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Abstract

Background: Aedes aegypti and Aedes albopictus are the main vectors for the transmission of several viral pathogens,
in particular, dengue, Zika and chikungunya. In the absence of vaccines and treatment, control of Aedes mosquitoes is
the only means of keeping these diseases in check. Aedes control is difficult, and it is, therefore, necessary to evaluate
the efficacy of novel control methods, particularly those targeting adult and exophilic Ae. albopictus populations.

Methods: We carried out the first evaluation of the effectiveness of a field trap barrier system, i.e. a “removal trapping”
outdoor control strategy for Ae. albopictus in southern France.

Results: The removal trapping control strategy is an effective system, able to reduce to almost zero the biting rate of
the tiger mosquito in and around houses with traps installed. This strategy has the advantage of being a non-chemical
method, which is environmentally friendly and does not affect non-target fauna. Nevertheless, it has several constraints
including the cost of the CO2 required for the system to function. However, the system could be optimized by reducing
the costs and combining it with other control strategies within the framework of integrated vector management.

Conclusions: We provide the first evidence of the effectiveness of this trap barrier system, which is based on the
combined effect of (i) removing adult mosquitoes living in the area, and (ii) hampering the migration of mosquitoes from
outside into the treated area. Further investigation is needed to understand its efficacy for other species, other locations
and at-risk communities, and to evaluate its application for reducing the prevalence of dengue, Zika and chikungunya
diseases.
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Background
Vector-borne diseases are among the leading causes of
mortality and morbidity in humans, with more than one
billion people infected and more than one million deaths
per year [1]. Increasing travel and trade over recent de-
cades and uncontrolled urbanization have made this a
global threat and have escalated the disease burden and
risk. At present, the emergence of the Zika virus along
with increasing incidences of dengue and chikungunya

outbreaks have made Aedes-borne disease control and
surveillance a public health priority [2].
The etiological agents of these diseases, mainly trans-

mitted by Aedes aegypti and Aedes albopictus, have
emerged not only in tropical regions but also in temper-
ate areas, due mainly to the spread of Ae. albopictus [3].
This species has been established in France since 2004,
primarily on the Mediterranean coastline, including
Nice. The populations of Ae. albopictus from this area
were shown to be competent for transmission of chikun-
gunya and dengue viruses under laboratory conditions
[4] and, to a lesser extent, for Zika and yellow fever vi-
ruses [5, 6]. Aedes albopictus may be present at high
densities and is responsible for several autochthonous
cases of dengue and chikungunya in southern France
[7–12]. It has also been reported as the vector of several
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outbreaks of dengue and chikungunya viruses in other
European countries [13–15]. To reduce the risk of
Aedes-borne viruses and mosquito nuisances in Europe,
it is of prime importance to control Ae. albopictus
populations.
Controlling the Ae. albopictus population is a difficult

and complex task, as these mosquitoes can breed in
ephemeral and cryptic containers, which are ubiquitous
in domestic environments [16, 17]. Recent reviews of the
evidence for the effectiveness of Aedes control strategies
(including against Ae. albopictus) show them to be usu-
ally low [18]. Chemical control using insecticides has
been the main strategy for controlling adult Aedes popu-
lations over the last 60 years, but it has numerous draw-
backs including insecticide resistance, environmental
contamination, bioaccumulation of toxins, impact on
non-target fauna and limited acceptability. There is,
therefore, an urgent need to find new effective strategies
that target adult populations [19] and, especially for Ae.
albopictus, with a predominant exophilic fraction of the
populations [3].
In light of all this, it is of prime importance to investi-

gate new mosquito control methods for the future.
These methods should be complementary to current
strategies and preferably (i) target adult populations, in
particular, the host-seeking females (even if larval con-
trol is in priority); (ii) use non-chemical insecticides,
given the emergence of a new generation (or population)
of insecticide-resistant mosquitoes; and (iii) be species-
specific to avoid negative impacts on non-target organ-
isms and, more broadly, on the environment.
Removal trapping involves the use of target-specific at-

tractants to lure large numbers of a specific insect spe-
cies and then kill them to reduce/eliminate a population
in a pre-defined area [20]. This strategy has been used
successfully against Hippelates gnats in the USA [21],
tsetse flies in West Africa [22–24], Stomoxys calcitrans
in Australia [25] and tabanids in the USA [26]. It has
been a solution for eliminating the insect vectors of
sleeping sickness in many foci in West Africa [24].
Few studies have been conducted on the use of trap

barrier systems to control mosquitoes, although mention
should be made of the various experiments that have
been carried out since 1996 to control salt-marsh mos-
quitoes (Ochlerotatus taeniorhynchus) in Florida [27]
and in the Gulf of Mexico [28].
Despite these investigations, a few studies have re-

ported these barrier traps as being ineffective in control-
ling mosquitoes [29]. A review of these studies was
carried out in the past [20, 28] and, to our knowledge,
no new experiments have been recently carried out with
mosquitoes. A similar control strategy with the wide use
of BG-Sentinel traps (Biogents AG, Regensburg,
Germany) - but not as a trap barrier system - was used

for mass trapping of Aedes aegypti in Brazil [30]. Re-
cently, intervention with BG-Sentinel traps in conjunc-
tion with BG-Lure has resulted in a reduction in Ae.
albopictus biting pressure in Italy [31].
This study aimed to evaluate the effectiveness of a new

trap barrier system in reducing the biting rate of Ae.
albopictus in individual houses during seasonal peak
activity.

Methods
The study was conducted from July to September 2016
in residential areas of the village of Le Bar-sur-Loup in
the Provence-Alpes-Côte d’Azur, France, which includes
800 houses and has 1447 km2 surface and an average
altitude of approximately 300 m above sea level (Fig. 1).
To evaluate the efficacy of the trap barrier system, we

selected three pairs of houses (each pair comprising one
treated and one control house) with similar ecological
and geographical environments and altitudes (Fig. 1). To
choose the treated/control houses, Ae. albopictus popu-
lations were monitored with ovitraps (3 per house) dur-
ing the 3 weeks prior to this experiment. Based on this
monitoring, three classes were established according to
egg density including low, medium and high with two
sites in each class. Then, for each class a treated and a
control site was randomly chosen. The residents were
fully informed of the test procedures and accepted by of-
ficial affirmation to participate in the study for 3 months
during Ae. albopictus peak activity in this area [32].
Then, HLR (human landing rate) was performed during
2 weeks in the absence of the trap barrier (1st and 2nd
weeks). The trap barrier systems were installed at the
treated houses at the end of week 2. The system, BioBelt
Anti-Moustiques, is a commercial trap system developed
and patented by the French company HBM Distribution
SAS. It consists of a network of traps positioned at an
average of 5 m distance around the area to be protected
and connected to a control center with a programming
unit equipped with 34 kg bottles of CO2 and electricity
supply for the trap fans (Fig. 2a, b). Individual traps use
the Biogents mosquito trapping technology [33]. The
number and arrangement of traps depended on the size
and configuration of the treated houses and the vegeta-
tion surrounding them. This resulted in 9, 13 and 18
traps installed to protect the three experimental houses
(Fig. 2c-e, respectively). Each array of traps was config-
ured as a belt surrounding the area of the garden and
the inhabited house. Mosquitoes were attracted to the
traps by CO2 and BG-lure attractants, which have a syn-
ergistic effect that maximizes mosquito catches [32, 34].
Each trap releases CO2 uninterruptedly in a discontinu-
ous dispersion cycle at a rate of 20 g/h for 10 s followed
by a 10 s pause, giving an average release rate of 10 g/h.
For each house, the installation of the trap barrier
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Fig. 2 Biobelt traps installation in the treated houses. a Scheme of the trap function, based on the Biogents mosquito traps. b Photo of an
individual trap. c-e Spatial schematic depiction of the array of the “belt” of traps around three treated houses, prospected in the area Modules-
traps are shown in green, control center in blue and electricity inlet in red. The area protected by the barrier is hatched

Fig. 1 Geographical positions of treated (red) and control (yellow) houses in the present study
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system was made of several elements: the traps, the elec-
trical system and CO2 connections, the programming
unit, a 12 V transformer, and CO2 bottles. Twelve, 16
and 23 h of a technicians work time were devoted to the
installation of the system. Around 630 h of emission of
CO2 per house were used during this study, yielding a
total of 6.3 kg of CO2 per trap, and as a result 56.7, 81.9
and 113.4 kg of CO2 for each house, respectively.
Human landing rate (HLR) of Ae. albopictus in each of

the treated/control houses was measured trough collect-
ing mosquitoes by a single volunteer, the first author of
this study (MA). Naked legs and hands were exposed to
the bites of Ae. albopictus for 30 min in each house-yard
corresponding to the area used by owners for outdoors
activities, inside the trap barrier in the case of treated
houses. Human landing catch (HLC) sessions (4 sites
per day) took place daily before sunset (17:00 to 21:00 h)
[35]. Mosquitoes were captured by electric mosquito
killer racket, which is appropriate for active mosquitoes,
such as Ae. albopictus. This method has the advantage
that it avoids miscounting HLC due to multiple inter-
rupted blood feeding. Moreover, it is easier to capture
Ae. albopictus than with a mouth aspirator. Each work-
ing day, 4 sites were sampled, according to a
randomization sampling. Each site was sampled 42 times
during 13 weeks, with a total of 252 sampling sessions.

Every week, the numbers of adult mosquitoes caught by
the traps were counted and the species identified under
a stereomicroscope. Daily temperature and humidity
were recorded at each site throughout the study period
by data loggers (1/house).
After devising a protocol for data exploration [36],

statistical analysis of treatment efficacy was carried out
using a generalized linear mixed model (GLMM) with
negative binomial distribution as the data were over-
dispersed using the automatic differentiation model
builder (glmmADMB) package [37]. The response vari-
able was the human landing catch, the explanatory vari-
able control/treatment and the random variable ‘house’.
Statistical analysis was performed with the R software
version 3.2.2.

Results
The trap barrier system was highly efficient in reducing
the Ae. albopictus biting rate to almost zero at the
treated houses 6 weeks after the beginning of the inter-
vention (Fig. 3). The differences between the treated and
control houses in human biting rates were highly statisti-
cally significant in the negative binomial GLMM analysis
(Z = -7.65, P < 0.0001). A progressive diminution to 50%
was observed in the first week, a further reduction by
half in the fifth week, and a progressive reduction to

Fig. 3 Human landing rates at treated (Biobelt trap barrier) and control houses before and after installation (grey filled) of the trap barrier
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zero bites in the 6th week and up to the end of the ex-
periment. These gradual reductions were consistent in
all the houses with trap barriers (Fig. 4). In contrast, the
biting rate in all the control (non-treated) houses was
constant throughout the study, with some weekly varia-
tions due to other environmental factors (Figs. 3 and 4).
Most of the insects caught by the traps (94%) were

Ae. albopictus mosquitoes, followed by moths (4%)
and Culex pipiens (2%). In this experiment, the sys-
tem does not, therefore, affect non-target fauna, in
particular, pollinators. The results of the trap catches
are presented in the Additional file 1: Fig. S1. The
variations in daily temperature and relative humidity
recorded by the data loggers are shown weekly in
Additional file 2: Fig. S2. The database of the results
is included as Additional file 3: Table S1.

Discussion
We have shown the barrier trap system to be effective
in reducing to almost zero the biting rate of Ae. albo-
pictus with semi-individual protection in an enclosed
environment. At a time where there is evidence of
the low effectiveness of some Aedes control strategies
[11, 18, 38–41], this method could represent a prom-
ising controlling tool of Ae. albopictus for specific
areas. The attractant-baited barrier, sometimes re-
ferred to as removal trapping, was first used with in-
secticides applied by aerial spraying or hand-held
equipment to control tsetse flies and salt-marsh

mosquitoes [28] as an alternative method of control-
ling adult populations. In this study, we have demon-
strated, for the first time, its effectiveness in reducing
human contact with Ae. albopictus.
The method is effective in eliminating Ae. albopic-

tus mosquitoes in the treated area and represents
clear benefits as a non-chemical, environmentally
friendly strategy with species-specific application.
Nevertheless, it has some constraints. First, the
method needs some time (weeks) before it becomes
completely effective and succeeds in eliminating the
mosquito population within the barrier system. A
possible solution to this problem would be to install
the trap barrier at the beginning of the mosquitoes’
active season, thereby preventing development of the
mosquito population within the barrier system, and
combining with other control methods, i.e. the ovi-
traps. Second, CO2 is expensive, and therefore, the
ways of reducing released amounts need to be ex-
plored (around 90 kg of CO2/house were used here).
In addition to the cost of the CO2, the cost in electri-
city, materials, and personnel must be added. There-
fore, at present, it would be difficult to generalize this
method as an on-going control tool in a routine man-
ner. To optimize its efficiency, the key challenge is to
reduce CO2 production costs and/or consumption
while maintaining efficacy. It should also be imple-
mented in an ongoing integrated vector management
strategy synergically with other control methods

Fig. 4 Human landing rates at each of the treated (Biobelt trap barrier) and control houses after the beginning of the treatment. The curves
represent the results of a generalized linear model with negative binomial distribution
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targeting the immature population (source reduction,
environmental management, larviciding), and any
other sustainable adult mosquito control method.
Promising results may also be obtained by combining
this method with other tools targeting the gravid
population, such as autocidal gravid traps (AGO) or
gravid Aedes traps (GAT), which have already shown
encouraging results [42, 43]. The trap barrier system
could also be used to protect sensitive areas, such as
schools, retirement homes or hospitals.
This work raises several research questions regarding

improvements to these kinds of vector control methods.
There is, for example, a need to investigate the re-
colonization dynamic of the study area by Ae. albopictus
after removing the traps. Moreover, the capture
effectiveness of each module of the barrier as a function of
its micro-environmental conditions needs to be better
understood. Proof of concept should also be
demonstrated for other species, in particular, more endo-
philic species such as Ae. aegypti. Also, it is of importance
to evaluate the effects of the barrier system on the disease
prevalence (dengue, Zika, chikungunya) as well as biting
rate. To make this barrier trap viable for use on a larger
scale, a reduction in operating costs could be made by de-
creasing CO2 use, either by reducing the flow into each
trap or by increasing the distance between each trap.

Conclusions
We have shown that among the various techniques for
controlling exophilic adult Aedes populations, barrier
traps are an effective, odourless and eco-friendly method
for reducing Ae. albopictus biting rates and possibly other
mosquito species in a given area. Further investigations
are needed to optimize application of this promising
method and to evaluate its performance in other locations,
including at-risk communities, and with other
hematophagous vectors. Further studies aimed at increas-
ing the impact of Aedes control interventions are needed,
and guidelines and strategies need to be developed for re-
ducing the burden of arboviruses diseases. We are opti-
mistic that once it is improved and combined with other
tools, this strategy will contribute to the panel of new
methods that will open a new era of successful Aedes con-
trol, and consequently the control of arboviruses and
other vector-borne diseases.

Additional files

Additional file 1: Figure S1. Variations in daily captures of Ae.
albopictus among traps. (TIFF 102 kb)

Additional file 2: Figure S2. Variations in daily temperature and relative
humidity recorded weekly by data loggers. (TIFF 111 kb)

Additional file 3: Table S1. Database of the results analyzed in the
present study. (XLSX 22 kb)
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