)l T/Xqul'
For discrete-time chains, maximum likelihood trajec-
tory inference is well understood. Given the initial

'We note that there are alternative ways of constructing a discrete-
time chain to approximate a continuous-time chain. The method
suggested here, and described more generally in §4.7, is perhaps the
simplest and has the advantage of not altering the structure of
possible transitions between states—an important consideration if
one’s intention is to analyse possible system paths.
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state, Xy, a simple dynamic program can compute the
single most probable trajectory to any future state X
at any future time ¢ > 0. We computed the most prob-
able trajectories of the discrete-time chain from an
initial state of Xy =1, allowing for up to 60 transitions,
or 6 s. The results are shown in figure 1e. Up until 4.6 s,
the most probable trajectory is that the system stays in
state 1. The probability of this trajectory, as a function
of the number of time steps n, is 0.9048", an exponential
decay very similar to the curve seen in figure lc. For
times ¢ > 4.6 s, however, the single most probable tra-
jectory of the discrete-time chain is (1,3,3,...,3).
That is, the chain transitions to state 3 immediately
after time step 1, and then keeps following the self-
loop on state 3, thus staying there for the rest of the
time available. The probability of this trajectory, for
number of steps n > 1, is 0.0476 x 0.9672"!. For suffi-
ciently large n, this is more probable than the trajectory
of staying in state 1. Note, however, that while the non-
repeating sequence of states visited by this second
trajectory is (1,3), it does not represent all possible tra-
jectories demonstrating the same state sequence. In
particular, the probability calculated by the dynamic
program (and the Viterbi algorithm would do the
same) does not include the trajectory (1,1,3,3,...,3)
or (1,1,1,3,3,...,3) and so on. In this sense, the
state sequence analysis we propose for continuous-time
chains is crucially different from what one obtains from
trajectory analysis of a corresponding discrete-time
chain. In state sequence analysis, all trajectories that
visit the same sequence of states are lumped together,
whereas algorithms such as Viterbi count them all separ-
ately. In applications to the evolution of drug resistance
to HIV (§2.3) and ion channel dynamics (§2.4), we
show that this distinction is crucial to obtaining biologi-
cally meaningful results.

Another possible approach to path analysis of continu-
ous-time Markov chains is to retain the continuous-time
dynamics, and to accumulate statistics based on stochas-
tic simulations [21,22]. For the problem of identifying the
most probable state sequence, one could simulate a large
number of random trajectories for #,,y time, and simply
check which state sequence occurs most often [23]. We
tested this approach on the chain in figure 1a, simulating
1000 random trajectories from initial state X, =1 for
tmax = 6 s total time. Then, for each of a discrete set of
times t € {0,0.006,0.0012,...,6} s, we determined:
which state sequences had occurred up to time ¢t among
the 1000 trajectories, the empirical probabilities of
these state sequences and the single state sequence with
the largest empirical probability. We repeated this
entire procedure 10 times, to assess variability in the
results, which are shown in figure 1f. We found that
across the 10 independent replicates of the experiment,
four state sequences were estimated to be most probable
at different times: (1), (1, 2), (1,2, 3) and (1, 3). As shown
in figure 1¢, the sequence (1, 2) isnot, in truth, maximally
probable at any time. Although comparison of figure 1¢,f
shows that the approximated probability curves are

2Although well known, this dynamic program has no name; see [19] or
§4.7 for details. The algorithm can also be viewed as a special case of
the Viterbi algorithm, with non-informative observations during
the trajectory.
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similar to the exact curves, variability in the simu-
lation-based estimates is large enough in some cases
to result in an incorrect assessment of which state
sequence is most probable. There is also considera-
ble uncertainty in the times at which different state
sequences are most probable. Naturally, sampling more
random trajectories would result in more accurate results.
We arrived at using 1000 trajectories after finding
that 100 trajectories resulted in very noisy probability
estimates (data not shown). Although stochastic simu-
lation has the benefit of algorithmic simplicity, its
downsides include uncertainty in its results and, as we
show in our ion channel analysis, a difficulty in handling
boundary value problems.

2.3. Acquisition of Efavirenz resistance in HIV

One of the challenges in treating HIV is the develop-
ment of drug resistance. Recent years have seen the
spread of drug-resistant strains among the population
[24,25], making treatment more difficult. Even within
a single patient, however, the virus frequently mutates
and may acquire resistance to the patient’s therapy.
Mutations in the HIV genome that confer resistance
to different therapies have been identified [26-29],
and a number of studies have looked at predicting
levels of resistance based on the mutational profile of
particular strains [30—33].

Comparatively few studies have looked at the
dynamics of acquisition of these mutations, including
questions such as: Which mutations tend to occur
first? Do some mutations facilitate other mutations?
Which sequences of mutations are most likely to
occur? We demonstrate the use of state sequence analy-
sis in answering such questions, basing our analysis on a
dataset previously assembled to address this issue [34].
The data comprise genotypes of the HIV strains in
122 patients on Efavirenz combination therapy for
which HIV genotyping was performed at multiple
time points. Efavirenz is a potent non-nucleoside
reverse transcriptase inhibitor, and a common com-
ponent of the anti-retroviral drug cocktails used to
treat HIV [35]. Yet, acquisition of resistance to Efavir-
enz is a well-documented problem [36,37]. In the
initial analysis of the Bacheler et al. data [34], the
authors confirmed the presence of a number of pre-
viously known resistance-associated mutations. They
found that one mutation in particular, K103N, occurred
especially frequently. (K103N means that amino acid
103 of the reverse transcriptase gene, normally K, is
replaced by N.) Other mutations, such as V108I and
P225H, tended to occur later on, and never or almost
never without the K103N mutation. In general, patients
tended to accumulate more resistance-associated
mutation as time went on. However, the detailed
dynamics of this process were not studied. Foulkes &
De Gruttola [38] used the same data to develop a con-
tinuous-time Markov chain model of mutation
dynamics. They used a clustering approach to define
different mutational ‘states’, reiterating the obser-
vations that some mutations were correlated and that
patients generally acquired more mutations over
time—though they also found that reversion to a state
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Figure 2. Analysis of within-patient mutational dynamics of HIV subject to Efavirenz combination therapy. (a) State transition
diagram of the model, estimated based on time-series HIV genotype observations [34]. States are labelled with mutations they
include. Details of the estimation method and all fitted model parameters can be found in §4.5. States participating in maximum
probability state sequences are highlighted in yellow. (b) Probabilities of the most probable state sequences, starting from wild-
type, as a function of time during the first 10 years of therapy. Coloured bars along the bottom show the time intervals during
which different state sequences (indicated by colour) are maximally probable, according to state sequence analysis, stochastic
simulation and time-discretized dynamic programming. (¢) Depiction of the 100 most probable state sequences at different
times. Each row corresponds to a different path, with the sequence of coloured rectangles depicting different states according
to the legend at the right. The most probable path is on the top row, and the 100th most probable path is on the bottom row.

with fewer resistance-associated mutations was possible.
Beerenwinkel & Drton [39] analysed specific sequences
of acquisition of resistance-mutations using mutagenic
tree models. Mutagenic trees model the most probable
mutations to occur next, given the sequence of mutations
that have already occurred. Thus, there is an explicit
assumption that mutations can only accumulate, and
never revert. They also associated mutation rates to
each tree branch, implicitly defining a continuous-time
Markov chain. Their focus on mutational pathways is
very similar to what we present below except that, follow-
ing Foulkes & De Gruttola, we will not assume that
mutations are irreversible. Buendia et al. [40] also
modelled mutational dynamics as a continuous-time
Markov chain, with the twist that phylogenetic analysis
was used to estimate relationships between different
viral copies within each patient, which in turn has some
effect on estimated transition probabilities and rates of
the chain.

To perform state sequence analysis of the dynamics
of Efavirenz-resistance mutations, we first had to
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estimate a continuous-time Markov chain model of the
process. We focused on reverse transcriptase mutations
highlighted in previous analyses of the Bacheler et al.
data [36,40] or currently identified as ‘key mutations’
on the Stanford HIV Drug Resistance Database [41]:
L100I, K101Q, KI101E, KI103N, V106M, Y188L,
Y188H, G190S, G190E, G190A and P225H. Including
the wild-type values, this allows for 4 x 3% x 2' = 576
different possible mutational states. However, only
19 of these occurred in the dataset. These states, and
the observed transitions among them, are shown in
figure 2a. We computed maximum-likelihood estimates
of dwell time parameters and transition probabilities
following Foulkes & De Gruttola [38,42]. The exact
method and resulting parameters can be found in §4.5.

On the basis of the model, we computed the most
probable mutation sequences, starting from wild-type,
over a 10 year period. This yields a map of the single
most probable progressions that a patient similar to
those in the study could be expected to experience
(figure 2b). Unsurprisingly, over a small time period, a
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patient’s HIV is not expected to acquire any muta-
tions. However, after approximately six months, it
becomes more probable that the patient’s HIV will
have acquired mutation K103N. In an array of studies,
this is the single most common mutation found in
HIV strains with Efavirenz resistance, conferring an
approximately 25-fold reduction in efficacy [29,43,44].
Just short of two years, the most probable path in
our model adds the mutation P225H, an ‘accessory’
mutation that further reduces susceptibility to Efavir-
enz [44]. From roughly four years on, an alternative
path is most probable—the K103N mutation followed
by V108I, which is another exacerbating accessory
mutation. Both accessory mutations can subsequently
be lost and regained, although such paths are never
more probable than other, simpler mutation sequences.
From approximately 5.5 years onwards, the single
most probable path is to acquire the single mutation
Y 188L—which confers very strong resistance to Efavir-
enz [41]. In the dataset, no patient acquiring this
mutation ever lost it or acquired other mutations,
making the corresponding state in our model an
absorbing one.

At the bottom of figure 2b, we compare the results
of state sequence analysis with maximum-probability
path estimation by stochastic simulation and by dis-
crete-time dynamic programming. For the stochastic
simulations, we performed 10 independent sets of 1000
simulated trajectories. In nine out of 10 runs, the
correct, maximum-probability paths were identified,
although there was considerable uncertainty regarding
the times at which they are maximally probable. One
run incorrectly identified the sequence WT — K103N
— K103N + P225H — K103N — K103N + P225H as
maximally probable at around ¢= 6 years. These diffi-
culties with the stochastic simulation approach are
analogous to what we saw in the example of §2.2.
Also in analogy to that example, the standard time-
discretization approach yields much less informative
and less realistic solutions. For instance, if we discretize
time to a step-size of one day and compute maximum
probability trajectories (see [19] or §4.7), we find that
up until roughly 3.7 years, the most probable trajectory
is that the patient remains with wild-type HIV. The
reason for this is essentially that the self-loop prob-
ability on the wild-type state is very high (near one),
and so it is very difficult for a trajectory to leave the
wild-type state. For times ¢ larger than 3.7 years,
the most probable trajectory is that the patient had
developed the Y188L mutation immediately after the
start of treatment (on day one) and remained with
that mutation until observed at time ¢. Although the
transition from wild-type to Y188L is a low-probability
event, Y188L is an absorbing state. Its self-loop prob-
ability is precisely one, and so for sufficiently large
times t, the probability of this trajectory is higher
than the self-looping trajectory that stays in the
wild-type state. Neither trajectory produced by the time-
discretized analysis shows any role for the many other
mutations that may occur during this time. In com-
parison, state sequence analysis reveals aspects of
the pathwise behaviour far more consistent with the
known mutational dynamics.
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From years 2 or 3 onwards, the maximally probable
mutation sequences shown in figure 2b account for a
small fraction of the total probability mass. As with
all maximum-likelihood approaches, one must consider
carefully how representative that maximum is. Looking
at the 100 most probable sequences reveals other poss-
ible behaviours (figure 2¢). Many paths are seen to
obtain the K103N mutation (dark blue) and then
repeatedly add and lose various accessory mutations
(lighter shades of blue). These accessory mutations
never occur alone; they are always preceded by the
K103N mutation—as one can also see directly from
the diagram of possible state transitions in figure 2a.
Sometimes the HIV even returns to the wild-type
state, after having acquired drug-resistance mutations.
Observations such as these can be important for recon-
structing transmission events between individuals; the
fact that an individual does not have a mutated strain
now does not mean the individual’s strain was free of
that mutation at an earlier time. The figure also
shows that the G190 family of mutations is frequent
among the 100 most probable paths, although decreas-
ingly so as time goes on. Paths leading to the Y188L
and G190E mutations tend to climb higher in the
ranks over time. Because these are absorbing states,
the probabilities of paths leading to them asymptote
to non-zero values at large times ¢ By contrast, any
path leading to a non-terminal state will become
increasingly improbable with increasing time, and will
be ‘replaced’ with a higher probability, longer path.
Indeed, the figure shows the general trend towards
these two types of paths as time goes on—paths
ending at terminal states, and increasingly long
paths jumping among non-terminal states.

2.4. Ion channel dynamics

Systems operating over much smaller time scales than
mutations to the HIV genome may also be investigated
using state sequence analysis. Ion channels are proteins
regulating the displacement of ions through cellular
membranes. They constitute the biophysical basis of
cellular excitability that generates action potentials in
neurons and contractions in the heart [45—48]. Current
recordings from single ion channels demonstrate
that they open and close in an essentially stochastic
fashion, driven by thermal fluctuations [49—52]. How-
ever, the statistics of the durations of open and closed
intervals indicate that most channels possess multiple
closed states—multiple configurations of the protein
that do not allow ions to pass. For example, the seminal
modelling work of Vandenberg & Bezanilla [53] showed
that the dynamics of sodium channels in squid giant
axons may be described by the five-state model shown in
figure 3a. It has one open state and four closed states,
one of which, the inactive or [ state, has an especially
long latency. Moreover, Vandenberg & Bezanilla esti-
mated voltage-dependent transition rates between those
states—equivalently, voltage-dependent dwell time
parameters for each state and transition probabilities
between states.

Although a patch clamp recording reveals whether a
channel is open or closed at any time, it does not tell us
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Figure 3. Analysis of the dynamics of a single neural sodium channel. (a) Diagram of the model proposed in Vandenberg &
Bezanilla [53], describing the gating dynamics of a single sodium channel in the squid giant axon. Transition rates a, b, ¢, d,
f, g, i and j depend on the voltage of the clamp, as detailed in Vandenberg & Bezanilla [53] (see also §4.6). (b) Illustration of
the relationship between current recordings of a single ion channel maintained at constant voltage via patch clamp (top),
and an associated state trajectory simulated from the model in (a). Green and red coloured bars indicate open and closed
periods, respectively. (¢) Maximum probability sequences of closed states depending on the patch clamp voltage and the
duration that the channel remains closed, obtained via state sequence analysis. Colour key to state sequences is below the
panel. (d) Maximum probability sequences of closed states obtained by a time-discretization and dynamic programming.

Colour key is below the panel.

precisely which closed state the channel is in when it is
not passing current (figure 3b). Thus, although the
overall open/closed state of the channel is experimen-
tally accessible, the exact state of the channel is not.
However, the duration of a closed interval has some
bearing on the likely state or states of the channel.
Focusing on the Vandenberg & Bezanilla model, we
applied state sequence analysis to compute the most
probable sequences of closed states underlying closed
intervals of duration ¢ between 0 and 5ms, for clamp
voltages ranging from —100 to O0mV. We expected
that longer closed intervals would be associated with
the inactive state I, whereas shorter closed intervals
would be associated with the more transient C;, C
and Cj states. In part, this is true, but the answer is
highly dependent on voltage, as shown in figure 3c.
For moderately negative voltages, short sojourns
among the closed states are most probably the result
of a visit to C3 and possibly C,, whereas longer closed
periods are most probably the result of a stochastic
switch to the inactive state. Contrary to our expec-
tations, however, for highly negative clamp voltages,
the most probable explanations for closed periods of
the same length involve oscillations between the Cj
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and C, states, sandwiched between Cs;. Thus, for
example, if we see the channel stay closed for 5 ms, at
0mV, this probably results from the inactive state,
whereas at —100 mV it does not. Overall, the diagram
shows that the behaviour of the ion channel, even while
remaining among the closed states, is highly dynamic,
and our estimate of its most probable behaviour
depends strongly on both the polarization of the
membrane and the duration of time for which it is
observed to be closed.

Analysing state sequences by stochastic simulation is
awkward for the ion channel model. If we performed
stochastic simulations, every trajectory would spend a
different amount of time among the closed states. More-
over, if we were interested in a specific amount of closed
time, tyax, the probability of generating even a single
trajectory that stays closed for exactly ty.x time is
zero. Thus, the naive approach described -earlier
would be useless. The approach could be altered in
several ways to account for the final-time constraint of
re-entering state O at time ;... One possibility is
that a trajectory reweighting scheme might also be
developed [54—57]. We leave the investigation of such
alternatives for future work.
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The discrete-time dynamic programming approach
applies readily. As in the HIV example, however, this
approach does mnot produce meaningful results.
Figure 3d shows the most probable paths as computed
by a time-discretization approach with a time step of
At = 0.5 s, which results in 10000 time steps over
the 5ms total time interval. The map shows that
short sojourns among the closed states are explained
by a single visit to closed state C3;. Longer sojourns
are explained by a single visit to the inactive state I.
Under no conditions does the maximum probability
sequence exhibit transitions between different closed
states. This is inconsistent with our understanding
of these ion channels, and again emphasizes the impor-
tance and suitability of state sequence analysis for
analysing the probable dynamics of continuous-time
Markov chains.

3. DISCUSSION

In this article, we proposed state sequence analysis, an
approach to investigating stochastic continuous-time
discrete-state systems by computing maximum prob-
ability state sequences. The probability that the
system follows a particular state sequence depends on
the transition probabilities between the states, but
also on time. Longer state sequences generally require
more time to occur, though the dwell time parameters
of the states determine the precise dependence. Maxi-
mum probability state sequences can be computed
efficiently, and may constitute predictions for the
future of a stochastic system, estimations of its past be-
haviour based on limited observations or a means to
visualize dynamics in a simpler form.

We demonstrated our approach on two example
domains: predicting the acquisition of drug-resistance
mutations in HIV patients and estimating the hidden
behaviour of ion channels. In the HIV domain, we
found that several different mutation sequences were
maximally probable, depending on how long the patient
has been on Efavirenz combination therapy. When
Efavirenz therapy fails in HIV patients, doctors
change them to alternative therapies. Knowing the
probable cause of that failure, in terms of mutations
that may have accumulated in the patient’s virus,
may be useful information for choosing which alterna-
tive therapy to try next. Conversely, knowing the
time scales at which different drug-resistance mutations
are likely to develop may be useful information when
scheduling a patient for periodic follow-up. In analysing
the 100 most probable state sequences, we found that
repeated gain and loss of mutations, particularly the
accessory or ‘secondary’ mutations, is a common
phenomenon. We must mention the caveat that the
dataset on which we based our study is approximately
10 years old. While Efavirenz remains a standard
first-line therapy, changes in drugs that are used in
combination with Efavirenz suppress the virus more
strongly. This may have altered the selective pressure
on the virus, and thus the dynamics with which
mutations are accumulated. Additionally, opinion
changes over time on exactly which mutations are
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most important for drug resistance, and why (see the
Stanford HIV Drug Resistance Database (http://
hivdb.stanford.edu/) [41] for the latest data and
opinions on these matters). Nevertheless, our analysis
demonstrates that one can take data on mutation
dynamics and produce predictions of the most proba-
ble sequences of mutational events leading to drug
resistance, and the timing with which they are likely
to occur.

In the sodium ion channel domain, we showed that
our technique can be used to ‘look inside’ time intervals
when a patch-clamp recording tells us only that the
channel is closed. The behaviour of the channel
during this time has long been experimentally inaccessi-
ble, and so any predictions or information that one can
deduce about the behaviour of the channel during this
time are valuable. In particular, we showed that the
most likely behaviour of the channel is strongly depen-
dent on both the observed duration of the closed
interval and the patch clamp voltage. For mild clamp
voltages, short closed intervals are attributed to transi-
ent visits to the C3 closed state, whereas long closed
intervals are attributed to the channel getting ‘stuck’
in the high-latency inactive state I. However, for
strongly negative patch clamp voltages, such as
—100 mV, we find it is more probable that the chain
oscillates between the C; and C, closed states, before
returning to the open state. In both the HIV and
ion channel examples, we found that retaining the
continuous-time dynamics of these discrete-state sys-
tems, as opposed to discretizing time, was essential
to reproducing biologically plausible and meaningful
predictions of pathwise behaviour.

We do not yet have a general result on the compu-
tational complexity of state sequence analysis. The time
the algorithm takes depends on how successfully the
dominance criterion is able to prune the otherwise
exhaustive search through the set of possible state
sequences. The number of non-dominated sequences
depends in a complex way on the transition probabilities
and the dwell time parameters; so this is difficult to assess
in general. In the special case that all dwell time par-
ameters are equal to a common value A, then the
probability of any state sequence (Xj,...,Xy) is just
Hfiﬁl Txx. ANtYe /N1 Thus, between any two
states, there is at most one dominant sequence of each
length (ignoring ties). Assuming a unique start state,
no more than |S| possible extensions to each sequence,
and assuming we need not examine sequences longer than
O(tmax/A) steps, the total number of sequences that need
to be considered is O(|S|*fnax/A)—a time complexity
that is polynomial in the state set size and pseudopolyno-
mial in the final time, just as for discrete-time dynamic
programming approaches [19]. In practical terms, our
Matlab implementation of state sequence analysis, run-
ning on a 2 GHz Intel i7 MacBook Pro, took 4.6s to
analyse the example in §2.1 using a numerical grid of
10 points to represent the time interval. By comparison,
simulating one set of 1000 stochastic trajectories took
just 0.23s. However, analysing those trajectories on a
10* point numerical grid to identify all the different
state sequences that occurred, estimate their probabil-
ities, and find the most probable ones as a function of
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time, took 210s. The discrete-time dynamic program-
ming approach took 0.0056s with the 0.1s time step
shown in the figure, but took 224 s with 10" time steps.
State sequence analysis for the HIV example took 50 s,
whereas 1000 stochastic trajectories took 0.41s (gener-
ation) plus 47s (analysis), and discrete-time dynamic
programming took 19s with a one-day time step or
219 s with 10" time steps. For the ion channel example,
state sequences for each voltage level are solved separ-
ately. The amount of time for state sequence analysis
at each voltage ranged from 5.6s (at V=0mV) up to
26s (at V= —100mV), with an average time of
17s. The dynamic programming approach, using the
same 10" time steps as state sequence analysis, takes
219 s per voltage with very little variability for different
voltages. In these examples, then, state sequence analysis
appears to be as efficient as or considerably more efficient
than alternative approaches.

Given the significant and still-increasing interest in
stochastic biochemical systems, we believe that state
sequence analysis will find many other applications.
The method can, in principle, be applied to arbitrary
models expressed within the stochastic chemical kine-
tics formalism [22]. For some systems, maximum
probability state sequences may be of only limited
interest. For example, if we consider a stochastic gene
expression system, it is probably not of concern exactly
how the system might change from having N; protein
molecules at one time to Ny molecules at another time.
However, we expect that maximum probability state
sequences would be of interest in a number of other scen-
arios, such as studying how proteins fold, how protein
complexes assemble or how different sequences of
transcription factor binding events lead to the induc-
tion or repression of a gene. Continuous-time Markov
chains are a central modelling formalism in many
domains besides stochastic chemistry, such as queueing
theory, fault diagnosis, reliability engineering, user
modelling, etc. Thus, we believe that the mathema-
tical problem we have formulated, of finding maximum
probability sequences of state transitions, and our
method of solving that problem constitute valuable new
tools for analysing discrete-state continuous-time
stochastic systems.

4. MATERIAL AND METHODS
4.1. Computing state sequence probabilities

Suppose we are given a continuous-time Markov chain
C=XAT). For any N€&€{1,2,3,...} and any
sequence of N+ 1 states, S = (X, Xi,...,Xy), the
time-dependent probability of the state sequence,
Pi(S), is defined as the probability that the chain
would visit precisely that sequence of states by time ¢,
given that it starts in state X, at time zero. More for-
mally, letting 7y, 71, ..., 7y be dwell times in the states

Xy, X3,..., Xy, we can define
N—-1 N—-1 N

Pi(S) = (H TX%XM>P<Z n<t and Y Tl->t>.
=0 =0 =0

(4.1)
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This is not, however, a computationally convenient defi-
nition, because of the second, time-dependent term on
the right-hand side.

Given the state sequence S, we can obtain P,(S),
viewed as a function of time ¢ over some interval [0, tyax],
by analysing a different, but related, continuous-time
Markov chain. Define a new chain C' = (X, X, T")
whose states correspond to possible sequences of states
in chain C. Whenever chain (' is in state S’, correspond-
ing to state sequence (Xp,...,Xy_1) of chain C, let it
dwell there for a random amount of time that is exponen-
tially distributed with parameter A'g = Ay, ,, and then
transition randomly to a new state S = (Xy,..., Xy)
with probability 7"s¢ = Tx,_ x,. By construction, the
probability that chain C transits the sequence S by time
t is precisely the probability that chain C’ is in state S
at time 7.

Even if our original chain C has a finite state set, the
derived chain €’ will in general have a countably infi-
nite state set. Nevertheless, the state probabilities of
the chain C” obey the Chapman—Kolmogorov equations
[16], namely

d
&Pt(S) - <; Ny Tg,,SPt(S”)> — NgPy(S)
= Ny T4 s Py(S') — Ny Py(S)

= AXN—I TXquXNPt(SI) - /\XNPt(S)' (42)

The first equation is just a statement of the Chapman—
Kolmogorov equations for the chain C'. Intuitively, it
says that: (1) probability mass flows into state S from
possible predecessor states at a rate that depends on
the predecessor’s dwell time parameter and the tran-
sition probability from the predecessor to S and (2)
probability mass flows out of state S at a rate pro-
portional to the dwell time parameter of S. The
second equality above derives from observing that
state S has only one possible predecessor, namely §’,
which corresponds to the one-step shorter sequence of
states in the original chain C.

To obtain P;(S), we need to merely solve the above
linear differential equation. It is a non-homogeneous
equation, because it depends on Py(S’), which varies
with time. But of course, P;(S") obeys its own linear
differential equation, which depends in part on the prob-
ability of a state sequence that is yet one step shorter.
Thus we can find P;(S) by solving the time-homogeneous
system of linear differential equations—the Chapman-—
Kolmogorov equations—where the variables are
Pt((XU))a Pt((XOa Xl))a SRR Pt((XOa le () XN)) The
initial conditions for the system are P;((X;)) =1 and
Py((Xp,...,X;)) =0 for 4> 0. In some cases, the sol-
ution may have a simple analytical form. In other
cases, one may prefer to obtain a numerical solution.
In our Matlab and R implementations, available at
http://www.perkinslab.ca, we have wused built-in
routines for numerical solution of differential equations
to obtain the probabilities. By default, we ask the sol-
vers to return the solutions on a time grid of 10* steps
spanning the time period of interest, though this can
readily be changed. In any case, the number of
equations in the system is N+ 1, and solving these
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equations is relatively straightforward. Thus, we are
able to obtain P;(.S) over the time interval of interest,
t € [0, tiax)-

4.2. Identifying the most probable state
sequence using dominance and
dynamsic programming

Because there are, in general, infinitely many possible
state sequences, we cannot simply evaluate all of their
probabilities at some time of interest ty., to find the
maximally probable one. In order to guide the search
for a maximally probable state sequence, we propose
to use a notion we call dominance. Suppose S; and S
are two different state sequences that share the same
initial and final states. We say that S; dominates Sy if
Py(S1) > Pi(S) for all ¢ € (0, tnax).- If S is not
dominated by any other sequence, then we say S is
non-dominated. S; and S, cannot dominate each other
if they start at different states or end at different
states. Clearly, there is always a non-dominated
sequence among argmaxg Py (S5). Otherwise, we
could find a dominating sequence that would have an
even higher value of P; _(S5). Moreover, we show in
§4.4 that if the continuous-time Markov chain has a
finite state set, X, as it does in the examples in this
paper, then there must be a finite number of non-domi-
nated state sequences. If we can identify them all, and
check them to see which has the largest probability,
then we can guarantee finding the maximum prob-
ability sequence. The question, then, is how to
enumerate non-dominated sequences.

A key observation is that if S = (X, ..., Xy) is non-
dominated, then the one-step shorter sequence
(Xo,...,Xn-1) is also non-dominated. The sequences
(Xo,...,Xn-2), (Xo,...,Xn-3) and so on, down to
the sequence (Xj) are also non-dominated. In other
words, all prefixes of any non-dominated sequence
must also be non-dominated. This is proved in §4.3.
Assuming that the initial state of the system is known
to be X;, we propose to enumerate non-dominated
sequences from shorter to longer, starting from the
trivial sequence (Xj). After enumerating the sequen-
ces, each is evaluated to see which is most probable
at time ty.c. This is achieved by the following
dynamic program.

e Initialize a list A to contain the sequence Sy = (Xj).
o Initialize a list B to be empty.
e While list A is not empty:

e Remove the first state sequence S from A.

o Compute Py(S) for t € [0, tmax]-

e If S is not dominated by any sequence on list B

e Add S to list B.

e Remove from B any sequences dominated
by S, as well as any extensions of such
sequences.

e For each possible single-step extension of S,
add the corresponding state sequence to the
end of list A.

e Evaluate all sequences S on list B to find one
maximizing Py (9).
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Upon completion of the ‘while’ loop, all non-dominated
sequences will be on list B. In the final step, these are
evaluated for the one with maximum P, . Using the
earlier-mentioned basic idea, we can readily solve sev-
eral other problem variants as well. For instance, if we
also have an observed final state X(tpn.x), and we
want to find the maximum probability state sequence
that starts at X(0) and ends at X(fmax), we need to
merely restrict the maximization in the final step to
be over sequences beginning and ending, respectively,
at these two states. More generally, if we have an initial
state probability distribution P(X(0)) and a final state
probability distribution P(X(#,.x)), then we can find
the most probable state sequence by employing two
modifications. First, we must put all possible initial
states, as singleton sequences, on the list A in the first
step of the algorithm. Second, in the final step, we maxi-
mize the quantity P(X(0) = Xp) Py, (S)P(X(tnax) =
Xu), where Xy and Xy are the first and last states in
the sequence S, and Py _ (S) is the probability of the
state sequence given the initial condition X(0) = X,.
One can also compute not just the single most pro-
bable state sequence, but the K most probable
sequences for K > 1. This can be done simply by chan-
ging the algorithm above to discard a sequence only if it
is dominated by K others that have already been found.
We use several of these variants in the HIV and ion
channel examples.

4.3. Prefizes of non-dominated sequences are
non-dominated

In the previous section, we claimed that prefixes of non-
dominated sequences must also be non-dominated.
Here, we prove this assertion. Recall from §4.1 that
for any N € {1,2,3,...}, for a length-N state sequence

S" = (Xo,...,Xn—1) and any one-step extension of that
sequence S = (Xy,...,Xy), we have the Chapman—
Kolmogorov  relationship  (equation (4.2)). The

corresponding integral equation is

t
Py(S) = Ng T,S/SJ PT(S/)eiA/S(FT)dT
=0
t
P(S)e Mvlt=7d

=0

= AXN—I TXN—IXN J (43)
This can be confirmed by differentiating both sides of
the equation. It also takes advantage of the fact that
Py(S) =0 for any sequence other than Sy= (Xp).
Otherwise, an additive constant would appear on the
right-hand side. Now, let S; = (Xp,..., Xy) for N > 1
be a non-dominated state sequence, and let
Sy = (Xp,...,Xn-1) be the one step shorter sequence.
Our assertion is that S5 is also non-dominated. To see
this, assume the opposite—that there is a sequence
S3 = (X', ..., X k_1) that dominates S,. This sequence
may be of a different length than Ss; that is, we allow
K # N. However, by the definition of dominance,
this sequence must begin and end in the same states
as SQ. Hence, XO = XIO and XN—I = X/K—l- Let
St = (X0,..., X' k-1,X'k) be the one-step extension
of S; that ends at the same state as S;, so that
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X'x = Xy. Then for any ¢ € (0, tyax),

t

Pt(S4) = )\X/}F1 TX’K,I X'x J PT(Sg)e_)\X/K(t_T)dT
=0
t
Po(Sy)e M(=7dr

=0

> AXN—] TXN—IXN J

= Py(51),

where the first and last steps come from equation (4.3)
and the middle step comes from the assumption that
S3 dominates S,. The conclusion Py(S;) > Py(Sy),
however, contradicts the assumption that S; is
non-dominated. Thus, S; must be non-dominated.

4.4. Termination of the dynamic program for
finite continuous-time Markov chains

In §4.2, we asserted that the number of non-dominated
sequences is finite if the state set of the chain is finite.
To be more precise, we mean that among the set of all
possible sequences—those with non-zero probability—
there is a finite number of non-dominated sequences.
To see this, suppose that there is actually an infinite
number of non-dominated sequences. Because there is a
single start state, X;, and a finite number of possible
final states for these sequences, there must be at least
one possible final state, call it Xg,., for which we have
infinitely many non-dominated state sequences with
non-zero probability. Let these sequences be denoted
S1, Soy O3y

Now, recall that the probability P,(Sy) for t € (0, T
depends on three things: (i) the sequence of transitions
must occur, (ii) the waiting times in all states except the
last must finish by time ¢, and (iii) the chain must still
be waiting in the last state at time ¢{. We can upper-
bound this probability by focusing just on the second

condition. If S, = (Xy,...,Xy), and if 7,..., 7y are
the waiting times in these states, then
N-1
Py(Sy) < P(Z Ti§t>. (4.4)
=0

We can further upper-bound this probability by requir-
ing only that each individual waiting time in all but the
last state takes less than time ¢, so that

N-1

Pi(S) < [ P(ri<).

=0

(4.5)

The different waiting times can have different waiting
time parameters. However, suppose we let Ay, be the
smallest waiting time parameter over all states in
the chain, and let p; = 1 — e *=n* <1 be the probability
that a single such waiting time would finish in time ¢. Then

PS) < o = (1), (4.6)

Because we have infinitely many sequences, Sy, Ss, 53,
..., they must grow arbitrarily large in length. Let N,
be the minimum number of transitions in any state
sequence starting from the kth sequence in the list. Then

Pi(S) < pl¥ = (1 — ety (4.7)
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Given that N, diverges to infinity with increasing k, we
observe that P;(S;) must converge pointwise to zero
with increasing k. In particular, this means that P;(Sk)
vanishes compared with P;(S;) for all sufficiently large
k; that is, S; itself dominates all S for sufficiently
large k. This contradicts the assumption that we have
infintely many non-dominated state sequences.

4.5. Estimating the HI'V mutation model

For our HIV analysis, we used a dataset deposited in
Genbank, a publicly available collection of DNA se-
quences, under accession nos. AY000001 to AY003708.
The sequences contain 984 bp from the HIV-1 pol gene
that were obtained from patients in phase II clinical
studies (DMP 266-003, DMP 266-004 and DMP 266-
005) of Efavirenz combination therapy. More about the
dataset can be found in [34]. As Efavirenz is a reverse-
transcriptase (RT) inhibitor, we focused only on the RT
sections of the sequences. The final model was based on
the mutations: L1001, K101Q, K101E, K103N, V106M,
Y188L, Y188H, G190S, G190E, G190A and P225H.

We estimated a continuous-time Markov chain
model from the data, using the 122 patients who had
measurements at more than one time point. At some
time points, multiple distinct HIV genotypes are pre-
sent in a patient; we take the most common variant
as representative of the state of the patient’s HIV at
that time. The states of our model are combinations
of the selected mutations that occurred in the 122
patients. Twenty-two such states were identified; how-
ever, 3 of them were not observed to lead to or from
any other states, and they were excluded from the
model. The final model contains 19 states: wild-type,
G190S, G190E, G190A, Y188L, Y188L + G190E,
K103N, K103N + P225H, K103N + G190A, K103N +
Y188H, 103N + V108I, KI103N + V106M, KI101E,
K101E + G190S, K101Q, K101Q + G190S, K101Q +
K103N, L100I 4+ K103N and L100I + K103N +
P225H. Thus, the model can be represented by a 19x
19 transition rate matrix.

Following previous analyses of the same dataset [40],
we estimate the transition rates of our continuous-time
Markov chain, using a method due to Albert [42]. The
idea behind this approach is that if ¢(4,j) is the instan-
taneous transition rate from state i to state j, then it
can be estimated as N(i,j)/A(i), where N(ij) is the
number of observed transitions from i into j, and A(4) is
the total time spent in state i. More precisely, suppose
that at time # state Xj is observed in patient X, and
at time 1y, state X is observed. We make the simplifying
assumption that the transition from X; to X, was a direct
transition, and that the transition occurred at time ¢,
(hence, that pair of observations attributes &, — # wait-
ing time to state Xj). Other assumptions on the
transition times/rates are possible, but Foulkes & De
Gruttola [38] found that alternative assumptions had
little influence on the conclusions of their study; thus,
we have not explored these alternatives. The estimated
transition rates between states can then be separated
into a dwell time parameter for the source state (for
source state iit is > ., q(i,7)), and transition probabil-
ities between states (for source state i and target state jit
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is q(4,5)/ 32,4 4(4,5)). The resulting parameters are
shown below.

A (unit of next states, probabilities
state days) in parentheses
wild-type 0.0061475 G190S (0.044444) G190E

(0.022222) G190A
(0.011111)
Y188L (0.044444)
K103N (0.87778)
G190S 0.0082645 wild-type (0.4)
K101E + G190S (0.4)
K101Q + G190S (0.2)
G190E 0
GI190A 0.018182 wild-type (1)
Y188L 0
Y188L + G190E  0.034483 Y188L (1)
K103N 0.0038809 wild-type (0.13043)
K103N + P225H
(0.3913)
K103N + G190A
(0.021739)
KI103N + Y188H
(0.021739)
103N + V108I (0.23913)
K103N + V106M
(0.021739)
K101Q + K103N
(0.086957)
L100I + K103N
(0.086957)
K103N + P225H  0.0015767 K103N (1)
K103N + G190A 0
KI103N +Y188H 0
103N + V108I 0.001005 K103N (1)
K103N + 0
V106M
KI101E 0.014286 wild-type (1)
KI101E + G190S 0
K101Q 0.014085 K101Q + K103N (1)
K101Q + G190S 0
K101Q + K103N  0.00088417 K103N (1)
L100I + K103N 0.0027422 K103N (0.66667)
L100I + K103N +
P225H (0.33333)
L100I + 0
K103N +
P225H

Probabilities of different state sequences are com-
puted by solving the Chapman—Kolmogorov equations
(equation (4.2)) using the ode45 function of Matlab.
Matlab and R codes implementing the model and the
state sequence analysis approach are posted on the
website www.perkinslab.ca.

4.6. Details of the ion channel model and
computations

The continuous-time Markov chain model of ion chan-
nel dynamics proposed by Vandenberg & Bezanilla
[53] describes the voltage-dependent activation and
latency of neural sodium conductances. The diagram
in figure 3a shows the state transition diagram, with
labels a, b, ¢, d, f, g, i, and j denoting transition rates
between states. Each transition rate is the product
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of the dwell time parameter of the source state and
the transition probability between the states. These
voltage-dependent rates have the following generic form:

F

A(V) = Agexp [%] ,

where V is the applied clamp voltage, A, = A(0) is the
zero-voltage rate and ¢ is the ‘effective valence’ of
the transition. Also, F'is the Faraday constant, R is the
gas constant, and T'is the absolute temperature. Through-
out, RT/F =24, at 5°C. The numerical values for the
effective valences and zero voltage rates for all but two of
the possible transitions are listed below. (See figure 3 to
match letters a, b, ¢, d, f, g to transitions between states.)

(4.8)

transition q(e) Ao (s7h)

a 0.13 2969

b —0.70 704

c 1.27 28932

d —0.60 725

f 0.49 705

g 0.66 1117
The rates out of the inactivated state are

i(V)=25"11+g(V)/f(V)) and j(V)=25—i(V).
In order to compute the most probable state sequence
during a closed interval of duration 7, we cannot
simply compute the most probable path starting and
ending at O. Such a path may not even enter one of
the closed states, let alone spend the specified amount
of time among the closed states. At the start of a
closed interval, there are two possible start states, Cs
and I. These have initial probabilities proportional
to the transition rate from O to each of these states,
thus P(X(0) = C3) =d/(d+f) and P(X(0)=1I)=
f/(d+ f). Because we do not want any path to enter the
open state until exactly time t,.c, we alter the usual
enumeration of possible state sequences so that only
sequences that remain among the closed states are con-
sidered. Finally, for any non-dominated sequence ending
at state C3 or I, we additionally multiply its probability
by the likelihood of an instantaneous transition to state
O at exactly time t,.c. By definition, this likelihood is
either the rate c or j for sequences ending at state C3 or
I, respectively. This, then, forms the total ‘score’ for a
path, which is optimized over all non-dominated paths
that exclude transitions to state 0. Matlab and R codes
implementing the model and the state sequence analysis
approach are posted on the website www.perkinslab.ca.

4.7. Time discretization and computation
of maximum probability discrete-time
trajectories

Given a continuous-time Markov chain C = (X;A, T)
and a time step A, the standard discrete-time Markov
chain approximation is given by D = (X', T"), where
X' = X is the state set of the chain, and the transition
probabilities T" are determined as

A ifX=X
Xx = (1 — e”"‘A) TXX’ if X # X/.
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Having produced a discrete-time Markov chain from a
continuous-time chain, we are then interested in com-
puting maximum probability trajectories. For a
discrete time chain, a trajectory to time ¢ = iA simply
specifies the state of the chain at each time
t € (0,A,2A,...,iA). To compute maximum prob-
ability trajectories, we first assume a final time of
interest, tmax = KA. Define Px x; be the probability of
the most probable path from state X to state X’ using
precisely i steps (i.e. using total time 7A). Let Jy xv;
be the most probable path (or one of the most probable
paths, in case several paths all have the same, maxi-
mum probability). We can compute P and J by a
straightforward, well-known dynamic program [19].
We initialize as

PXX/O:{l for X = X'
o 0 forX # X'
and
JXX'():{(X) forX = X'
o h forX # X'

Then, we do the following;:

e Fori=1tok
e For each X, X' € X

e Let X* be any element of argmaxy
Px xri1 T xnxo
e Set Px x; = Px x-i-1Tx+x

o Set JX,X’,i = append(.]xx*ﬂ;,l, X’)

Here, append(S,X) adds state X to the end of sequence
S. Upon completion, J holds a maximum probability
path between any two states over any period of time
up to KA.
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