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Simple Summary: The tiger mosquito is a novel vector for a variety of viral diseases in Colombia.
Glyphosate herbicides have been extensively used in the country as a means to battle illicit crops,
namely coca. Negative effects of this compound on arthropods have been reported, but no
emphasis on dipterans has been evaluated. Different bacilli bacteria, including the Colombian
Lysinibacillus sphaericus, have shown mosquitocidal potential through the production of different
proteins. The surface layer (S-Layer) protein, present in this bacterial species, is involved in normal
processes, such as protection and shape, but it has been reported as having a role in the mosquitocidal
action of the species. In this paper, we evaluate the toxicity of glyphosate, its derivates, and the bacterial
S-Layer protein on tiger mosquito larvae, as well as the synergic effect these compounds may have.
Bacterial-derived formulations may provide an alternative to chemical pest control and be a viable
way to remediate environmental contamination consequences of the drug war.

Abstract: Glyphosate and glyphosate-based herbicides are among the most used chemicals in plant
pest control. Both glyphosate and its main by-product Aminomethylphosphonic Acid (AMPA) are
highly environmentally persistent and, through several processes (including surface runoff and
bioaccumulation), affect species beyond their intended targets, especially in aquatic ecosystems.
Aedes albopictus is a novel invasive arboviral vector in Colombia and has spread to much of the national
territory in recent years. Strains of the bacterium Lysinibacillus sphaericus have shown the ability to
degrade glyphosate into environmentally inert compounds, in addition to having great larvicidal
efficiency in different mosquito species through the production of several proteins, including
the surface layer (S-Layer) protein. The S-Layer is a bacterial structure consisting of glycoprotein
monomers, and its functions are thought to include bacterial interactions, protection from the outside
medium and biological control. The study assessed the entomopathogenic activity of L. sphaericus
S-Layer protein on Ae. albopictus larvae, and the effects that glyphosate and its by-products have in
this process. To that end, bioassays were performed to compare the larval mortality between different
treatments with and without S-Layer, glyphosate, and glyphosate derivates. Comparisons were made
through Analysis of variance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) analyses.
Significant differences were found in larval mortality in the treatments, and larval mortality was
greater when the S-Layer protein was present, though glyphosate field-doses (1.69 g/L) alone had
a notable toxicity as well. An apparent synergic effect on the mortality of larval Ae. albopictus when
exposed to mixtures containing 1500 ppm of the S-Layer protein, glyphosate, and/or glyphosate
derivates was found. Further studies are needed for the in-depth understanding of this mechanism
and its consequences on aquatic ecosystems.
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1. Introduction

Glyphosate is one of the most widely used herbicides around the world, as it has shown to be
useful in the eradication of a multitude of plant pests [1]. This, combined with its wide availability
and the development of glyphosate-resistant crops, has made it into a desirable control strategy for
crop protection, as well as activities like gardening and flower trade [2]. However, recent studies have
questioned the safety of glyphosate and glyphosate-based herbicides, as they have shown an array of
risks for animals and microorganisms alike, ranging from antimicrobial activity to mammal death at
acute concentrations [3,4]. Moreover, it possesses the ability to bind to soil molecules and bioaccumulate
in some organisms [5,6]. This confers it a notable persistence in the environment, in turn extending
its ability to cause harm [5]. In recent decades, political and economic circumstances have led to
the widespread dispersion of glyphosate throughout the Colombian countryside [7,8]. Thus, the failing
efforts to control the production of coca plants, and in turn cocaine, have caused the endangerment of
non-target species across different realms in the biosphere [3,4,9]. Furthermore, given how surface
runoff displaces chemicals and materials present in soil towards water bodies [10], aquatic-dwelling
organisms are especially susceptible to glyphosate and its decay products [11].

Aedes (Stegomyia) mosquitoes are the most important arboviral vectors in Colombian public health
today, as they can carry a multitude of different diseases [12]. The recent invasion by a novel Aedes
mosquito, Aedes albopictus (Skuse) [13] is a matter of concern because of the rising mosquito resistance
to chemical control [14] and the negative impact these chemicals have on the environment [15]. Because
of these reasons, novel control strategies have been devised in order to control the spread of high
mortality and morbidity diseases such as Dengue [16]. Given how early mosquito developmental
stages occur in water bodies [17] and the fact that they have shown greater susceptibility towards both
chemical and biological control means [18], there exists a real need to evaluate the impact that toxic
contaminants like glyphosate may have over mosquito populations. This, in turn, can help shed light
on how glyphosate contamination works in an aquatic medium and raise concerns over the use of this
substance and its consequences on non-target species.

The bacterium Lysinibacillus sphaericus is a widely common soil bacterium, and it has been found
living in Colombian territory [19]. Strains of this bacterium are not only effective in mosquito control
but have also shown potential as a metal and hydrocarbon bioremediation agents [20,21], as well as
plant growth promoters [22]. Though studies have been conducted on several of the mosquitocidal
pathways present in L. sphaericus strains [23,24], the roles that proteins such as the surface layer (S-Layer)
protein and other derivates from the vegetative [25] L. sphaericus cell play in mosquitocidal action are
open to further study, as their mechanisms and roles have not been explained in full. Though the most
widely produced by-product of glyphosate mineralization is the highly toxic Aminomethylphosphonic
Acid (AMPA) [26], previous studies have shown that L. sphaericus is able to degrade glyphosate into less
dangerous compounds (orthophosphate ion and glycine, which are non-toxic) through the sarcosine
oxidase metabolic pathway [26,27]. This raises the need to not only evaluate the role of glyphosate
itself, but also the role its by-products may have in possible synergistic effects when in contact with
this bacterium and its proteins. In this study, we aim to evaluate the lethality induced by the S-Layer
protein on Ae. albopictus larvae, as well as the synergy that may occur in glyphosate and glyphosate
derivate-rich environments, such as the Colombian countryside.

2. Materials and Methods

The methodology employed and outlined below is a modification of the protocol utilized
previously by Bernal and Dussán in 2020 and Lozano et al. in 2011 [8,23].
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2.1. Lysinibacillus sphaericus and Aedes albopictus Strains

The L. sphaericus III(3)7 strain was isolated from an oak forest soil in Colombia [19]. The WHO
reference strain 2362 was isolated from adult Simulium damnosum [28] and kindly donated by A.
Delecluse from the Pasteur Institute in France. These bacterial strains were chosen for the S-Layer
protein extraction and posterior assays, as they have shown the most lethality in Ae. aegypti mosquitoes
among the L. sphaericus strains present in the Microbiological Research Center (CIMIC) collection,
having an LD50 concentration of 107 CFU/mL [16]. The eggs of the Colombian reference Ae. albopictus
strain were kindly donated by the National Institute of Health (INS) in Bogotá, Colombia.

2.2. S-Layer Protein Extraction, Purification, and Quantification

Selected bacterial strains were grown overnight in nutrient broth and under constant stirring
(150 rpm at 30 ◦C). Overnight cultures were centrifuged (9660 rcf at 4 ◦C) for 20 min, and the pellets
were washed in cold 50 mM Tris/HCl (pH 7.4); the cells were broken by sonication (40% amplitude,
15 pulses) [29], washed three times and treated with 0.5% Triton X-100 for 10 min at 20 ◦C. The S-Layer
protein was extracted using guanidine hydrochloride (Gu.HCl) (5 M in 50 mM Tris/HCl buffer,
pH 7.4) for 4 h at 4 ◦C. After this step, samples underwent centrifugation at 11,337 rcf for 40 min at
4 ◦C. The supernatant containing the extracted S-Layer protein was dialyzed against Milli-Q (MQ)
water at 4 ◦C for 20 h, centrifuged at 11,337 rcf for 40 min at 4 ◦C, and supernatants were stored at
−20 ◦C. Supernatant samples were then recovered and quantified through the Bradford protein assay.
A calibration curve was constructed using 20 µL of 0.125 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, 1.5 mg
and 2 mg of pure bovine albumin diluted in 70 µL of MQ water and then dyed with 1 mL of Bradford
dye reagent. These were then measured at 595 nm in a spectrophotometer. With the calibration curve
prepared, 20 µL of each of the supernatant samples recovered was assessed with 70 µL MQ water and
1 mL of Bradford dye reagent at 595 nm in the spectrophotometer. Confirmation of the presence of
the S-Layer protein was assessed through SDS-PAGE protocol in a 10% acrylamide gel. Then, 6 µL
samples of the S-Layer protein extracts were loaded in a 10% acrylamide gel and stained with Coomassie
Brilliant Blue. The resulting gel was then cleaned with MQ water and revealed using a transilluminator.
This protocol was followed for both bacterial strains, and solutions containing 1500 ppm (750 ppm per
bacterial strain) of the S-Layer protein were made using MQ water to be used in the bioassays.

2.3. Glyphosate, Phosphate and Glycine Solutions

Standard 10 g/L solutions of each of the used compounds were prepared by diluting 10 g of solid
pure glycine, monobasic potassium phosphate and Monsanto’s glyphosate formulation Roundup
747® (Bayer, Leverkusen, Germany) in 1 L of MQ water. Solutions were then thoroughly stirred and
kept in drawers to prevent decomposition due to UV light. These stock solutions were employed
and diluted to the 1.69 g/L concentration used in the bioassays. This concentration was chosen as it is
the most widely used in weed control by farmers, as well as the eradication of illicit crops like coca
in Colombia [8]. Monobasic potassium phosphate was used as an orthophosphate ion source as it
does not figure as a toxic agent for animals at the experimental concentrations, eliminating noise in
the results [30].

2.4. Aedes Mosquito Maintenance and Bioassays of the S-Layer Protein, Glyphosate, Phosphate and Glycine
against Aedes albopictus Larvae

Eggs donated by the INS were kept at 30 ◦C and 60–70% relative humidity under 12:12 light/dark
photoperiod. Upon hatching, the larvae were fed with pellet food Omega One Natural Protein Formula
(OmegaSea, LLC, Painesville, OH, USA) for cichlids, twice a week. The larvae were kept in plastic
containers until the third instar was reached. In order to determine the possible synergic effects of
glyphosate and glyphosate breakdown products (glycine and orthophosphate) with the bacterial
S-Layer protein, several solution mixtures were made using the 1.69 g/L solutions. As mentioned
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before, this glyphosate concentration was chosen as it is the most widely used formulation in Colombia
for pests and illicit crops control [8]. Equal concentrations were used for both glycine and phosphate,
as the stoichiometry of glyphosate break up yields a 1:1 product/reactant ratio [26]. Previous studies into
the mosquitocidal action of the S-Layer protein against Culex quinquefasciatus have shown significant
results at concentrations as low as 500 ppm [26,31]. Given how comparative studies have pointed
at C. quinquefasciatus being considerably more susceptible to L. sphaericus biocontrollers than Aedes
aegypti [32], an experimental concentration of 1500 ppm of the S-Layer protein was chosen. The final
concentration was achieved by mixing together 750 ppm of the extracted S-Layer protein from
each of the L. sphaericus strains used (III(3)7 and 2362). The resulting mixtures were the following:
S-Layer protein, glycine, phosphate, glyphosate, phosphate + glycine, S-Layer protein + glycine,
S-Layer protein + phosphate, S-Layer protein + glyphosate and phosphate + glycine + S-Layer protein.
Final treatment concentrations were set at 1.69 g/L, and those for the S-Layer proteins were set at
1500 ppm (Table S3). These were assessed against chlorine-free water as control. In order to assess
the mosquitocidal potential, the tests were conducted in a total experimental volume of 30 mL,
consisting of 15 mL of chlorine-free water and 15 mL of each of the solutions, into which 20 individuals
were added. All trials were performed in triplicate. The number of live larvae was recorded every 24 h
until 48 h.

2.5. Statistical Analysis

All statistical tests were performed using the R 3.1.2 statistical package [33], and a significance
level of p < 0.05 was chosen for every test. Homoscedasticity was evaluated and confirmed through
Bartlett’s test for homogeneity of variance, and data normality was assessed and verified through
a Shapiro–Wilk normality test (Table S1). In order to assess statistically significant differences between
mortality per treatment in the Ae. albopictus strain, analysis of variance (ANOVA) (one way) tests were
performed followed by Tukey’s HSD tests as a post hoc analysis (Table S2).

3. Results

3.1. S-Layer Protein Extraction, Purification, and Quantification

The S-Layer protein was successfully extracted from the surface of both L. sphaericus strains.
This was confirmed by the acrylamide gel and by comparing the obtained bands with both the protein
ladder (Figure 1). The reported molecular weight of the protein assembly as the S-Layer is mainly
composed of self-assembled proteins ranging in weight between 40–200 KDa [34]. Results indicate that
both assembled the S-Layer protein, and S-Layer protein monomers were present in the L. sphaericus
III(3)7 samples, while only assembled S-Layer protein structures were found in L. sphaericus 2362
samples. The extracted S-Layer protein concentrations varied between bacterial strains, with the 2362
strain having a concentration of 1.2 mg/mL, while the III(3)7 strain showed an extracted concentration of
about 0.8 mg/mL. S-Layer protein extraction was successful for both bacterial strains, and concentrations
were sufficient for further experimentation.

3.2. Glyphosate, Glyphosate Derivates and S-Layer Protein Induced Mortality in Ae. albopictus Mortality

Larvicidal activity was registered past 24 and 48 h post inoculation. Results showed marked
and significant (ANOVA: F(5,12) = 17.23, p < 0.0001) lethality differences between all treatments,
especially considering larvae exposed to the S-Layer protein and glyphosate concentrations (Figure 2a).
Significant differences were found when comparing active treatments with the control at 24 h for
treatments containing glyphosate and the S-Layer protein, both having siginificant differences with
every other treatment, except for each other. No significant differences were observed when comparing
control, glycine and phosphate treatments among themselves (Table S2). Both glyphosate and S-Layer
protein formulations showed an important mosquitocidal potential at 24 h, with the second having
the most action against Ae. albopictus larvae in the lab environment. Past 48 h, a noticeable increase
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in larval lethality was observed in formulations containing orthophosphate ions, as well as a slight
increase in glyphosate-induced lethality (Figure 2b). Larvicidal activity remained stable for both
glycine and S-Layer protein formulations throughout the experiment. Significant differences between
treatments were once more found past 48 h (ANOVA: F(5,12) = 9.902, p < 0.0001). Every treatment
excluding glycine showed significant lethality differences when compared to the control, and no
significant differences were observed when comparing glyphosate and phosphate with the S-Layer
protein or each other (Table S2). Results obtained indicate an active role of the used compounds in
mosquito larvae mortality.Insects 2020, 11, x FOR PEER REVIEW 5 of 11 

 

 
Figure 1. Acrylamide gel for the confirmation of surface layer (S-Layer) protein presence after the 
extraction protocol. The first lane corresponds to the protein ladder, the second ladder to L. sphaericus 
III(3)7 S-Layer protein, the third to a negative control treatment (MQ water), the fourth intentionally 
left empty, and fifth to L. sphaericus 2362 S-Layer protein. 

3.2. Glyphosate, Glyphosate Derivates and S-Layer Protein Induced Mortality in Ae. albopictus Mortality 

Larvicidal activity was registered past 24 and 48 h post inoculation. Results showed marked and 
significant (ANOVA: F(5,12) = 17.23, p < 0.0001) lethality differences between all treatments, especially 
considering larvae exposed to the S-Layer protein and glyphosate concentrations (Figure 2a). 
Significant differences were found when comparing active treatments with the control at 24 h for 
treatments containing glyphosate and the S-Layer protein, both having siginificant differences with 
every other treatment, except for each other. No significant differences were observed when 
comparing control, glycine and phosphate treatments among themselves (Table S2). Both glyphosate 
and S-Layer protein formulations showed an important mosquitocidal potential at 24 h, with the 
second having the most action against Ae. albopictus larvae in the lab environment. Past 48 h, a 
noticeable increase in larval lethality was observed in formulations containing orthophosphate ions, 
as well as a slight increase in glyphosate-induced lethality (Figure 2b). Larvicidal activity remained 
stable for both glycine and S-Layer protein formulations throughout the experiment. Significant 
differences between treatments were once more found past 48 h (ANOVA: F(5,12) = 9.902, p < 0.0001). 
Every treatment excluding glycine showed significant lethality differences when compared to the 
control, and no significant differences were observed when comparing glyphosate and phosphate 
with the S-Layer protein or each other (Table S2). Results obtained indicate an active role of the used 
compounds in mosquito larvae mortality. 

Figure 1. Acrylamide gel for the confirmation of surface layer (S-Layer) protein presence after
the extraction protocol. The first lane corresponds to the protein ladder, the second ladder to
L. sphaericus III(3)7 S-Layer protein, the third to a negative control treatment (MQ water), the fourth
intentionally left empty, and fifth to L. sphaericus 2362 S-Layer protein.

Insects 2020, 11, x FOR PEER REVIEW 6 of 11 

 

 
Figure 2. Lethality responses observed in the Aedes albopictus larvae after exposure to pure treatment 
solutions at (a) 24 h of exposure and (b) 48 h of exposure. 

3.3. Synergy between Glyphosate and Glyphosate Derivates with Bacteria S-Layer Protein in Ae. albopictus 
Mortality 

Considerable larvicidal activity was observed throughout all the S-Layer protein mixture 
formulations at 24 h (Figure 3a). The greatest larval mortality was noted in formulations containing 
both glyphosate and the S-Layer protein. Significant differences were observed among all treatments 
(ANOVA: F(4,10) = 22.67, p < 0.0001), though no significant differences were found when comparing 
larvicidal action among the formulations containing the S-Layer protein, given the considerable 
mortality observed in them. Every single treatment besides the one containing both glycine and 
phosphate showed significant differences when compared to the control in this time frame (Table S2). 
The described trend remained constant past 48 h of exposure, and all formulations showed an 
increase in larvae mortality (Figure 3b). The highest larvicidal mortality was once again seen in 
formulations containing both glyphosate and the S-Layer protein. Significance was found when 
comparing between all treatments (ANOVA: F(4,10) = 26.14, p < 0.0001), as well as when comparing 
treatments containing the S-Layer to both the control and glycine treatments, but there was none 
between the treatments containing the S-Layer protein themselves (Table S2). 

 
Figure 3. Lethality responses observed in the Ae. albopictus larvae after exposure to mixture of the 
treatment solutions and S-Layer concentrations at (a) 24 h of exposure and (b) 48 h of exposure. 

4. Discussion 

4.1. S-Layer Protein Extraction, Purification, and Quantification 

The S-Layer protein of both bacterial strains was successfully extracted, and further literature 
reviews clarified the fruitful extraction of the protein assembly [34]. The use and effectivity of the S-

Figure 2. Lethality responses observed in the Aedes albopictus larvae after exposure to pure treatment
solutions at (a) 24 h of exposure and (b) 48 h of exposure.

3.3. Synergy between Glyphosate and Glyphosate Derivates with Bacteria S-Layer Protein in Ae. albopictus
Mortality

Considerable larvicidal activity was observed throughout all the S-Layer protein mixture
formulations at 24 h (Figure 3a). The greatest larval mortality was noted in formulations containing
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both glyphosate and the S-Layer protein. Significant differences were observed among all treatments
(ANOVA: F(4,10) = 22.67, p < 0.0001), though no significant differences were found when comparing
larvicidal action among the formulations containing the S-Layer protein, given the considerable
mortality observed in them. Every single treatment besides the one containing both glycine and
phosphate showed significant differences when compared to the control in this time frame (Table S2).
The described trend remained constant past 48 h of exposure, and all formulations showed an increase
in larvae mortality (Figure 3b). The highest larvicidal mortality was once again seen in formulations
containing both glyphosate and the S-Layer protein. Significance was found when comparing between
all treatments (ANOVA: F(4,10) = 26.14, p < 0.0001), as well as when comparing treatments containing
the S-Layer to both the control and glycine treatments, but there was none between the treatments
containing the S-Layer protein themselves (Table S2).
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Figure 3. Lethality responses observed in the Ae. albopictus larvae after exposure to mixture of
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4. Discussion

4.1. S-Layer Protein Extraction, Purification, and Quantification

The S-Layer protein of both bacterial strains was successfully extracted, and further literature
reviews clarified the fruitful extraction of the protein assembly [34]. The use and effectivity of
the S-Layer protein as an insect controller has been proved in C. quinquefasciatus in the past [23,31],
having notable mortality results. This study represents the second example in which the larvicidal
potency of the S-Layer protein from L. sphaericus has been tested to satisfactory results in the target
organism. Differences in extraction yields between strains are not derived from genetic differences,
as both the WHO reference strain and the Colombian III(3)7 strain contain 13 S-Layer-related genes [35].
However, there may be differences in other transcription mechanisms regulating S-Layer gene
transcription into S-Layer proteins in both strains, which could in turn lead to different protein
production between them. Similarly, differences in the metabolic state between the bacterial
strains do not pose a complete explanation for the differences observed. Studies conducted on
Bacillus anthracis, another member of the Bacillaceae family, have found that the S-Layer proteins
are also synthesized under conditions where the bacterial capsule is present, as it is an exterior
layer and completely covers the S-Layer proteins [36]. Nonetheless, extraction assays performed
using sporulated L. sphaericus cultures have failed to detect S-Layer protein presence by SDS-PAGE
electrophoresis [23], which could indicate that the bacterial capsule acts in such a way that either
denatures the S-Layer proteins or otherwise prevents their extraction and/or detection through
SDS-PAGE assays. Though further experimentation is needed to clarify the nature of the difference
observed, experimental or environmental influences cannot be crossed out as possible error or
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noise sources, especially considering the particularly complicated extraction protocol necessary for
the extraction and purification of this protein.

4.2. Glyphosate, Glyphosate Derivates and S-Layer Protein Induced Mortality in Ae. albopictus Mortality

The role of field-dosed glyphosate concentrations in insect mortality has been shown through
direct action in Ae. aegypti [8] and through indirect action through gut bacteria perturbation in
Apis mellifera [37]. Additionally, a demographic study of Chrysoperla externa showed that glyphosate
exposure had a significant impact on developmental stages, pre-reproductive periods, as well as
fecundity and fertility, negatively impacting all of them. In addition, the chemical caused abnormal
sizes and shapes in eggs, in addition to the appearance of tumors in the abdominal regions of adult
individuals [38]. Results observed during the course of this investigation support previous findings and
point at glyphosate as a damaging factor in environments and their dynamics. Additionally, common
glyphosate derivatives such as AMPA have proven to be of even greater environmental concern, as
AMPA in particular has greater soil persistence and equivalent toxicity in organisms [39]. Glyphosate
derivatives employed in this study showed varying larval lethality percentages, as well as apparent
time dependencies for their action. On one hand, the amino acid glycine showed little to no larval
antagonism. This is not surprising, as glycine is used for the biosynthesis of many nonprotein
compounds, such as porphyrins and purines, meaning its presence is paramount for normal animal
development [40]. Although it has been suggested that since glycine plays a role in neurotransmitter
regulation a high enough concentration could possibly have dangerous consequences [41], no evidence
for animal toxicity was found for the concentrations used. On the other hand, phosphorus, another
mineral needed in animal development [42], showed increasingly toxic trends in the larval assays as
time went on. This may be linked to a decrease in water quality and oxygenation due to some form of
eutrophication [43] or to the action of phosphate ions as acetylcholinesterase inhibitors, much like how
organophosphates act [44]. Further studies are needed to clarify the role of orthophosphate ions in
insect mortality.

The considerable mortality rates produced by the S-Layer protein against Ae. albopictus larvae
mirror the results found of C. quinquefasciatus [23], meaning that it may be applied in the field as
an effective mosquito controller to control a variety of vector-borne diseases. Furthermore, the data
show that the use of living bacteria as biocontrol agents is not the only alternative as far as bacterial
biocontrol goes, as metabolites such as the S-Layer protein can be used in their stead. Genome analyses
of L. sphaericus have shown it is capable of producing a series of mosquitocidal toxins, as well
as other proteins (e.g., hemolysin D) likely linked to its success as a mosquito control agent [45].
Metabolite-mediated mosquito control presents advantages to bacterial control, as proteins are
environmentally inert, are not self-replicating, have no metabolic requirements and call for less
intensive environmental studies (though the specificity of the toxin needs to be assessed, so as to
prevent ecological damage to non-target species) before their application [46]. Despite their many
advantages, the experiment only showed viable mosquitocidal action during the first 24 h. This likely
stems from the protein denaturation brought about by factors like light intensity, UV radiation, pH,
temperature, and animal activity [47]. Although it has been shown that bacterial S-Layer proteins
are reasonably resistant to adverse conditions [48], it is likely that time and other factors reduced its
efficiency considerably. In addition, protein-based biocontrol agents would carry several disadvantages,
mainly the reduced environmental persistence brought about by the lack of environmental tolerance,
plasticity, and recycling, as well as the lower tolerances for pH and temperature. This makes proteins
significantly less environmentally persistent when compared to bacteria [49], which in turn means less
mosquitocidal action per application when compared to bacterial biocontrollers [50]. Coupled with
the above, the lack of automatic extraction procedures means significantly higher costs in both
production and application, meaning further studies are needed before a viable biocontrol agent can
be developed.
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4.3. Synergy between Glyphosate and Glyphosate Derivates with Bacteria S-Layer Protein in Ae. albopictus
Mortality

The effect of glyphosate and the lethality resulting from the synergy between glyphosate and
vegetative L. sphaericus cells on Ae. aegypti has been established already [8]. The results found in this
study support the hypothesis presented in the past, as there were significant increases in glyphosate
lethality when paired with S-Layer bacterial extracts. However, the data show further synergy not
only between the S-Layer protein and glyphosate, but its by-products as well, especially whenever
orthophosphates are available. Mortality observed in glycine assays cannot be attributed to synergistic
effects, as glycine showed to be non-toxic by itself. These results are of importance since L. sphaericus has
been shown to degrade glyphosate into environmentally inert (and even beneficial) products [26,27].
The L. sphaericus-mediated release of orthophosphates and glycine from glyphosate into the environment
may be a way to take advantage of a widely detrimental chemical and turn it into crop and plant
growth promotion. This is even more likely considering the beneficial interactions seen between
L. sphaericus and Canavalia ensiformis plants [22], though the indiscriminate release of orthophosphates
to the environment may trigger detrimental ecological phenomena, such as eutrophication of water
bodies and the resulting consequences of such events [43].

5. Conclusions

Ultimately, the use of either the bacterial S-Layer as a mosquito controller is a viable alternative
to both traditional biocontrol and the more harmful chemical control. Positive synergic effects on
the mortality of Ae. albopictus larvae after their exposure to the bacterial S-Layer, glyphosate and
sarcosine pathway-generated glyphosate derivatives were observed, which prompts the support of
the use of inert protein formulations for both vector control and the eradication of this invasive species.
Further studies involving other L. sphaericus metabolites can help formulate even better biocontrol
compounds. Similarly, more studies are needed for the in-depth comprehension of the ecological
damages caused by glyphosate and related chemicals. The findings presented show the need for
further investigation to maintain an appropriate balance between pest control (be it weed or insect)
and proper ecosystem health.
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