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Abstract Molecular dynamics simulations can now track

rapid processes—those occurring in less than about a

millisecond—at atomic resolution for many biologically

relevant systems. These simulations appear poised to exert

a significant impact on how new drugs are found, perhaps

even transforming the very process of drug discovery. We

predict here future results we can expect from, and

enhancements we need to make in, molecular dynamics

simulations over the coming 25 years, and in so doing set

out several Grand Challenges for the field. In the context of

the problems now facing the pharmaceutical industry, we

ask how we can best address drug discovery needs of the

next quarter century using molecular dynamics simula-

tions, and we suggest some possible approaches.
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Introduction

Understanding the mechanisms underlying the behavior of

chemical and biological systems requires scrutiny at spatial

and temporal resolutions that challenge current experi-

mental techniques. Molecular dynamics (MD) simulations

are being increasingly partnered with experiments in this

quest because simulations can track system behavior across

a vast spatiotemporal domain—length scales up to thou-

sands of ångströms, with atomic precision, and timescales

up to milliseconds, at femtosecond resolution. This power

of simulations has been further increased by recent meth-

odological advances. Here, we predict what the next

25 years of MD simulations may bring, especially regard-

ing their application to the search for new drugs.

Novel computational methods, including MD simula-

tions, have assumed an ever growing role in drug discovery

over the past quarter century. Yet, despite having learned and

contributed much, we face many challenges ahead. To take

novel computational methods to the next level—such that

they radically alter the very landscape of drug discovery—

we must grapple with those challenges and rise above them.

This essay is meant to be thought provoking—we raise

more questions than we answer. It is arranged such that the

knowledgeable reader can easily skip to the parts of

interest. We begin by reviewing the challenges, using any

technique, including computational ones, in finding new

drugs. Next, we compare the computational state of the art

of 25 years ago with that of today, with a particular

emphasis on MD simulations. Following brief comments

on the nature of innovation and the art of making predic-

tions, we make a series of straightforward predictions on

the future directions of MD simulations, including partic-

ular ways simulations might be used in drug discovery;

some key methodological improvements we believe will be

needed for success are discussed. We then turn our atten-

tion to several ‘‘Grand Challenges’’ for the field, including

a rather audacious goal on how simulations might be used

in drug discovery. We conclude with our thoughts on how

MD simulations are perceived by the larger scientific

community, and on the importance of setting goals.
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What makes finding a drug so difficult?

Computational chemistry methods have become deeply

integrated into drug discovery over the past 25 years [1,

2], expanding significantly beyond early work on quanti-

tative structure–activity relationships (QSAR) [3], com-

puterized chemical structure representation [4], and

computerized compound, reaction, property, and struc-

ture–activity databases [5]. Indeed, computational methods

have become so much part of the very fabric from which

new drugs are woven—simply ascertaining their specific

impact is quite difficult—that their continued role in drug

discovery has been questioned as the pharmaceutical

industry faces looming scientific and economic challenges.

It is thus prudent to ask whether we are focusing our

efforts where they yield the most benefit. Are we

addressing the key challenges facing the pharmaceutical

industry?

Productivity is one of the most significant challenges

facing the pharmaceutical industry, with $50 billion spent

annually to produce only *20 new drugs [6]. Ever-shifting

organizational structures hamper success [7–9], but the root

problem is simply that most new drug projects fail—only

*3% of projects ever produce a marketed drug. It is cru-

cial to understand at what stage in the pipeline projects fail,

for what reasons, and then to ask how computational

approaches can help avert those failures.

Drug discovery—the focus of most computational

chemistry efforts—is tolerably successful but needs

improvement: about 35% of discovery projects succeed, on

average, in delivering experimental drugs ready for clinical

testing. The project stages of target identification and

screening, hit-to-lead, lead optimization, and preclinical

candidate selection have individual success rates ranging

from 69 to 85% [10]. When discovery projects fail, they

fail for diverse reasons, notably unclear target biology, lack

of appropriate leads, poor potency or selectivity, inappro-

priate drug-like properties, lack of efficacy, and unexpected

animal toxicity.

Clinical development success rates, however, present a

stark contrast, as do the more uniform reasons for clinical

failure. An experimental drug entering a Phase I clinical

trial has only a 10% chance of reaching the market: the

success rates in each of the three trial Phases and for final

regulatory approval are just 54, 34, 70, and 91% [10]. As to

the reasons:

Lack of clinical efficacy has meanwhile become the

most frequent cause for discontinuation of a drug

development program. Consequently, attrition rates

are highest in clinical Phase II, which usually

includes the first evidence for pharmacodynamic

action of the compound or, proof of concept. [11]

Two-thirds of recent Phase III failures are due to inad-

equate efficacy [12], as are more than half of Phase II [13]

and *16% of Phase I [14] failures. Toxicity and business-

related failures (which often are due to inadequate efficacy,

e.g. compared to competitive or existing drugs) contribute,

but much less so. Poor pharmacokinetic properties, once a

major issue, now account for just *10% of clinical fail-

ures, mostly in Phase I [15], a gratifying result of the

increased attention paid to these critical properties during

lead optimization. The bottom line is this: All experimental

drugs enter human clinical trials based on extensive pre-

clinical data indicating that they should work; most none-

theless do not, defying our well-grounded expectations.

The complexities of human biology, amplified by the

limitations of the reductionist paradigm of target-based

drug discovery [16], thus appear to be our industry’s largest

challenge.

We believe that computational chemistry methods—and

in particular MD simulations—should reasonably be

expected to significantly impact the trajectory of the

pharmaceutical industry. Better success in clinical trials

will come, in part, with an increased understanding of

human biology, and simulations will increasingly make

useful contributions here. Arguably, however, we should

continue to focus our greatest efforts on early drug dis-

covery: The problems there align especially well with

potential computational solutions, and addressing those

problems will reduce the significant resources—about 15

discovery projects on average—devoted to achieving a

single product launch. Indeed, despite discovery enjoying

triple the success rate of development, parametric sensi-

tivity analysis highlights lead-optimization costs as the

third-most important factor (after Phase II and III trial

success rates) that dictates overall success in bringing a

drug to market [10], an argument supported as well by a

related analysis [17]. Improving our ability to select and

design better molecules at all discovery stages, including

lead optimization, is an achievable and valuable goal. We

believe this discovery focus, by helping both to reduce the

needed resources and to increase clinical candidate quality,

may also bring significant indirect savings: the really big

payoff may be a resultant improvement in clinical trial

success rates.

25 years ago in JCAMD

What was the state of computational chemistry in drug

design 25 years ago? Perusing early JCAMD issues

reveals, perhaps surprisingly, that many of the pressing

questions then are still of interest today, and many methods

then new have become our methods of choice. What has

changed—dramatically—is both our confidence in, and our
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ability to execute swiftly, the algorithms underlying these

computations.

Ligand-based approaches were used, for example in the

three-dimensional pharmacophore modeling of benzodiaz-

epine receptor ligands [18], and to design nicotinic ago-

nists using a shape matching algorithm [19]. Quantum

mechanics (QM) calculations revealed an angiotensin-

converting enzyme inhibitor QSAR [20]. The solution

conformational energies of apomorphine analogues were

correlated with their biological activities [21]. Many such

conformational analyses used molecular mechanics (MM),

for instance Allinger’s MM2. MD simulations had pro-

gressed from the ground-breaking 9 ps in vacuo simulation

of bovine pancreatic trypsin inhibitor [22] to encompass

solvated proteins, lipids, and ion channels [23]. The

determination of free energy differences using MD

simulation-based thermodynamic cycle integration was

reviewed [24]; within a year, free energy perturbation was

used to compute the relative binding free energies of an

antiviral compound to wild-type and drug-resistant human

rhinovirus [25]. All of these methods, in their original or in

enhanced forms, are widely used today; MD simulations in

particular have advanced dramatically.

Molecular dynamics—the current state of the art

Molecular dynamics simulations are used today to study

nearly every type of macromolecule—proteins, nucleic

acids, carbohydrates—of biological or medicinal interest.

Simulations span wide spatial and temporal ranges and

resolutions. In explicit, all-atom MD, thousands to millions

of individual atoms representing, for instance, all the atoms

of a protein and surrounding water molecules, move in a

series of short (e.g., 2 fs), discrete time steps. At each step,

the forces on each atom—determined from the ‘‘force

field,’’ a collection of physics-based parameters that rep-

resent both bonded and non-bonded (e.g., van der Waals)

inter-atomic forces—are computed and the atomic position

and velocity are updated according to Newton’s laws of

motion [26]. This process is repeated billions of times to

provide continuous atomic trajectories lasting as long as

1 ls, or even longer. The examples below indicate some of

the current capabilities of MD simulations and the insights

they can provide. Additional examples may be found in a

recent review on the use of MD simulations in drug dis-

covery [27].

The biological systems studied using all-atom MD

simulations can be very large, comprising millions of

atoms. For instance, several such simulations of bacterial

ribosomes—the pivotal RNA/protein complex that is the

target of diverse antibiotics—have been carried out. In a

recent example, comprising *3.2 million atoms, the

‘‘accommodation’’ motion of the ribosome that allows

aminoacyl-tRNA binding was studied [28]. Simulations of

satellite tobacco mosaic virus (STMV; *1 million atoms)

recapitulated the known stability of the complete virus and

of the RNA core particle [29]. The simulations further

indicated that empty STMV capsids exhibit a pronounced

instability, a new finding that explained the failure of

experimental efforts to prepare such empty capsids. An

impressive effort to further increase the scale of MD sim-

ulations is now using 100 STMV particles—100 million

atoms—as the test system [30].

MD simulations are well-suited to the study of mem-

brane proteins, which present particular challenges for

experimental methods. For instance, the control of ion

channel conductance, so-called ‘‘gating,’’ has been studied

for many channels, among them the nicotinic acetylcholine

receptor. Beckstein and Sansom used MD simulations and

potential of mean force calculations to determine the free-

energy barrier to ion passage through the central pore of the

nicotinic receptor [31]. They found an *10 kT barrier to

ion passage in the constricted state, in which the hydro-

phobic central pore is dewetted, sufficiently high to account

for effective channel closure. Their mechanistic results

likely apply to the entire ‘‘Cys-loop’’ superfamily of

ligand-gated ion channels, of which the nicotinic receptor

is a much-studied prototype; these results also heralded

hydrophobic gating in the structurally distinct voltage-

gated ion channel superfamily [32].

Free energy calculations of ligand–receptor binding is a

natural application of simulations in drug discovery. Sev-

eral approaches have been used. Grand canonical Monte

Carlo simulations can identify both potential ligands and

their binding site(s) on the drug target [33]. In essence, the

target is flooded with ligands, or more typically small

fragments, which are then slowly ‘‘evaporated,’’ leaving

behind only the most tightly bound ligands. This method

has proven successful in a few cases, for instance, in the

design of novel nanomolar inhibitors of p38 kinase [34].

High throughput molecular mechanics with Poisson–

Boltzmann surface area (MM-PBSA) was used at Abbott

Laboratories to directly estimate relative binding free

energies for 308 ligands drawn from three representative

drug discovery projects—the protease urokinase, the

phosphatase PTP-1B, and the kinase Chk-1 [35]. The

results were encouraging both for the number of ligands

evaluated and the target scope, but the moderate correla-

tions between predicted and experimental binding free

energy values (r2 = 0.52–0.69) suggest that the fast MM-

PBSA method is insufficiently accurate, by itself, to guide

a medicinal chemistry program.

Alchemical methods yield improved quantitative results

at the cost of significantly more computation [36]. The

Jorgensen group’s work on non-nucleoside HIV reverse
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transcriptase (HIV-RT) inhibitors (NNRTI) is a notable

recent example. Compound design decisions were based, in

part, on calculated estimates of binding free energy dif-

ferences, determined using free energy perturbation with

Monte Carlo sampling, among various Cl-substituted test

compounds [37]. This optimization strategy has provided

novel aminotriazines, possessing cellular EC50 values

below 10 nM, effective against both wild-type HIV-RT

and the resistant Tyr181Cys variant [38]. Using the same

method, a 5 lM virtual screening hit was transformed into

a 55 pM inhibitor, apparently the most potent NNRTI

reported to date [39]. The results obtained thus far on HIV-

RT are quite encouraging, and the utility of this approach

in other systems is an area of active investigation.

The process by which drugs bind to receptors has been

studied in several systems. Benzamidine bound spontane-

ously to trypsin in MD simulations, achieving a good

match to the crystal-structure–defined pose and revealing

the binding pathway [40]. The unbiased binding of kinase

inhibitors [41] and G protein–coupled receptor (GPCR)

agonists [42] and antagonists [43] has also been demon-

strated. For example, the endogenous cannabinoid sn-2-

arachidonoylglycerol was found to enter the binding pocket

of a CB2 receptor homology model from the lipid bilayer

[42]. Notably, simulations of several b-blockers and a

b-agonist binding to two b-adrenergic receptors revealed

where along the binding pathway dehydration of the ligand

and receptor—long known to a major source of ligand

affinity—occurs [43]. The work further hinted that dehy-

dration presents an unexpected kinetic barrier to binding,

leading to suggestions on how ligand/receptor dehydration

might be modulated to affect drug binding and unbinding

kinetics.

Several related techniques leverage the power of atom-

istic MD simulations, extending the range of problems that

can be studied. Coarse-grained simulations allow one to

sacrifice spatial detail to achieve longer, more biologically

relevant timescales, thereby enabling the study of processes

that currently are too slow, or of systems too large, to study

with atomistic simulations [44, 45]. This approach enabled,

for example, the simulation of the assembly of apolipo-

protein A-I and lipids into discoidal high-density lipopro-

tein (HDL) particles [46], and similarly the self-assembly

of membrane proteins into lipid bilayers [47]. Several

distinct, atomistic approaches aim to accelerate the still-

insufficient sampling of protein conformational states, for

example metadynamics [48], accelerated MD [49], and

temperature accelerated MD [50].

Our group has recently shown, using a specialized

supercomputer designed especially for MD simulations,

named Anton [51], that all-atom MD simulations can

now reach timescales on which much interesting biology

occurs. One millisecond-long, continuous single-trajectory

simulations of small globular proteins, for instance bovine

pancreatic trypsin inhibitor (58 amino acids) [52] or the

fast-folding N-terminal fragment of ribosomal protein L9

(39 amino acids) [53], have been performed. Such simu-

lations take a few months of elapsed time. Much larger

systems (e.g., receptor tyrosine kinases, GPCRs, or volt-

age-gated ion channels, all embedded in lipid bilayers,

totaling C105 atoms) can be simulated for hundreds of

microseconds, with aggregate simulation times [1 ms.

These simulations have demonstrated the de novo

folding of proteins, long recognized as an important

problem in biophysics [54]. Initial work has focused on

fast-folding proteins, for instance the WW domain protein

FiP35; WW domains, which comprise a three-stranded

b-sheet arranged as two b-hairpins, bind proline-rich

sequences. Fip35 folds with an experimental time constant

of 14 ls [55], making it the fastest-folding WW domain

known when our work began; this rapidity has made it an

attractive simulation target [56, 57]. In our simulations of

Fip35—initiated from the extended state—the protein

achieved the folded state, with a backbone root-mean-

squared deviation (RMSD) of *1 Å from the crystal

structure [52]. The simulations were carried out under

conditions where the folded and unfolded states exist in

reversible equilibrium; repeated folding/unfolding barrier

crossings followed a single well-defined pathway, with

kinetics that closely match experiment. Elucidation of the

folding transition state allowed an even faster-folding

Fip35 variant to be designed, which was subsequently

confirmed experimentally [58]. These folding results have

been extended to encompass 12 small proteins of diverse

structure—a-helical, b-sheet, and mixed a/b—with 8 of the

12 proteins reaching RMSD values less than 2 Å from the

respective crystal structure [53]. It is noteworthy that all 12

of these folding simulations used a single, physics-based

molecular mechanics force field—a modified version of the

CHARMM force field [59]—indicating an increased level

of accuracy that enables simulation of large conformational

changes.

The art of making predictions

Making predictions is hard, and, as Niels Bohr famously

said, it becomes especially difficult when we seek to pre-

dict the future. The varied forms that technological

advances take suggest why this is so: Innovations range

from obvious extrapolations beyond current practice, to

unexpected new technologies or experimental ‘‘We’re not

sure what this is good for…’’ ideas, to active, purposeful

invention of the future. Innovations also vary dramatically

in impact. Most are incremental advances, with predictable

effects. The effects of ‘‘disruptive’’ innovations, which
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upset the way things are done, are harder to predict. And a

very few innovations are truly ‘‘revolutionary’’—they alter

life in manifold, unforeseeable ways.

A brief history of the computer age illustrates these

points. Computers permeate modern life in ways that

would rightly be viewed as revolutionary a century ago.

The underlying technology, the transistor, was itself the

result of experimentation and purposeful invention. The

transistor is both a disruptive innovation—a new approach

to electronic switching that displaced the relays and vac-

uum tubes of early computers—and a revolutionary inno-

vation: It enabled creation of the integrated circuit, thus

launching the dramatic ‘‘Moore’s law’’ increases in com-

putational power. This trend, which relies upon continuous

innovation, often incremental, and an intentional drive to

achieve a now self-fulfilling prophesy, has enabled the

tremendous computational advances upon which all areas

of human endeavor—including computer-aided molecular

design—have become so reliant.

This history exhibits both the determination of Edison—

he said the light bulb was ‘‘one percent inspiration, ninety-

nine percent perspiration’’—and Alan Kay’s belief that the

best way to predict the future is to invent it. For our task

here, the import of this history is that it seems largely

obvious in hindsight, and yet it would have been very

difficult, if not impossible—say, for Shockley, Brattain,

and Bardeen, in 1947—to predict.

Molecular dynamics—predictions for the

next 25 years

Computer power has tremendously increased in the past

25 years. Many studies from 1987 were performed on

Digital Equipment Corporation VAX 11/780 computers

(1978, *0.0001 GFLOPs); the rhinovirus study mentioned

above [25] used a Cray X-MP (1982, 0.4 GFLOPs). Today,

personal computers far more powerful are commonplace

(2011 Intel Core i7, *110 GFLOPs), and most MD sim-

ulations are run on commodity clusters (teraFLOPs). Su-

percomputers such as IBM’s Blue Gene/L (2005, 0.3

petaFLOPs), deliver greater performance on diverse tasks.

Tailoring the hardware to a specific task—MD simulations,

for instance—enables even higher performance: the Anton

supercomputer we created [51] increases the speed of indi-

vidual MD simulations by nearly two orders of magnitude.

Computational power in the year 2037 may be as much

as one million-fold greater than it is today. We make

several assumptions: Continuation of Moore’s law—not

unreasonable in light of current industry 15-year projec-

tions and a 50-year history of surmounting technological

hurdles—suggests that processor computational power

may increase as much as one thousand-fold. Enhanced

processor integration, and architectural and software

advances (including MD-specific algorithmic improve-

ments), will yield further increases. Using ever more pro-

cessors in parallel will compensate for limits in individual

processor performance; such computers, like Anton, will

increasingly favor very much larger, rather than very much

longer, simulations. Given these considerations, what are

some implications of such large increases in computational

power, both for MD simulations in general, and for the use

of simulations in drug discovery?

Simulations will become much larger and will reach

longer timescales. Today’s not atypical simulation size, a

box 100 Å on each edge—a volume of 10-6 lm3—might

scale up to 1 lm3, the volume of Haemophilus influenzae, a

small bacterium. Of course, simulating an entire bacterium

for a millisecond or so probably wouldn’t teach us much, in

part because of the limited diffusion of individual macro-

molecular assemblies on this timescale. Smaller simulations

comprising a substantial fraction of a cell (e.g., RNA

polymerase with associated transcriptional factors), how-

ever, on biologically significant timeframes such as one

second (i.e., long enough to transcribe a small gene), may be

feasible. This reach for ever larger and longer simulations

will also be increasingly aided by improved algorithmic

methods to increase the sampling of conformational space.

We predict that we will determine, computationally, the

three-dimensional folded structure of proteins from their

amino acid sequence. Put another way, we will be able to

observe the Central Dogma of molecular biology—

DNA ? RNA ? protein—using simulations. Atomistic

MD simulations have already demonstrated today the de

novo folding of small (up to 80 residues) protein domains.

The effect of force field quality on folding was mentioned

[59]; it seems likely that continuous force field improve-

ment (see below) will enable further progress. With those

caveats, extrapolation suggests that folding of more typical

(*300 residue) single-domain proteins ([10 ms simula-

tions of *105 atoms) will be feasible within 10 years.

Folding of large, multi-domain proteins—for instance,

b-galactosidase, comprised of four 1,024-residue, five-

domain subunits—will likely be accessible within 25

years. Beyond delivering folded structures, useful in their

own right, especially in drug discovery, simulations will

help us to understand basic folding mechanisms. Our hope

is that by folding many proteins using a physics-based

approach, these simulations will ‘‘provide the data for

developing abstract models at a conceptual level that

describe general and unambiguous features of the protein-

folding mechanisms’’ [60]; brute force folding simulations

might then no longer be needed, thereby increasing our

capabilities even further.

A benefit of our ability to fold proteins will be that

structure-guided drug design can be extended to new
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targets. Some will simply be proteins for which no crystal

or NMR structure is available, or for which the available

structures are perhaps not in a biologically relevant form.

More significant, perhaps, will be those mis-folded or

aggregated proteins—especially prions, amyloidogenic

proteins, and intrinsically disordered proteins (which often

partially fold on binding a partner)—that are thought to

underlie major diseases, for instance Alzheimer’s disease.

The tractability of targeting these proteins will be increased

if we can, for example, observe computationally both the

atomic details of their (mis)folding and the modulating

impact of candidate drug molecules.

Of great interest will be the computational assembly of

interacting macromolecules. It is increasingly clear that

macromolecule–macromolecule interactions drive much of

biology: the sheer number of pairs, or larger assemblies, of

macromolecules—and hence their regulatory capacity—far

exceeds the limited number of individual human gene

products (\25,000). In accord with this notion, the unbi-

ased assessment of protein–protein and protein–nucleic

acid interactions, in particular, will present new drug dis-

covery opportunities. Nature seems to have already lever-

aged this key aspect of biology—many natural product

drugs and signal mediators bind at macromolecule–mac-

romolecule interfaces [61]—and we are beginning to catch

on with some synthetic and natural product-derived anti-

biotics and anti-cancer agents that bind at, and stabilize,

interfaces among and between proteins and nucleic acids.

MD simulations can address two aspects of this problem.

First, how and where do the partners interact? And as they

interact, are novel ligand binding sites created, at the

interface or at allosteric sites? MD simulations seem to be

good at identifying low-energy protein conformations that

harbor cryptic drug binding sites [27]. Second, how can

small molecule ligands modulate those interactions? How

can we optimize their binding and drug-like properties?

Simulations of macromolecular assembly will also

extend to include very large complexes, such as the nuclear

pore complex or even entire organelles. It should be pos-

sible, for example, to observe the passage of cargo proteins

as they transit through the nuclear pore. Intentional mis-

assembly of complexes, for instance of bacterial flagella or

viral capsids, again presents opportunities for the targeting

of new drugs. We also think that simulations of enzyme

catalytic cycles, complete with bond making and breaking,

will become much more common, enabled by methodo-

logical improvements that accelerate QM/MM simulations.

Putting these predictions into practice

These predictions—really just straightforward extrapola-

tions—rest on a few key assumptions. We mentioned raw

processor computational power above. The semiconductor

industry, having hit some fundamental barrier, may at some

point cease to deliver. Gordon Moore has bet against his

own law several times; he has, however, each time been

wrong. We think it likely that the innovative spirit of

device architects, coupled with one or more cutting edge

technologies that are published in science journals today

but will be discussed in engineering journals tomorrow,

will prevail. More within the control of the computational

chemistry community are some clear improvements we

need to make, or in some cases adopt now, in how we carry

out MD simulations, especially with regard to force fields.

Lou Allinger recently made a compelling case for

carefully crafted small-molecule molecular mechanics

force fields, such as MM4, in the prediction of molecular

structure [62]. We believe that MD simulations would

benefit from use of analogous, necessarily more-complex

force fields. MM4 is a so-called ‘‘Class 3’’ force field—it

includes all significant off-diagonal force matrix (‘‘cross’’)

terms—making it more complicated, and more realistic,

than the typical, ‘‘Class 1’’ diagonal force fields used in

MD simulations. The MMFF94 force field, widely used for

drug-like molecules because of its broad parameterization

[63], is similar in spirit to MM4, although it uses point

charges (like most widely used MD force fields) rather than

induced dipoles. Although we have been able to simulate—

on millisecond time scales—processes as complex as small

protein folding and ion permeation through channels using

(tweaked [59]) Class 1 force fields, we will reach a point

soon where we must be more realistic in our modeling.

Two salient examples are how force fields handle nucleic

acids and (especially divalent) cations. Another example is

modeling of cation-p interactions [64]. These interac-

tions—driven by electric quadrupole moments and polari-

zation effects—are now recognized to be quite important to

both protein structure (e.g., arginine–tryptophan ladders)

and protein function, for instance, in a wide variety of

protein–ligand interactions [65]. Similarly, London dis-

persion forces between hydrogen atoms—which appear to

contribute significantly to the energetics of branched and

strained alkanes [66]—may impact ligand–receptor binding

energetics as well.

Polarizable models should enable us to more accurately

describe (inter)molecular interactions, and indeed several

polarizable force fields have begun to demonstrate their

value. The AMOEBA force field, for instance, includes

some cross terms and, significantly, polarizable atomic

multipoles (up to quadrupoles) replace fixed partial charges

[67]; the QMPFF3 force field uses similar functional forms

[68]. The two differ in parameterization strategy (chemi-

cally sensible groups versus individual atom types,

respectively). AMOEBA-based simulations performed well

in the recent SAMPL2 hydration free energy challenge

sponsored by OpenEye [69]. Simulations using QMPFF3
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have performed with impressive accuracy in modeling

aromatic–aromatic interactions in the gas, liquid, and solid

phases [68], and most notably in ligand–receptor relative

free energy binding calculations (average r2 = 0.9) [70].

Force fields such as these will see widespread use.

Here are a few other possible areas for improvement,

which in principle should improve MD simulation accuracy:

• Simple fixes—for example, improved van der Waals

combining rules, such as those of Waldman and Hagler

[71]—should be evaluated, as should replacement of

point charges by smeared charges of some form (e.g.,

multipoles, exponentials, Gaussians). The use of more

accurate van der Waals and charge models may remove

the need for complicated, and effectively arbitrary,

torsional potentials.

• Constant pH simulations should become standard. The

current approach—multiple simulations launched from

distinct, unchanging protonation states—models reality

poorly. Both implicit solvent (e.g., [72]) and explicit

solvent (e.g., [73]) approaches currently afford compa-

rable results for test proteins such as hen egg white

lysozyme. The explicit approach may prove more

robust in the end. Nature takes advantage of the

diffusion of protons through water [74], and so

should we.

Molecular dynamics—grand challenges

Grand Challenges are goals that, if achieved, will have

revolutionary impact. We present here several such goals

we believe to be worthy of significant effort.

Free energy calculations must become reliable and

rapid, for both macromolecule–ligand and macromolecule–

macromolecule interactions. The importance of free energy

to every aspect of drug discovery cannot be overempha-

sized [75]: free energy dictates, for instance, the strength of

interactions, accessible macromolecule and ligand confor-

mations, drug binding both to targets and to anti-targets,

and passive and active drug transport properties. For free

energy calculations to be of consistent use in a drug dis-

covery environment—particularly for quantitative binding

predictions during lead optimization—we will need to

achieve an accuracy equal to or better than typical exper-

imental binding or activity assays, that is, correct to within

a factor of two (*0.4 kcal/mol). These calculations also

need to be turn-key; automated methods must provide

ligand parameters of quality equivalent to those of the

target (macromolecule) force field.

Improving free energy calculations has been hard

because the two key issues—insufficient sampling of

configurational space, and inadequate force fields—are

impossible to test independently of each other. If the cal-

culation has not converged, how can one say the force field

is at fault, and vice versa? Sampling and convergence will

naturally increase with longer simulation times, but other,

more clever approaches may prove useful or even neces-

sary. The more advanced force fields of today appear to

work well in limited cases [67, 70], but their generality,

especially in protein–ligand binding, remains unproven.

We believe that the force field improvements mentioned

above, or others of a similar or completely novel nature,

should help significantly. Converged calculations will

enable rigorous determination of both force field accuracy

and the need for specific force field improvements. Cho-

dera and co-authors recently suggested that although the

simulation ‘‘field has been extraordinarily productive in

generating new algorithmic ideas and advancing technol-

ogies to facilitate the development of more accurate force

fields, it has failed to produce an effective set of tools for

the design of small molecules. To do so, it is necessary for

the field to begin a shift from a research focus to an

engineering focus’’ [76]. We agree. Blind tests such as the

OpenEye SAMPL challenges [69] will continue to be

especially useful, because they allow us to gauge our

successes and failures in an unbiased manner.

A consequence of accurate free energy calculations:

General protein or ligand design will be achievable. ‘‘What

if I change this atom’’ types of questions, for both small

molecule ligands and macromolecules (e.g., antibody

design) must become completely tractable.

We need much more efficient ways to sample confor-

mational space. Must we track Newtonian dynamics at

femtosecond resolution when the events of interest occur

over, say, milliseconds? Twelve orders of magnitude: that’s

equivalent to tracking the advance and retreat of the gla-

ciers of the last Ice Age—tens of thousands of years—by

noting their locations each and every second. Perhaps we

don’t need to resolve all the fast motions (cf. the widely

used SHAKE algorithm [77], and variants). Through some

kind of clever dynamics or averaging, perhaps there is a

way to ‘‘sample,’’ without bias, conformational space well

enough to gain an full understanding of the biological

phenomena being studied.

Two related examples: We will conduct much larger

simulations—on biologically relevant timescales—in the

coming quarter century. Say we are simulating a mito-

chondrion. Do we really need to compute electrostatic

interactions from one end of it to the other? Likewise,

enormous computational power will be ‘‘wasted’’ on water

molecules. How should we gradate water, for instance—

from near-scale atomistic, QM-like particles to a far-scale

bulk-like phase—correctly and effectively [44]?

In other words, are we simulating biological molecules

in the best way? How much of our current edifice is really
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needed, and how much of it needs to change? As Phillip

Windley wrote [78]: ‘‘Cathedrals have one millionth the

mass of pyramids. The difference was the arch. Architec-

ture demands arches.’’ Windley’s math may be off, but his

point is apt. Are we missing the MD simulation ‘‘Arch’’?

The issues raised above are just a few obvious ones,

without current solutions. The ‘‘Arch’’—and with it, that

glorious, open space underneath—awaits someone with

better vision to see it.

The ultimate challenge—put here for completeness,

though it is beyond our 25 year timeframe—is Al Gilman’s

vision:

The premise: Someday there will be a computer

labeled ‘‘A Cell,’’ and it will accurately predict all

details of the behavior of a normal cell, as well as that

perturbed by exogenous regulatory influences, drugs,

mutations, and so on. I think I still believe the pre-

mise, but my time line for the prediction has expan-

ded considerably. [79]

In the meantime, let us focus our attention on this key

question: ‘‘Which molecule should I make next?’’ This is

the question most important to a medicinal chemist, and it

is the question we can, if we frame our studies carefully,

answer in a useful and timely manner.

The future of molecular dynamics simulations

in drug discovery

Antoine de Saint-Exupery wrote ‘‘As for the future, your

task is not to foresee it, but to enable it.’’ Here is our final

Grand Challenge—our Goal:

Create the computational methods to enable in silico

drug design

Drug design is fiendishly complex, and the universe of

potential drugs is uncharted. Nearly one billion drug-like

compounds comprising just 13 heavy atoms (C, N, O, F, S)

exist [80], yet less than 70 million compounds, of any size,

have been made. We have, in essence, explored only the

very center of this multidimensional chemical universe—a

universe in which essentially all the volume lies in the

dark, unexplored corners [81]. Our computational chem-

istry tools, impressive and helpful as they are (e.g., shape-

based methods [82]), do not yet provide comprehensive

drug design solutions. If we can advance computation in

drug design to the engineering level it enjoys in the aero-

space, architectural, automotive, and electronics indus-

tries—industries for which simulations are now critical to

success—then we will have unleashed the full power of

computers to complement and enhance our own insights

and intuitions.

All the key computational tools needed to reach this

goal are already used—in nascent form—in drug discovery

programs today. Each of these tools needs sharpening, by

means of algorithmic innovation coupled with thorough

experimental validation. We believe that computational

tools and experimental methods should be used in concert,

each according to its particular strengths. These key com-

putational tools are sketched out below:

• The selection of a drug target or interaction partners in

a particular metabolic or signaling pathway—a critical

step in any project—would be guided by extensive

genetics and bioinformatics input. This approach is

being used today; as genomic information and associ-

ated (non-simulation) computational methods mature, it

will become even more powerful.

• The structure of the target (or target complex), if not

available, would be obtained using folding simulations.

Alternatively, simulations may be used to prepare

homology models as accurate as an experimental

structure.

• Simulations would be used, along with complementary

computational chemistry tools, to identify novel drug

binding sites, including allosteric sites. These simula-

tions may be carried out on the target alone or in the

presence of suitable fragments (cf., current ligand

binding or grand canonical Monte Carlo simulations).

• Fragment libraries would be allowed to bind to the

site(s) of interest. As in current practice, library

construction should be guided by sound medicinal

chemistry principles (e.g., the so-called ‘‘Rule of 3’’

[83]).

• Candidate fragments would be scored using various

methods. A triage scoring function, with little grada-

tion, would be followed by binding free energy

calculations (including of bioisosteres); as noted above,

our ability to rapidly and accurately calculate binding

free energies is critical [75].

• Fragments would be grown [84], and possibly linked

[85], within the binding site. This growing process must

be designed from the outset to produce drug-like

molecules: ligands would be penalized (but not elim-

inated) for falling outside of known molecular descrip-

tor bounds [86, 87]; transformations that increase

molecular diversity could be favored; and the growing

process would be completely synthetically ‘‘aware’’

[88–90]—synthetic tractability must be a given.

• Selectivity would be assessed, in awareness of the

project’s particular pharmacological goals (single or

multiple targets).

• It is crucial that we produce drugs, not simply

inhibitors. Thus, ligands would be scored for ADME

(absorption, distribution, metabolism, excretion) and
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toxicological properties. Knowledge-based methods

may play a dominant role here, but simulations could

also be used to test directly ligand binding to both

metabolic activators (cytochrome P450 oxidases, as

recently demonstrated [91]; glucuronidases; etc.) and

selected anti-targets (e.g., hERG, P-glycoprotein and

other MDR transporters).

Each of these tools will likely mature at different times

in the coming years. Eventually, all may be linked into an

iterative process, with concommitant ligand–target

dynamics and continual rescoring. Such a process would

proceed in parallel on multiple chemotypes, to compensate

for later attrition. Devising robust, multi-dimensional

optimization processes capable of handling enormous

numbers of candidate ligands—search tree pruning must be

apt, not too soon, not too late—will present significant

challenges to extending existing computational synthetic

methods [88].

Achieving this audacious goal will require the combined

efforts of computational scientists and engineers working

hand-in-hand with experimentalists to ensure that these

computational tools, as they become more powerful, truly

address the key issues in drug discovery. The idea is not to

displace experimental methods—after all, aircraft are not

designed by just ‘‘telling’’ a computer to ‘‘do it’’—but

rather to advance computation such that it and experiment

become fully complementary partners in the search for new

drugs.

Achieving wider acceptance of molecular dynamics

simulations

Despite their power, molecular dynamics simulations of

biological systems struggle with two issues of perception

among the broader scientific community. First, many

experimental biologists and (medicinal) chemists do not

trust that MD simulation results are necessarily correct—

they simply don’t find the results compelling in the absence

of thorough experimental validation. Simulations are

received very differently elsewhere, for example in most

engineering fields, astrophysics, condensed matter physics,

weather and climate prediction, and fluid dynamics. We

rely on and trust computational results in those fields. New

aircraft, for instance, enter a wind tunnel, if at all [92], only

after extensive, integrated simulations have provided flight-

ready (or nearly so) designs. Do MD simulations really

differ so significantly from computational fluid dynamics

(CFD) simulations, and if so, how?

These methodological and epistemological aspects of

computer simulations have been deeply pondered by Eric

Winsberg [93]. The methods of CFD simulations—in level

of detail, in modeling viscosity, in performing numerical

integration—are, in truth, as arbitrary and approximate as

those underlying MD simulations. Quantitatively different,

yes, but impossible to prove qualitatively superior. One key

empirical distinction helped aircraft designers become

convinced decades ago of the correctness and value, and

occasional limitations, of CFD simulations: simulations

could capture the essential phenomena on timeframes

overlapping with wind-tunnel tests. This overlap enabled

CFD simulations to be validated by experiment, and

experimental observations to be explained by, and then

predicted by, CFD simulations. MD simulations of bio-

logical systems are now entering just such an overlapping

timeframe regime—orders-of-magnitude extrapolations are

rapidly becoming a thing of the past. How can we

strengthen, then, our partnerships with experimental col-

leagues to accelerate the improvement of MD simulations

through iterative cycles of predictive simulation and

experimental validation, as was done with CFD simula-

tions? And, how can we better communicate the positive

and reliable aspects of current simulations to the broader

biological and pharmaceutical community?

The second, related, issue has to do with how we tend to

conduct our research. Fifty years ago, John Platt made a

strong case for the practice of what he called ‘‘strong

inference’’—a systematic method of scientific thinking—in

enabling rapid research progress [94]. Were Platt to look at

MD simulations today, he would likely perceive an over-

emphasis on ever more precise quantitative (but ultimately

unrevealing) measurements rather than qualitative results

that actively disprove alternative hypotheses. Platt put it

this way:

Organic chemistry has been the spiritual home of

strong inference from the beginning. Do the bonds

alternate in benzene or are they equivalent? If the

first, there should be five disubstituted derivatives; if

the second, three. And three it is 19. This is a strong-

inference test—not a matter of measurement, of

whether there are grams or milligrams of the prod-

ucts, but a matter of logical alternatives.

And:

It consists of asking in your own mind, on hearing any

scientific explanation or theory put forward, ‘‘But sir,

what experiment could disprove your hypothesis?’’

Glance at any current issue of Cell to see exactly what

Platt is talking about—in nearly every paper, multiple,

competing hypotheses are generated, put to the test, and

then discarded on the way toward a higher truth. Are MD

simulations not compelling to some because we, too often,

shy away from this rigorous and, admittedly, grueling way

of conducting science? Should we be doing more predict-

ing, and (computational or experimental) testing, and less
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observing and explaining? Without doubt, a new instru-

ment that enables things previously unseen to be seen

demands surveys—MD simulation has been rightly called a

‘‘computational microscope.’’ But, surveys cannot continue

for long—rapid progress in science comes from formulat-

ing and rigorously testing hypotheses.

On goals

Two closing thoughts regarding goals. First, as we set

future goals for MD simulations, others will not be stand-

ing still—alternative approaches will also advance, raising

the bar for our success higher than we might now think.

The Rosetta molecular modeling approach, for instance,

has proven to be very powerful (see, e.g., [95, 96]). For

now, this approach is complementary to physics-based MD

simulations, but this may not always be true—one

approach may prove to be simply more effective than the

other. And, in the pharmaceutical arena, the next quarter

century may bring significant advances in alternative

therapeutic approaches for which MD simulations have less

to offer. It is not so far-fetched to think that intracellular

antibody delivery or gene therapy—or some unanticipated,

revolutionary innovation—may become commonplace,

decreasing dramatically our dependence on conventional

drugs. We should be mindful of these considerations as we

apply MD simulations in the search for new drugs.

Second, we must set audacious goals. With the dogged

pursuit of goals will come success, even if from unexpected

directions. IBM set out to build a computer that could beat

a grandmaster at chess—and succeeded. They then set their

sights on winning Jeopardy!—and succeeded. We set out

to build a computer that could speed up MD simulations by

orders of magnitude—and succeeded. We have presented a

few audacious goals for the next 25 years; not the best,

perhaps, but a start, because without clear goals to serve as

our guiding star, we are unlikely to succeed. By setting

audacious goals, and by making a plan to achieve them, we

lay a solid foundation for future success.
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