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Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence

rates and the structural variations’ stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing

method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thou-

sand single cells per individual, we found that about 7.5%of the cells had large-size copy number alterations. Trisomy 21 was

the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most

frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified

X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.

[Supplemental material is available for this article.]

Genomic alterations, including copy number alterations (CNAs)
and point mutations, are the major drivers of many cellular mal-
functions (Conrad et al. 2010; Sudmant et al. 2015). Tumor cells,
for example, usually carry many CNAs and point mutations
(Beroukhim et al. 2010; Waddell et al. 2015), many of which are
oncogenic. After decades of study, researchers now recognize
that point mutations accumulate in normal cells through poly-
merase replication errors and damaged DNA. Many point muta-
tions barely affect cells, whereas others, located at critical
locations, can transform cells (The Wellcome Trust Case Control
Consortium 2010; Klopocki and Mundlos 2011). The scenario
for CNAs in normal cells is less clear. Whereas large CNAs are ex-
tremely rare in humans, thus suggesting their destructive potential
in cells (Zhang et al. 2009; Girirajan et al. 2011; Zarrei et al. 2015),
their occurrences in normal cells may have been underestimated
due to technical constraints.

Recent advances in single-cell sequencing have greatly ex-
tended our understanding of cellular complexity (Chen et al.
2017; Vitak et al. 2017; Zahn et al. 2017). However, few studies
have reported the heterogeneities of nuclear genomic variations
in single cells (Rohrback et al. 2018; Laks et al. 2019). Various tech-
nologies have estimated that the frequencies of somatic CNAs in
the human brain vary between 2% and 40% (McConnell et al.
2013; Cai et al. 2014; Knouse et al. 2014; van den Bos et al.
2016; Chronister et al. 2019). The current lack of a scalable and ro-
bust method to perform uniform single-cell whole-genome ampli-
fication (WGA) is the main challenge to improving the accuracy
and precision of somatic CNA identification.

In this report, we present a high-throughput single-cell WGA
and sequencing method: Tn5-transposase–assisted single-cell
whole-genome sequencing (Tasc-WGS).We demonstrate the pow-
er of Tasc-WGS by showing the results of a large-scale investigation
that identified rare CNA events in the lymphocytes from 16 can-
cer-free individuals of different ages and sexes. We portrayed the
CNA pattern of normal lymphocytes and discovered hotspot re-
gions. Combined with haplotype and transcriptome data, we
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were able to reveal the biological bias of
aneuploid events in Chromosome X.

Results

A high-throughput pipeline for single-

cell somatic CNA analysis

We optimized our Tasc-WGS method by
forgoing both pre-amplification and li-
brary quantification and by directly tag-
menting the double-stranded genomic
DNA of single cells, thus greatly simplify-
ing the experimental process and increas-
ing throughput (Fig. 1A). Previous studies
had shown that the library construction
protocolperformed inamicrofluidics sys-
tem enables uniform amplification of a
single-cell genome (Zahn et al. 2017;
Laks et al. 2019). We expanded that pro-
tocol to 96-well plates, and our subse-
quent performance evaluation verified
that our protocol provided even amplifi-
cation and little contaminated data, as
well as a marked increase in throughput
that needed no special instrumentation
(Supplemental Fig. S1A–C). We typically
processed about 2000 single cells in a sin-
gle experimental run and used cellular
barcodes to differentiate each cell’s se-
quence reads (Supplemental Table S2).

With a shallow sequencing depth
(∼ 0.1×; i.e., 0.3 Gb per cell), we obtained
an average 3.50%±1.50% (CI =95%) ge-
nome coverage and detailed copynumber
profile with 200-kb bins. The coverage
was uniform across the whole genome
(Supplemental Fig. S1A),withnocrosstalk
between samples (Supplemental Fig. S1B;
Supplemental Notes). We combined cir-
cular binary segmentation and hidden
Markov model algorithms to further re-
duce false identification of unambiguous
copy number losses or gains (Supplemen-
tal Fig. S1D,E; Supplemental Notes). Most
of the quality filtering of single-cell se-
quencing data was done with combinato-
rial criteria, including mean absolute
deviation of pairwise difference, degree
of ploidy abnormality, and degree of frag-
mentation (Supplemental Fig. S1F,G; Sup-
plemental Notes).

Using a primary tumor sample cell-
line and split-cell genome DNA as con-
trols (Supplemental Fig. S2), we further
validated the robustness of our Tasc-
WGS protocol. First, we generated 96 li-
braries of 6-pg bulk, dilute, blood gDNA
and then used it to show that tagmenta-
tion reactions and PCR occurred uni-
formly across the whole genome
(Supplemental Fig. S2B,C). To evaluate
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Figure 1. Overview of the study design. (A) Experimental flow used in this study. Lymphocytes were
sorted to 96-well plates using fluorescence-activated cell sorting to obtain one cell per well.
Thousands of those single cells were lysed, tagmented, barcoded, and amplified in their wells and
then pooled for second-generation sequencing. PBMC, peripheral blood mononuclear cells. (B)
Cartoon showing the blood donors’ ages, sex, and ID numbers: six females (F) and 10males (M) between
9 mo and 80 yr of age. (C) Sequencing depths and cell numbers for all samples in this study. The top his-
togram shows the reads counts distribution and the diagram underneath represents the relative propor-
tions of cells after filtering. Undetected, low read counts; Fail-QC, failed quality filtering; Pass-QC, passed
quality filtering. (D) Copy number profiles of representative cells with copy number alterations (CNAs) in
colors. (E) Coefficients of variation (CVs) of CNA ratio estimations. The contour plot shows both the the-
oretical CVs of CNA ratios (calculated by simulation) and the sample sizes (number of cells). The symbols
show the real CNA ratios and sample sizes for each sample in this study. The large sample size in our study
ensured that the CV was in a relatively small interval, thus providing acceptably accurate estimations. (F )
Ages and autosomal CNA percentages of each sample. The dashed line indicates a weak linear relation-
ship between age and CNA ratios.
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the sensitivity of Tasc-WGS, we sequenced both a bulk and 29 sin-
gle-cell samples of the HEK293 cell line, subsequently finding our
method capable of detecting various types of CNAs ranging in size
from 1 Mb to 26 Mb: CN gains≥3.0, range 3.06–7.91, median=
3.60; copy number losses≤1.3, range 1.20–1.30, median=1.28
(Supplemental Fig. S2D,E). To evaluate the specificity of Tasc-
WGS, we conducted CNA calling on a GM12878 B-lymphoblas-
toid cell line. First, bulk DNA genome profiling of GM12878
proved the diploid karyotype, and then we found some subpopu-
lations with shared CNAs, as well as some unique CNAs, in the 49
GM12878 single-cell sequences (Supplemental Fig. S2F). Most of
those unique CNAs ranged in size from 0.6 Mb to 10 Mb (Supple-
mental Fig. S2G; Supplemental Table S4). So, to examine whether
those small CNAs could have been data point noise mistakenly
called by the algorithm, we simulated normally distributed copy
number profiles that had multiple noise levels (Supplemental
Fig. S3; Nilsen et al. 2012). As expected, noisier data tended to
have higher false positive (FP) rates and FP CNAs were all small,
ranging from 0.6Mb to 4.8Mb (mean=2.3Mb) (Supplemental Ta-
ble S5). Although it is possible that small CNAs (<10 Mb) occurred
more because they affected fewer genes and thus affected cell sur-
vival less than larger CNAs do, it is hard to distinguish between
true and false positive calls of small CNAs. Therefore, for the lym-
phocyte samples, we decided to include only CNA calls larger than
2 Mb.

Somatic CNA events occurred commonly in lymphocytes

We examined 33,600 single lymphocytes sorted from the blood of
16 cancer-free individuals (10 males and six females; 1440–3840
single lymphocytes per individual) aged 9 mo to 80 yr (Fig. 1B;
Supplemental Table S1). Among them, 31,125 cells (92.6%) had
more than 0.3 million reads aligned to the reference genome,
and 20,594 cells (61.3%) passed the aforementioned quality filter-
ing criteria for CNA analyses (Fig. 1C; Supplemental Fig. S4A–E;
Supplemental Notes).

We found somatic CNA-containing lymphocytes in all indi-
viduals and identified 4809 cells (24.0% on average, 12.9%–

44.5% for different individuals) harboring small CNAs (2–10 Mb)
and 1500 cells (7.3%on average, 3.3%–15.2% for different individ-
uals) harboring large CNAs (>10 Mb) (Fig. 1D; Supplemental Fig.
S4F). Furthermore, we observed a few cells, from different individ-
uals, that carried similar CNAs. Some other cells carried multiple
CNAs across the whole genome (Fig. 1D). As in previous reports
(Knouse et al. 2016), copy number deletions occurred much
more often than did copy number amplifications (Supplemental
Fig. S4G,H), and the ratios of CNA-containing cells were similar be-
tween males and females (Supplemental Fig. S4I). Because large
CNAs may affect more genes and cause more serious problems
than small CNAs, we focused on the large somatic CNAs (exclud-
ing Chromosome Y due to technical challenges) that we had iden-
tified in 1397 lymphocytes.

We examined a large number of cells tominimize sampling er-
ror and to accurately assess the ratio of CNA-containing lympho-
cytes. To that end, we ran a simulation to determine the optimal
number of cells that had to be sequenced to accurately assess the ra-
tio of CNA-containing cells and found that a smaller sample invari-
ably yields uncertain assessment results (Fig. 1E). A throughput of
about 1000 or more cells per sample was ideal to achieve a coeffi-
cient of variation (CV) below 20% and thus accurate CNA assess-
ment with occurrence ratios <10%. We then checked whether
those somatic, megabase-size CNAs in lymphocytes were age-relat-

ed (Machiela et al. 2015; Vattathil and Scheet 2016) and found a rel-
ativelyweak correlation (Fig. 1F). All ourobservations suggested that
CNAs were common in lymphocytes of cancer-free individuals.

Large-size autosomal somatic CNAs occurred randomly

in lymphocytes

We further analyzedCNA profile similarities between cells to try to
capture clonal amplification signatures. Dimension-reduction
analysis of single-cell copy number profiles produced a few clusters
based on large-CNA patterns (Fig. 2A; Supplemental Fig. S5A; Sup-
plemental Notes). Chromosome 21 and Chr X CNAs separated
from the others, mostly because of their distinct aneuploidy pat-
terns, but we observed no other obvious clustering based on sex,
sample, or chromosome (Supplemental Fig. S5A). Using pairwise
Euclidean distances of CNA profiles, we found 51 cell clusters, all
with potential clonal cell amplifications (Fig. 2B–D; Supplemental
Fig. S5B; Supplemental Notes). Although clonal amplifications
among lymphocytes are not common (cell ratio = 2.3%, median
clone size = 4), we found that most individuals (8/10 males and
6/6 females) exhibited such events, with clone sizes ranging
from 3 to 105 cells. Aside from the characteristic aneuploid clones
of Chr 21- and Chr X-containing cells, the largest clone, in F01’s
Chromosome 6, contained 11 cells with an ∼35-Mb loss (Fig. 2E).

Somatic CNA events were scattered across every chromosome
(Fig. 2F), although all CNAs together could cover almost the entire
genome (99.4%). For each genomic locus that contained CNA
events, the occurrence frequency was <1% (0.0%–1.0%), except
for Chr X (1.3%–1.8%) (Supplemental Fig. S5C). We detected no
shared CNA hotspots among the participants, and CNA distribu-
tions were no different than a random distribution (Fig. 2G), ex-
cept for the obviously higher frequencies at Chr 21 and X. In
keeping with the random generation mechanism, longer chromo-
somes contained proportionally more CNAs than shorter ones did
(in a linear relationship) (Fig. 3A), whereas Chr 21 and Chr X ex-
hibited significantly higher occurrence rates than other chromo-
somes. We then examined whether certain chromosomes were
more prone to CNAs than others and found that, except for Chr
X andChr 21, all other autosomes showed similar CNA count den-
sities (Fig. 3B; Supplemental Fig. S5D).

CNA size distribution showed that copy number amplifica-
tions affect larger CNAsmore than do deletions and theywere usu-
ally aneuploidies (Supplemental Fig. S6A). Specifically, excepting
Chr 21, 57.6% (38/66) of the autosomal copy number amplifica-
tions were aneuploidies, whereas only 2.0% of the deletions were
(22/1123) (Supplemental Fig. S6B,C). These results suggest that
the mechanism for copy number gain may be different than that
for loss.

Aneuploidy occurred mainly at Chr 21 and the sex chromosomes

We identified somatic aneuploidy in almost all chromosomes, but
with a 2.4% (n=498) cellular occurrence rate, it can be easily
missed if the experimental throughput is not large enough. We
verified low-frequency autosomal aneuploidy using fluorescence
in situ hybridization assays and quantitatively confirmed the
copy number gains and losses in Chr 3, 8, 13, 18, 21, and X
(Supplemental Fig. S5E; Supplemental Table S3).

Among all the aneuploid cells, aneuploidy in Chr X predom-
inated (35 gains and 235 losses, 52.5% of the total events), fol-
lowed by Chr 21 (48 gains and 21 losses, 13.4% of the total
events) (Supplemental Fig. S6D). The remaining 60 cells contained
11.6% of the total aneuploidy events (38 gains and 22 losses).
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Chromosome 21 had about half of the autosomal aneuploidy
events (Supplemental Fig. S6E), with more gains than losses. We
noticed that Chr 21 aneuploidy occurred unevenly among individ-
uals (Supplemental Fig. S6F), as M10 showed a significantly higher
ratio of trisomy 21 (2.5% vs. 0.2%) than other individuals did.
Among all individuals, trisomy 21 occurred more in males than
in females (Supplemental Fig. S6F), but monosomy 21 occurred
equally between males and females (Supplemental Fig. S6G).

The aneuploidy occurrence rate for Chr X (270 cells, 1.31% in
total) was significantly higher than that of the other chromo-
somes, contributing to 72.2% of the cells with CNAs >10 Mb
(374 cells) (Supplemental Fig. S6H). Although allmale Chr X aneu-
ploid cells (n=15)were disomic, themajority of Chr 21 aneuploidy
events were monosomic (235 cells, 87.0%) and occurred mostly in
females (255 female cells, 15 male cells) (Supplemental Fig. S6H).
Such Chr X loss is prevalent in females aged >30 yr (228 cells)
but is rarely discovered in young females (seven cells).

Identifying aneuploidy events in Chr Y was challenging
because of its short unique genomic regions (∼17 Mb).
Therefore, we relied on reads counts, instead of copy number esti-
mations, to deduce Chr Y ploidy number, subsequently identify-
ing 115 male cells with Chr Y loss (0.9% of all male cells). To
verify the reliability of this assessment, we used reads counts to an-
alyze Chr X and Chr 21 aneuploidy and compared those results
with the previous ones (Fig. 3C–F). The reads count distribution
had a clear linear relationship amongmonosomic, normal, and tri-
somic cells, and almost all the results were consistent with the bin-
based method (98.37%).

Loss of heterozygosity and allelic bias in copy number alterations

Using phased, personalized genomic information from F03 and
F06 (Fig. 4A; Supplemental Notes), we investigated whether
somatic CNA events were allele-specific.We analyzed all copy neu-
tral chromosomes (CN=2) in 2668 cells from F03 and F06 and
found only four cells (two from F03 and two from F06, 0.1% and
0.2% per individual, respectively) contained copy neutral loss of
heterozygosity events in Chromosomes 1, 14, 21, and 22 (Fig.
4B). We then focused on CN=1 genomic regions, within which
the allelic pattern should have been either single parental or seg-
mental. Of the 72 CN=1 events that we analyzed, 70 (97.2%)
were single parental and the other two had shuffled genotypes
without segmental patterns (Fig. 4C–E; Supplemental Fig. S7), like-
ly due to the low probability of collision between a CNA occur-
rence and recombination.

We next examinedwhethermonosomyX cells were parental-
ly biased during chromosome loss and found most of the F03
monosomic X lymphocytes (86.2%, 25/29 cells) were maternal,
whereas most of the affected F06 monosomic X lymphocytes
were paternal (86.0%, 37/43 cells) (Fig. 4C–E; Supplemental Fig.
S7). To exclude possible technical artifacts and contamination,
we calculated the single-nucleotide polymorphism (SNP) density
ratio between Chromosome X and Chromosome 10 and found
that the ratio distributions for both normal andmonosomyX cells
were similar (Fig. 4F). However, when calculating the normalized
reads numbers, we found that the distribution of reads ratio be-
tween Chr X and 10 for normal cells was similar, but it was incon-
sistent for monosomic cells, as only half the reads mapped to Chr
X (Fig. 4G).

To examine whether parental preference in Chr X loss might
correlate with Chr X inactivation, we conducted bulk RNA-seq,
based on phased SNPs, to determine F03’s allele-specific expres-

sion across her whole genome (Supplemental Notes). As expected,
autosomal genes expressed unbiased biallelic expression (Fig. 4H;
Supplemental Fig. S7), but Chr X expression was greatly biased to-
ward the maternal allele, coincident with the fact that the Chr X
loss in F03 was mainly paternal (Fig. 4C,D).

Discussion

In this study, we used high-throughput Tasc-WGS to profile CNA
landscapes of more than 20,000 single lymphocytes sampled from
16 individuals. Even though CNAs were detected in blood lym-
phocytes of every donor, the occurrence rate of CNAs >10 Mb
for each individual was rather low and correlated little to age.
Such low-frequency events can be accurately identified only by
profiling thousands of single cells per person, and from the tech-
nological perspective, the scalability of single-cell WGS is key to
enabling such observations. Additionally, a benefit of large-scale
high-performance single-cell sequencing libraries is that we can
use them to identify rare CNA events at high resolution, a formerly
impractical achievement using other throughput-limited single-
cell WGA methods or by using bulk samples.

We found that CNAs, including the large ones (>10Mb), were
widely distributed throughout the lymphocyte genomes, thus re-
vealing that, on average, about 5%of the lymphocytes of a healthy
human have large CNAs. Also, losses were more prevalent than
gains, thus suggesting that losses occur more readily than gains
do. Previous studies of neurons showed a similarly scattered CNA
pattern throughout the genome (Cai et al. 2014; Chronister et al.
2019). Some researchers think that the activity ofmobile elements,
like that of the active long interspersed nuclear element 1 during
brain development, is a major cause of CNAs (Richardson et al.
2014; Evrony et al. 2015; Erwin et al. 2016; Sanchez-Luque et al.
2019). However, unlike that of neurons, the lymphocyte regener-
ation rate is high, and CNAs harbored in precursor cells may pass
to descendent cells via cell differentiation or division. Indeed,
most CNA-containing cells are not clonal—we observed only 51
clones in our 20,594-cell sample. In terms of the number of cells,
the sizes of these clones were insignificant, thus indicating that
rather than being generated in the early developmental stages,
they were newly generated. Lymphocytes can expand throughmi-
tosis, so some low-frequency CNA events may be inherited.

TheCNAs seemed to occur in no particular location across the
genome, except in Chromosomes 21, X, and Y, where most of the
aneuploidies were found. Most segmental CNAs were randomly
scattered across the whole genome, but whole-chromosome
CNAs likely affected many genes, either by completely silencing
or altering their expression levels (Zhang et al. 2009; Girirajan
et al. 2011). As a result, aneuploidies are lethal in most cases
(Hassold and Hunt 2001; Santaguida and Amon 2015). However,
2.4% of the cells in our study had aneuploid events, especially at
Chr 21, which displayed trisomy, themost prevalent human aneu-
ploidy (Richardson et al. 2014; Sanchez-Luque et al. 2019). This
consistency suggests similar selection outcomes for aneuploid
events in both humans and lymphocytes.

Aneuploidy occurs more in sex chromosomes than in auto-
somes. Although our results showed a weak correlation of age
with CNA occurrence, monosomy X is rare in young females but
becomes more prevalent in females over age 30, for whom the
rate can reach 2%–7%. Such a chromosome loss was parentally al-
lele-specific in the affected individuals. According to haplotype in-
formation and bulk RNA-seq data, we found that most lost X
Chromosomeswere inactive (Xi). These results agreewith previous
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Figure 4. Single-cell (female) haplotype analysis. (A) Haplotype identification pipeline of representative chromosome-loss cells. For each candidate, two
parental genomes were sequenced by whole-genome sequencing (WGS). Then, using WGS data or merged single-cell data (pseudobulk), we identified
each candidate’s heterogeneous sites. Combined with parental data, the heterogeneous sites were labeled paternal or maternal. Finally, we analyzed each
candidate’s single cells that had chromosome loss and extracted heterogeneous sites covered by reads, identifying each as paternal or maternal. (B) Copy
number profiles and haplotype identifications of cells with lost heterozygosity. Black dots show the copy number for each genome locus and dashed lines
indicate the integer copy number (0,1,2,3). Colored dots represent the sources of a heterozygous site (red, maternal; blue, paternal) and the pie charts
demonstrate the paternal/maternal compositions (numbers of single-nucleotide polymorphisms [SNPs]) of heterozygous sites on each chromosome.
Results from normal cells are shown on the bottom for comparison. (C) Paternal and maternal allele composition of two individuals’ cells with lost X
Chromosomes. Most of the X-loss cells were of the same parental allele. (D,E) Copy number profiles and haplotype identifications of cells with lost X
Chromosomes and of normal cells, as controls (bottom lines). (F) SNP densities and (G) reads densities on chromosomes of normal and Chr X-loss cells.
The contour plots show the normal cells’ distributions and the scatterplots show the Chr X-loss cells. Cells with lost X Chromosomes that have lower reads
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RNA-seq reads of F03 cells. Most of the genomic region displays biallelic expression (allele composition ∼50%), but Chr X clearly shows a maternal bias,
which is corrected when most Chr X-loss cells are paternal.
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studies that suggested that the X inactivation skewness pattern is
more prevalent in older than in younger individuals (Sharp et al.
2000; Sandovici et al. 2004; Amos-Landgraf et al. 2006; Machiela
et al. 2016; Zito et al. 2019). This association may be due to the le-
thality of a lost active X, so most monosomy X cells are missing Xi
because negative selection assumes a randomly generated loss dur-
ing mitosis. Unlike the high incidence of monosomyX cells, triso-
my X cells are rarely found. This imbalance further suggests that
Chromosome X aneuploidy likely does not result from simple un-
even separation duringmitosis. Additionally, comparedwith auto-
somal aneuploidies, Xi loss is both nonlethal to affected cells and
under positive selection. Therefore, we observed a higher inci-
dence of monosomy X cells than cells with autosomal events.
Another possible contributing factor is that conformational
changes to Xi may ease its loss during mitosis (Galupa and Heard
2018). More investigation is needed to clarify the mechanisms of
these phenomena.

Our results demonstrate how shallow WGS, after extending
throughput to 1000 single cells, enables quantitative identifica-
tion of rare copy number change events. However, the sensitivity
of CNA detection was limited in this study because, although it
performs better thanmost other existing methods, Tasc-WGS har-
bors intrinsic coverage noise due to amplification bias and cover-
age stochasticity. To lower that false positive CNA identification
rate, we applied strict criteria to screen such events, even though
it caused us to lose some sensitivity and resolution. Studies of can-
cers (Beroukhim et al. 2010; Navin et al. 2011; Jacobs et al. 2012;
Laurie et al. 2012) and neuronal disorders (Yurov et al. 2007;
Bundo et al. 2014; van den Bos et al. 2016) would benefit from
the ability to identify smaller CNAs, but improvements of both ex-
perimental protocols and computational algorithms are needed.
For instance, the commonly used data processing pipelines for de-
termining copy number are based on bulk sequencing or micro-ar-
ray data, not single-cell data. With the popularity of single-cell
profiling and the availability of more data, such as ours, a need
for more appropriate computational approaches must be met
soon.

Methods

Ethics approval

This study was approved by the Ethics Committee of Tsinghua
University (No. 20180011), Ethics Committee of the Cancer
Hospital, the Chinese Academy of Medical Sciences and Peking
Union Medical College (No. NCC2017G-002), and the Ethics
Committee of Fuwai Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College (No. 2017-880).

Patients and clinical samples

We recruited Fuwai Hospital patients who had cardiovascular dis-
eases, as well as their visiting family members. A single patient
with colon cancer was enrolled through the Cancer Hospital.
Patients and family members were given full research program de-
scriptions, which included potential risks. We obtained informed
consent from all patients and family members before genetic test-
ing and then collected fresh blood samples from both healthy do-
nors (M01–M03, F03–F06) and cardiovascular disease patients
(M04–M10, F01, F02), as well as a tumor sample from the cancer
patient after surgery.

Peripheral bloodmononuclear cell isolation and single-cell sorting

We used Ficoll-Paque PLUS (Cytiva 17-1440-02) according to the
manufacturer’s instructions to isolate mononuclear cells from
fresh blood samples. Briefly, for each sample, Ficoll-Paquemedium
(3mL)was added to a 15-mL centrifuge tube and then a blood sam-
ple (2 mL) diluted 1:1 in phosphate buffered saline (PBS) was care-
fully layered onto the Ficoll-Paque medium. The tube was then
centrifuged at 400g for 30 min at room temperature. The second
layer, which containedmononuclear cells, was pipetted out, trans-
ferred to a new tube, and washed twice in 10 mL PBS before being
resuspended in 1 mL PBS-bovine serum albumin (BSA) buffer.
Typically, we isolated 1×106 cells from each sample. We then
used a FACSAria III sorter (BD Biosciences), gated for lymphocytes
and singlets, to sort out single cells according to forward and side
scatter signals.We then placed each sorted, single cell directly into
2 µL lysis buffer (30 mM Tris-HCl [pH=8.0], 10 mM NaCl, 0.2 µL
Proteinase K [Qiagen 19133], 5 mM EDTA, and 0.5% Triton X-100
[Sigma-Aldrich T9284]) in a well of a 96-well plate.

Single-cell isolation from a tumor tissue

Weground the colorectal cancer sample (∼0.1 cm3) using a dounce
glass tissue grinder. The cells were then washed, resuspended in
PBS, and filtered through a Falcon 40-µm cell strainer. They then
underwent fluorescence-activated cell sorting (FACS), gated for
single cells, and each cell was sorted into a well in a 96-well plate.

Culturing and isolating single cells and optimizing cell lines

We used GM12878 cells (Coriell Institute) and HEK293 cells
(American Type Culture Collection) for protocol optimization.
Those cells were cultured at 37°C under 5% CO2 in a humidified
incubator. We cultured GM12878 cells in RPMI 1640 medium
(Gibco C11875500BT) with 10% fetal bovine serum (Gibco
10100147) and 1% penicillin–streptomycin (Gibco 15140122),
then spun the cell suspension at 500g for 5 min, discarded the su-
pernatant, and washed the cell pellet twice using PBS before resus-
pending it in PBS with 1% BSA. We cultured HEK293 cells in
DMEM medium (Gibco 11965092) with 10% fetal bovine serum
and 1%penicillin–streptomycin. The cells were thenwashed twice
using PBS, detached by adding 1 mL 0.25% trypsin-EDTA (Gibco
25200056) to their culture dish, centrifuged at 500g for 5 min,
and recovered in 1% PBS-BSA buffer. All cells underwent FACS
that was gated for single cells, and each cell was subsequently sort-
ed to a well in a 96-well plate.

Purification of genomic DNA

We purified genomic DNA (gDNA) using a Genomic DNA
Purification kit (Thermo Fisher Scientific K0512) according to
the manufacturer’s instructions. We then quantified that DNA
with a Qubit fluorometer system (Invitrogen) and diluted it to 6
pg/μL.

Single-cell whole-genome amplification and sequencing

The 96-well plates were then centrifuged at 2000g for 1 min and a
lysis reaction proceeded at 50°C for 3 h. We added tagmentation
buffer (1× TD buffer, 0.015 µL TTE Mix V50 [Vazyme TD501],
0.625× protease inhibitor cocktail [Promega G6521], and 1 mM
MgCl2) to reach a volume of 10 µL per well and then incubated
the plates at 55°C for 1 h. Tagmented DNA fragments were ampli-
fied by adding 12 µL PCRmaster mix composed of 11 µL Q5 High-
Fidelity 2× Master Mix (New England Biolabs M0492) and 0.5 µL
each of 10 mM Nextera i5 and i7 index primers. PCR thermocy-
cling conditions were 72°C for 8 min, 98°C for 30 sec, 24 cycles
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of 98°C for 15 sec each, 60°C for 30 sec, and 72°C for 90 sec, with a
final incubation at 72°C for 5 min. The subsequent PCR products
were merged in groups of five plates (480 single-cell wells) and
then purified using 1× VAHTS DNA clean beads (Vazyme N411).
Library quality control was conducted on a 5200 Fragment
Analyzer System (Agilent M5310AA) to determine fragment distri-
bution, and then qualified libraries were quantified and sequenced
on a HiSeq X Ten System (Illumina) following the manufacturer’s
standard protocols.

Bioinformatic analyses

Data processing

Paired-end reads were aligned to the human reference genome
(hg38) using nvBowtie (https://github.com/NVlabs/nvbio), a
graphics processing unit-accelerated version of Bowtie 2
(Langmead et al. 2009). Then, each cell’s mapped reads were
demultiplexed using perfectly matched cell barcodes. Typically,
0.3 million reads were sufficient for copy number profiling at a
200-kb resolution. Before downstream analysis, we excluded cells
with less than 0.3 million reads, keeping reads mapped with min-
imum mapping quality scores of 20, and removed PCR duplicates
using SAMtools (Li et al. 2009).

Copy number profiling and quality control

We applied two methods, HMMcopy (Shah et al. 2006) and
DNAcopy (Olshen et al. 2004), to calculate the copy number pro-
files of each sample at the 200-kb resolution, with GC content and
mappability normalized. Both algorithms are commonly used in
single-cell studies, but they each give different identification re-
sults for small size variations (Knouse et al. 2016). HMMcopy
uses a hidden Markov model (HMM) to determine copy number,
whereas DNAcopy applies circular binary segmentation (CBS) for
analysis. We combined the two methods to further increase the
specificity and accuracy of CNA identification.

We used the Bayesian information criterion as a metric to
evaluate model fitness with different computational parameters
in HMMcopy and DNAcopy calculations, using the strictest pa-
rameters (alpha=10−4 for DNAcopy and e=0.9999 for HMMcopy)
under the same fitness to enhance CNA calling specificity.

After segmentation, we used three features to assess the qual-
ity of the single-cell sequencing results and then filtered out low-
quality cells and incorrect segmentation calls. First, we checked
the average of all copy numbers identified in each bin (degree of
ploidy abnormality), and that value was greatly influenced by
cell ploidy. Cells with abnormal ploidy at the whole-genome level
(ploidy>3) were discarded. We then checked the median absolute
pairwise difference (MAPD), typically used for indicating amplifi-
cation evenness, to rule out poorly amplified cells (MAPD>0.6).
Finally, we checked each cell’s number of segments. We noticed
that some cells exhibited acceptable MAPD values but had frag-
mented copy number profiles. This could have been caused by in-
complete lysis, contamination from other cells or cell debris, or
during the S-phase, as some studies have suggested (Chen et al.
2017; Laks et al. 2019). Because cells with a CNA or a fragmented
chromosome will have more segments and slightly higher MAPD
values than would normal cells, the other genomic regions of
those cells are still high-quality. So, we then calculated the number
of segments (degree of fragmentation) and MAPD for each chro-
mosome and used the third highest values to represent each cell’s
value.

Identification of copy number alteration events

We identified each CNA by combining the two algorithms, CBS
and HMM, and keeping the double-positive counts as true events.
Because both algorithms are sensitive to the local contents of copy
number profiles (Zhang et al. 2015; Knouse et al. 2016), especially
for losses, we developed a shuffling pipeline to improve the confi-
dence of identifying CNA events.

For each cell with CNAs, segments with amplification or dele-
tion were shuffled throughout the genome and were re-identified
byCBS andHMMalgorithms.We identifiedCNA events with high
confidence by repeating the shuffle process 20 times and averaging
the copy number values identified for a given shuffled segment. A
loss was defined as a segment with a copy number value <1.4. Only
those CNAs >2 Mb were kept for downstream analysis.

To avoid false identification affected bymapping uniqueness,
we ruled out those CNAs either located near centromeres (overlap-
ping more than 40%) or with disperse copy number profiles (with
larger deviations [mean or median>0.4] between the copy num-
ber values of bin and segment, usually at the chromosome ends).

Simulation of CNA profiles

Because bins of CNA profiles are normally distributed (Nilsen et al.
2012), we generated normally distributed simulated CNA data to
investigate false positive calls introduced by the algorithm. We
set σ values to range from 0.4 to 0.8 and then generated 1000 sim-
ulated CNA profiles for each σ, replicating the process three times.
We then adopted the same CNA calling pipelines and counted the
FP CNA events in each batch.

Estimating the coefficient of variation of CNA identification

Large CNAs are rare events and vulnerable to sampling errors.
Therefore, we simulated the sampling process by sampling differ-
ent numbers of cells (sample size, from3 to 105) from106 cells hav-
ing different ratios of CNA-containing cells (from 0% to 20%). We
repeated each test 100 times to determine sufficient sample size
and then calculated the coefficient of variation for each condition.

Clone identification

We first used dimension reduction to view all the cells with >10Mb
of CNAs. First, CNA profiles having 200-kb resolutions were
smoothedusing a 4-Mbwindow, and then, usingmultidimension-
al scaling, they were transformed into a low-dimensional represen-
tation. We adjusted the number of dimensions representing each
chromosome (each dimension represents ∼10-Mb CNA profiles)
and concatenated all chromosomes. Then, we were able to visual-
ize low-dimensional representations of CNA profiles in two di-
mensions by using t-stochastic neighbor embedding.

We identified clonal CNAs by calculating the relative CNA ra-
tio in every chromosome for every individual. Specifically, for each
individual, we calculated either the fraction or the number of
CNAs in each chromosome to represent the enrichment of CNAs
in each and then normalized those values based on chromosome
lengths.

To further investigate the clonal CNAs, we calculated the
Euclidean distance between cells for every individual and identi-
fied similar cell pairs according to their distance distributions.
We then constructed an undirected graph using cells as nodes
and the Euclidean distances as edges and identified clones as max-
imally connected subgraphs.
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Haplotype calling

We first genotyped genome sequencing data on all loci of the
whole genome with the same pipeline. Reads were first trimmed
and filtered using the following criteria. The adaptors were re-
moved according to the reverse complementary sequence of the
paired-end reads, and filtered reads were dynamically trimmed
with a Phred cutoff of 20. The remaining reads were then mapped
to the human reference genome using Bowtie 2 (MapQ≥40, XM<
4), and whole-genome genotypes were called using the
UnifiedGenotyper mode of GATK-3.5 (DePristo et al. 2011). We
performed heterozygosity analysis with a minor allele frequency
cutoff between 30% and 50% and with 0%–20% homozygosity.
Variant call format (VCF) files of three sample genotypes were
merged into one VCF file, and heterozygous loci of those three
samples were extracted into a locus file as a union for VCF scan-
ning. Only those loci from which either the mother is heterozy-
gous and father homozygous or the father is heterozygous and
mother homozygous were used to phase the child’s haplotype.

Analysis of Chromosome X

For each single cell from F03 and F06, reads with single-nucleotide
polymorphisms were identified using SAMtools (base quality >
30). Then, the haplotype for each SNP was labeled as paternal, ma-
ternal, or neither (likely due to sequencing error) using the haplo-
type map. Haplotype counts for each bin were the sums of every
SNP site in that bin. FormonosomyX cells, SNPs in every binwith-
in segments that identified a loss were summarized and identified
as paternal, maternal, or undetermined (binomial test, P< 0.001).

Analysis of Chromosome Y

Because Chr Y had few uniquely mapped reads, we had to develop
a special method to determine its copy number. Reads coverage of
Chr 21, X, and Y were calculated by SAMtools normalized by se-
quencing depth, and then cells with Chr 21 and Chr X aneuploi-
dies were identified by coverage depth. If we calculated the
percentage of sequenced reads belonging to Chr 21 or Chr X of
each single cell, we could also easily identify cells with normal or
altered copy numbers in those two chromosomes. Actually, we
found that more than 98% of those results were consistent with
the results determined by coverage depth. We then applied our
percentage classification method to identify the Chr Y copy num-
ber for each single cell.

Data access

Thewhole-genome and RNA-seq data generated in this study have
been submitted to the Genome Sequence Archive (GSA; https
://ngdc.cncb.ac.cn/gsa-human) in the National Genomics Data
Center, China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences under acces-
sion number HRA001513. The scripts generated for the bioinfor-
matics analysis are available in the Supplemental Code.
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