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Endothelial cells that line the inner walls of blood vessels are in direct contact with blood 
and display remarkable heterogeneity in their response to exogenous stimuli. These ECs 
have unique location-dependent properties determined by the corresponding vascular 
beds and play an important role in regulating the homeostasis of the vascular system. 
Evidence suggests that vascular endothelial cells exposed to various environments 
undergo dynamic phenotypic switching, a key biological program in the context of endo-
thelial heterogeneity, but that might result in EC dysfunction and, in turn, cause a variety of 
human diseases. Emerging studies show the importance of endothelial to mesenchymal 
transition (EndMT) in endothelial dysfunction during inflammation. EndMT is a complex 
biological process in which ECs lose their endothelial characteristics, acquire mesenchy-
mal phenotypes, and express mesenchymal cell markers, such as alpha smooth muscle 
actin and fibroblast-specific protein 1. EndMT is induced by inflammatory responses, 
leading to pathological states, including tissue fibrosis, pulmonary arterial hypertension, 
and atherosclerosis, via dysfunction of the vascular system. Although the mechanisms 
associated with inflammation-induced EndMT have been identified, unraveling the 
specific role of this phenotypic switching in vascular dysfunction remains a challenge. 
Here, we review the current understanding on the interactions between inflammatory 
processes, EndMT, and endothelial dysfunction, with a focus on the mechanisms that 
regulate essential signaling pathways. Identification of such mechanisms will guide 
future research and could provide novel therapeutic targets for the treatment of vascular 
diseases.

Keywords: endothelial dysfunction, inflammatory process, endothelial to mesenchymal transition, endothelial 
heterogeneity, vascular disease

inTRODUCTiOn

Endothelial cells (ECs) play a key role in maintaining vascular homeostasis in response to various 
stimuli. They can regulate vascular tone, permeability, coagulation, and inflammation through 
the regulation of numerous mediators, such as endothelium-derived relaxing and contracting 
factor, cell-adhesion molecules, cytokines, and chemokines (1, 2). However, vascular injuries 
resulting from procedures and conditions, such as angioplasty, stenting, diabetes, hypertension, 
and immune-mediated damage, can lead to endothelial dysfunction, resulting in disturbance or 
loss of normal endothelial functions (1, 3–5). Many studies have revealed an association between 
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endothelial dysfunction and inflammatory stress in vascular 
biology. Under conditions of chronic inflammation, sustained 
activation of ECs by inflammatory stimuli, such as interleukin 
(IL)-6, tumor necrosis factor-α (TNF-α), IL-1β, and pathogens, 
cause alterations in normal endothelial function, resulting in 
impaired endothelial-dependent immune response, which is the 
hallmark of endothelial dysfunction (6–9). Indeed, endothelial 
dysfunction due to inflammatory stress contributes to the 
pathogenesis of many diseases, including fibrosis, atheroscle-
rosis, pulmonary arterial hypertension (PAH), and pathological 
angiogenesis (10–17). In addition, emerging evidence shows 
that the nucleotide-binding domain, leucine-rich-containing 
family, pyrin domain-containing-3 (NLRP3) inflammasome 
not only has a role as a critical sensor in immune response, 
but also has a critical role in endothelial dysfunction and the 
pathogenesis of vascular diseases, such as atherosclerosis and 
metabolic syndrome (18–20). Assembly and activation of the 
NLRP3 inflammasome results in the conversion of the inactive 
procaspase-1 into active caspase-1, with subsequent secretion 
of mature IL-1β and IL-18 in such diseases (21–25).

Accumulating evidence suggests that endothelial to mesen-
chymal transition (EndMT) represents a key link in the complex 
interactions between inflammatory stress and endothelial dys-
function. EndMT is a phenotypic switching process by which 
ECs lose their characteristics and acquire mesenchymal traits 
(26, 27). EndMT exhibits features similar to those of epithelial 
to mesenchymal transition (EMT) and is often considered a 
specific form of EMT (26, 28). Although both processes use the 
same signaling pathways and result in cells with a mesenchymal 
phenotype, studies of the differences between EMT and EndMT 
are needed due to differences in the origin, fundamental func-
tion, and microenvironment of ECs and epithelial cells (29). 
EndMT was first discovered and has been studied in heart 
development and emerging studies show that EndMT can occur 
in postnatal pathologies associated with several diseases, such 
as fibrosis, cancer, neointima formation, cerebral cavernous 
malformations, atherosclerosis, and PAH (26, 28–30). Indeed, 
it has been reported that EndMT contributes to endothelial 
dysfunction during inflammatory conditions, and that some 
inflammatory mediators, such as IL-1β, TNF-α, nuclear fac-
tor kappa B (NF-κB) transcription factor, and endotoxins, 
can activate ECs and convert them to mesenchymal-like cells 
through the EndMT process (6, 7, 31). However, how EndMT 
contributes to disease progression remains unclear (32), and 
the specific role of EndMT in inflammatory stimulus-induced 
endothelial dysfunction has not been fully elucidated due to 
the dynamic nature of the EndMT process, which consists of 
multiple steps.

A single layer of ECs lining blood vessels displays hetero-
geneity in function, morphology, gene expression, and antigen 
composition depending on location (2) and behaves differently 
based on its exposure to different microenvironments (33). 
Therefore, it is also important to understand the molecular basis 
of inflammation-induced EndMT in the context of endothelial 
heterogeneity, because this can be critical for developing person-
alized vascular therapies for patients with vascular bed specific 
diseases (33).

In this review, we summarize the knowledge currently 
available regarding the role of EndMT in inflammatory pro-
cesses and discuss endothelial heterogeneity in the context of 
inflammation.

enDMT MeDiATORS AnD SiGnALinG 
PATHwAYS DURinG inFLAMMATiOn

Endothelial cells play an important role in the maintenance 
of homeostasis across the entire vascular system (10, 34). ECs 
actively participate in the regulation of immune responses to 
various stimuli. To this end, the inflammation-mediated signal-
ing pathway has been extensively studied (6, 17). However, cell 
signaling associated with inflammation-induced EndMT remains 
poorly understood. Nevertheless, the molecular mechanisms 
underlying inflammation-induced EndMT have been gradually 
identified based on observations of EMT processes that are 
relatively well studied on inflammatory responses (6). Current 
evidence suggests that inflammation-induced EndMT, similar 
to that of EMT, is largely governed by two signaling pathways: 
the transforming growth factor beta (TGFβ) pathway and the 
non-TGFβ pathway (35). TGFβ is the most well-known EndMT 
inducer and upregulates the expression of transcription factors, 
such as snail, slug, and zinc finger E-box-binding homeobox 1 
(ZEB1). These transcription factors then upregulate the expres-
sion of mesenchymal markers, such as alpha smooth muscle actin 
(α-SMA), smooth muscle protein 22 alpha (SM22α), calponin, 
vimentin, type I collagen, fibronectin, fibroblast-specific protein 
1 (FSP-1), N-cadherin, matrix metalloprotein (MMP)-2, and 
MMP-9 (6, 36, 37).

It has been identified that EndMT related to direct immune 
responses is triggered in response to pro-inflammatory cytokines, 
such as TNF-α, IL-1β, and their combinations. Similarly, inflam-
mation-induced EndMT is characterized by the loss of endothe-
lial phenotypes and gain of mesenchymal-like characteristics, 
and endothelial/mesenchymal markers are tightly controlled by 
EndMT mediators, such as ZEB1, β-catenin, Akt/NF-κB, snail, 
slug, Notch1, bone morphogenetic protein (BMP)-4, Sp1, phos-
phoinositide 3-kinase (PI3K), and enhancer of zeste homolog 2 
(EZH2) (Figure 1).

Tumor necrosis factor-α, a pro-inflammatory cytokine, plays 
an important role in the regulation of various cellular activities 
(38). In ECs, TNF-α responses are initiated by the binding of one 
of two receptors, TNF receptor type 1 and TNF receptor type 2,  
allowing these receptors to activate transcription factors, such 
as NF-κB, which leads to the induction of transcription of mul-
tiple genes such as vascular cell adhesion molecule 1 (VCAM-1)  
and intercellular adhesion molecule 1 (31, 39–42). TNF-α 
also induces EndMT through activation of multiple signaling 
pathways in various ECs types (39, 40, 43, 44). However, future 
studies will be needed to clarify what type of TNF-α receptor is 
involved in EndMT. In lymphatic endothelium, TNF-α-induced 
EndMT occurs through inhibition of vascular endothelial (VE)-
cadherin expression while increasing the expression of β-catenin, 
N-cadherin, and ZEB1, key molecules involved in the EndMT 
processes (44). A previous study (40) showed that TNF-α drives 
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FiGURe 1 | Schematic representation of endothelial to mesenchymal transition (EndMT) transition in response to inflammatory stimuli and metabolic dysfunction. 
Upon chronic inflammatory conditions, involving tumor necrosis factor-α (TNF-α), transforming growth factor beta (TGFβ), IL-1β, and endotoxin and metabolic 
dysfunction, such as increased serum LDL, glucose, diverse ECs undergo activation, which results in loss of endothelial cell markers and acquisition of 
mesenchymal-cell markers. EndMT contributes to endothelial dysfunction under inflammatory conditions and metabolic dysfunction, with EndMT mediators  
identified. This process can cause a variety of postnatal diseases, such as fibrosis, PAH, and metabolic syndrome.
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EndMT through Akt/NF-κB activity in both embryonic and 
adult-valve endothelium, finding that EndMT-related protein 
expression involving α-SMA and snail was significantly upregu-
lated, whereas VE-cadherin was significantly downregulated in 
response to TNF-α in porcine aortic valve ECs (PAVECs), but not 

porcine aortic ECs (40); suggesting the importance of determining 
the molecular mechanism of EndMT in the context of endothelial 
heterogeneity during inflammation. The same group also dem-
onstrated heterogeneous susceptibility to EndMT in PAVECs in 
response to TNF-α. Under TNF-α stimulation, non-transforming 
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FiGURe 2 | A schematic illustration of the signaling pathways governing endothelial to mesenchymal transition (EndMT). Tumor necrosis factor-α (TNF-α), 
transforming growth factor beta (TGFβ), interleukin (IL)-1β, and high glucose influences EndMT by regulating signaling pathways. These pathways converge  
and induce the expression of transcription factors involving Slug, Snail and zinc finger E-box-binding homeobox 1 (ZEB1) (see text for details).
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cells that maintain endothelial-cell marker expression and 
transforming cells that acquire mesenchymal-marker expression 
were isolated using membrane-based three-dimensional culture 
systems. Transforming cells decreased endothelial marker expres-
sion, such as VE-cadherin and endothelial nitric oxide synthase 
and acquired mesenchymal markers, such as α-SMA, Notch1, 
MMP-9, BMP-4, and TGFβ in PAVECs (Figure 2) (39).

Interleukin-1β is a proinflammatory cytokine (45) involved 
in endothelial dysfunction (46) and a key inducer of EndMT. 
IL-1β-induced phenotypic changes in ECs were first demon-
strated in IL-1β-treated human dermal microvascular ECs 
undergoing morphological changes and cytoskeletal reorganiza-
tion, in addition to decreased expression of typical endothelial 
markers, such as von Willebrand Factor (vWF) and CD31 (47).  
In addition, long-term exposure of human dermal microvascular 
ECs to IL-1β induces the expression of mesenchymal markers 
such as α-SMA, type I collagen, and calponin and inhibits the 
expression of vWF (48). Maleszewska et  al. (49) reported that 
the molecular mechanism underlying IL-1β-induced EndMT 
involves increased expression of SM22α, which is encoded by 

TAGLN. Their results demonstrated the epigenetic regulation 
of TAGLN via EZH2, which acts as a key negative regulator in 
IL-1β-induced EndMT (49). Moreover, in corneal ECs, IL-1β 
induced an EndMT phenotype by increasing fibroblast growth 
factor (FGF) expression through the PI3K-signaling pathway 
(50, 51) in accordance with changes in the actin cytoskeleton 
and cellular morphology (Figure  2). The most recent study 
has shown that the NLRP3 inflammasome, closely associated 
with mature IL-1β secretion, is involved in mechanical stretch-
induced EndMT in lung fibrosis and NLRP3 inactivation could 
inhibit EndMT, suggesting novel therapeutic options against 
mechanical ventilation-induced pulmonary fibrosis (52).

Several studies reported that a combination of cytokines, 
including TNF-α, IL-1β, and TGFβ, is more powerful than a 
single cytokine at inducing EndMT. The combination of TGFβ1, 
IL-1β, and TNF-α induces EndMT via the Sp1 transcription 
factor, which is a key transcriptional regulator of EndMT-related 
genes in human intestinal microvascular endothelial cells (31). 
TGFβ2 and IL-1β synergistically induce EndMT through increa-
sed expression of mesenchymal markers while decreasing the 
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TAbLe 1 | Summary of the key studies exploring EndMT under specific inflammatory stimuli and metabolic dysfunction.

Stimuli endothelial markers Mesenchymal markers endothelial  
cell types

Positive regulator of endMT Reference

TNF-α VE-cadherin N-cadherin LEC ZEB1 and β-catenin (44)
TNF-α VE-cadherin,  

CD31, eNOS
α-SMA and MMP-9 PAVEC  

and eQEE
Akt/NF-κB, Snail, Slug, TGFβ,  
Notch1, and BMP-4

(39, 40)

IL-1β vWF α-SMA, collagen I, and calponin HDMEC Non determined (47, 48)
IL-1β Non determined SM22α HUVEC pSmad2 and TGFβ2 (49)
IL-1β Non determined Cell shape change and actin cytoskeleton CECs PI3K (50, 51)
TNF-α, IL-1β  
and TGFβ1

VE-cadherin, CD31,  
and vWF

α-SMA, FSP-1, vimentin, N-cadherin,  
and fibronectin

HIMEC Sp1 (31)

TGFβ2 and IL-1β CD31, vWF,  
and VE-cadherin

SM22α, FSP-1, collagen 1 A2,  
vimentin, and α-SMA

HEMEC Snail (53)

TGFβ2 and IL-1β eNOS and vWF SM22α, calponin HUVEC NF-κB (54)
TNF-α, IL-1β and TGFβ1 vWF, CD31, VE-cadherin,  

and Occludin 
Calponin, α-SMA, and collagen I PAECs Non determined (7)

High glucose CD31 and VE-cadherin α-SMA, α-SMA, FSP-1, and fibronectin GEnC TGFβ, pSmad2/3, Snail, ROCK1, 
NOD1, MEK/ERK, SRF, and Snail

(57–60)

High glucose CD31 and VE-cadherin α-SMA, FSP-1, collagen I, collagen III,  
and MMP-2/9

HAEC Angiotensin II, Snail,  
and PARP-1

(55, 61)

High glucose VE-cadherin and CD31 α-SMA, collagen I, FSP-1, vimentin,  
and MMP-2/9

HUVEC TGFβ1, ERK, pSmad2/3,  
and MAPK (p38 and ERK)

(56, 63)

High glucose VE-cadherin FSP-1 and collagen I HUVEC  
and HAEC

ET-1, TGFβ1, pSmad3,  
pAKT, and Snail

(62)

ox-LDL + Radiation VE-cadherin and CD31 α-SMA, FSP-1, and vimentin HAEC Non determined (64)

TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; TGFβ, transforming growth factor-β; VE-cadherin, vascular endothelial cadherin; eNOS, endothelial nitric oxide synthase; vWF, 
von Willebrand Factor; α-SMA, α-smooth muscle actin; SM22α, smooth muscle protein 22-α; FSP-1, fibroblast-specific protein 1; LEC, lymphatic endothelial cell; PAVEC, porcine 
aortic valve endothelial cell; eQEE, embryonic quail endocardial explant; HDMEC, human epithelioid dermal microvascular endothelial cell; HUVEC, human umbilical vein endothelial 
cell; CEC, corneal endothelial cell; HIMEC, human intestinal microvascular endothelial cell; HEMEC, human esophageal microvascular endothelial cell; PAEC, pulmonary artery 
endothelial cell; ZEB1, zinc finger E-box-binding homeobox 1; NF-κB, nuclear factor kappa B; BMP-4, bone morphogenetic protein 4; EZH2, enhancer of zeste homolog 2; FGF-2, 
fibroblast growth factor 2; PI3K, phosphatidylinositol 3-kinase. GEnC, glomerular endothelial cell; ROCK1, Rho-associated kinase 1; HAEC, human aortic endothelial cell; GLP-1, 
glucagon-like peptide-1; PARP-1, Poly (ADP-ribose) polymerase 1; SRF, Serum response factor; ET-1, endothelin-1; ox-LDL, oxidized low-density lipoprotein; NOD2, Nucleotide-
binding oligomerization domain-containing protein 2.
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expression of endothelial markers in human esophageal microvas-
cular endothelial cells and human umbilical vein ECs (HUVECs)  
(53, 54). The combination of TNF-α, IL-1β, and TGFβ1 also 
induces EndMT in pulmonary artery ECs, with EndMT  cells 
exhibiting morphological changes, as well as changes in endothe-
lial and mesenchymal markers (7).

Emerging evidence has shown that endothelial dysfunction 
induced by metabolic disorders such as obesity, hyperglyce-
mia, and dyslipidemia is critically associated with induction 
of EndMT. Several studies have demonstrated that high 
glucose induces EndMT, which leads to increased expression 
of mesenchymal markers, such as α-SMA, FSP-1, type I colla-
gen, fibronectin, vimentin, and MMP-2 along with decreased 
expression of endothelial markers CD31 and VE-cadherin in 
various EC types (55–57). It was shown that high-glucose-
induced EndMT occurs through positive regulators, such as 
Smad2/3, Snail, Rho-associated kinase 1 (ROCK1), serum 
response factor (SRF), nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2), and ERK in glomerular 
ECs (57–60). In human aortic ECs (HAECs) and HUVECs, 
high glucose also induces EndMT through positive regula-
tors, such as angiotensin II, poly (ADP-ribose) polymerase 
1 (PARP-1), endothelin 1 (ET-1), Smad, Akt, p38, and ERK, 
contributing to diabetic cardiomyopathy (55, 56, 61–63). It 
has also been shown that oxidized low-density lipoprotein 
(ox-LDL) accelerates radiation-induced EndMT in HAECs 

and contributes to radiation-induced atherosclerosis (64), 
whereas high-density lipoprotein (HDL) inhibits TGFβ1-
induced EndMT in HAECs suggesting anti-fibrotic effects of 
HDL (Figure 2) (65).

Although much attention has recently been directed to End-
MT because of its importance in many diseases, most studies 
have been limited to the identification of endothelial and mes-
enchymal markers in response to inducers of EndMT. Therefore, 
elucidation of the potential molecular mechanisms regulating 
pathological EndMT induced by inflammatory stimuli will be 
important in the future. Table 1 shows a summary of the main 
studies exploring EndMT under specific inflammatory sti muli 
and metabolic dysfunction, including EndMT mediators, endo-
thelial and mesenchymal markers, and EC types.

eC HeTeROGeneiTY DURinG 
inFLAMMATiOn

Endothelial cells line the inner wall of blood vessels and exhibit 
diverse subtypes (2, 8, 33). Different ECs have different struc-
tural and functional characteristics based on their exposure to 
distinct microenvironments (2, 8, 9, 33, 66). They are activated in 
response to inflammatory stimuli, with this activation resulting 
in the expression of adhesion molecules necessary for leukocyte 
binding (33).
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Many studies showed that each EC subtype responds differ-
ently to different inflammatory stimuli in vitro (33). Viemann 
et  al. (67) suggested that genes differentially regulated upon 
TNF-α stimulation between human microvascular ECs and 
HUVECs exhibit functional differences, and that genes whose 
expression was altered only in the human microvascular ECs 
group were associated with signaling and transcription fac-
tors, apoptosis, cell proliferation, immune response, and cell 
structure. However, genes showing altered expression only in 
HUVECs were associated with chemokines, cytokines, cell-
surface molecules, and signaling and transcription factors (67). 
VCAM-1 expression was only increased in response to TNF-α 
in HUVECs and glomerular ECs, but not in dermal microvas-
cular ECs (68). In addition, Scott et al. (69) reported changes in 
heterogeneous gene expression in response to TNF-α, lipopoly-
saccharide (LPS), and IL-1β in HUVECs, human pulmonary 
microvascular ECs, HAECs, carotid artery ECs, coronary 
artery ECs, subclavian artery ECs, and brachiocephalic artery 
ECs. TNF-α, and IL-1β-stimulated organ-specific endothelial 
heterogeneity has also been reported (70).

These findings suggest that each EC subtype might respond 
differently to different inflammatory stimuli in the context of 
EndMT. Indeed, Pinto et al. (71) compared responses to TGFβ1 
or TGFβ2 between human coronary artery ECs and microvas-
cular pulmonary artery ECs, finding that in human coronary 
artery ECs, both TGFβ1 and TGFβ2 upregulated the expression 
of the mesenchymal markers α-SMA and SM22α, but only 
TGFβ1 had an effect on α-SMA expression in human pulmo-
nary microvascular ECs. In addition, TNF-α increased the 
expression of the mesenchymal markers in PAVECs, although 
this response was not observed in porcine aortic ECs (40).

Importantly, other inflammation-associated endothelial 
acti vators, such as shear stress or protein kinase C (PKC), have 
also been studied in this context (33). Methe et al. (72) showed 
that venous and coronary artery specific flows differentially 
regulate the expression of endothelial adhesion molecules as 
well as KLF2/KLF4 transcription factors in human saphenous 
vein ECs and human coronary artery ECs. Two ECs have also 
been reported to show heterogeneity in adhesion molecule 
expression in response to PKC. Here, PKC activation induces 
E-selectin and VCAM-1 expression in HUVECs, but not in 
human dermal microvascular ECs (73).

Differences in the behavior of various EC subtypes in response 
to inflammatory stimuli have also been reported in  vivo (33). 
Tamaru et al. (74) showed that induction of adhesion molecule 
expression in response to IL-1β stimulation is both tissue- and 
cell-type specific. However, no changes were observed in 
VCAM-1 expression in brain and liver microvascular ECs in 
response to LPS stimulation (75, 76). Furthermore, van Meurs 
et  al. (77) showed that E-selectin and VCAM expression in 
human glomerular ECs differs from that in other ECs. In CD31-
deficient mice, apoptosis of peritubular-capillary ECs occurs 
upon LPS administration, although other microvessel ECs were 
unaffected (78). Given the extent of endothelial heterogeneity 
found both in vitro and in vivo, studying the molecular mecha-
nisms and functions associated with the EndMT process in 
inflammation in the context of endothelial heterogeneity will 

eventually enable us to better understand vascular diseases and 
develop more sophisticated and effective therapeutic drugs.

TARGeTinG enDMT FOR THeRAPeUTiC 
AnD CLiniCAL APPLiCATiOnS in 
vASCULAR DiSeASeS

Endothelial to mesenchymal transition is recognized to not only 
occur during development but also it is now clear that EndMT 
underlies pathological processes associated with multiple dis-
eases (6, 26, 79, 80). EndMT is also controlled by a variety of 
stimuli, including inflammation, growth factors, and hypoxia 
(81–83). Particularly, inflammation-induced EndMT aggravates 
inflammation and destroys vascular homeostasis, leading to 
pathogenesis of several diseases, such as cardiac fibrosis, PAH, 
and atherosclerosis (31, 84, 85). Given the involvement of EndMT 
in multiple inflammatory diseases, preventing EndMT may rep-
resent a useful approach to treat inflammatory diseases.

Several factors have been identified as the negative regulators 
of EndMT signaling pathways (86–88). Vascular endothelial 
growth factor-A reverses TGFβ2-induced EndMT (89), and 
HDL and the extracellular-matrix protein fibulin 1 and kallista-
tin also exert inhibitory effects on TGFβ-induced EndMT  
(65, 90, 91). Furthermore, the most common aldosterone 
receptor antagonist, spironolactone has a protective role against 
TGFβ-induced EndMT in HUVECs (92) and, rapamycin sup-
presses mechanistic target of mTOR signaling, leading to the 
inhibition of EndMT (93). Although emerging studies report 
multiple EndMT mediators that play critical roles in EndMT 
induction, the targeting of EndMT mediators requires careful 
evaluation due to the modulation of EndMT exhibiting differen-
tial effects in different ECs based on endothelial heterogeneity. 
For example, IL-1β upregulates FGF2 expression through PI3K 
activation, which leads to EndMT of corneal ECs (51). Lee et al. 
(50) suggested that blocking the IL-1β and FGF2 pathways would 
prevent inflammation-induced EndMT in corneal ECs; however, 
FGF2 exerts an inhibitory effect on TGFβ-mediated EndMT via 
miR-20a in HUVECs (81, 94). Moreover, another study showed 
that FGF receptor-1 is a key inhibitor of TGFβ-driven EndMT 
in HUVECs (95), and the endogenous antifibrotic peptide 
N-acetyl-seryl-aspartyl-lysyl-proline restores FGF receptor lev-
els and upregulates levels of the let-7, resulting in the inhibition 
of EndMT in human dermal microvascular ECs (96). Therefore, 
further studies are needed to completely elucidate the mecha-
nisms associated with FGF2, as well as many mediators involved 
in EndMT (81).

In the context of diseases, studies on the inhibitory effect of 
EndMT have mainly focused on fibrosis. The common feature of 
many fibro-proliferative diseases is inflammation (97). Fibrosis 
results from chronic inflammation, possibly owing to infection, 
autoimmune reactions, or allergic reactions, which results in the 
release of inflammatory mediators, abnormal cell proliferation, 
and deposition of extracellular-matrix components (81, 82,  
84, 97). BMP7 has been shown to exhibit anti-EndMT effects and 
reduce cardiac fibrosis; however, most other BMPs are positive 
regulators of EndMT (81, 85, 98, 99). Hepatocyte growth factor 
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TAbLe 2 | Summary of the key studies exploring endothelial to mesenchymal transition (EndMT) as a therapeutic target in various diseases.

Model of Study negative regulator of endMT Clinical relevance Reference

Isoproterenol-induced myocardial fibrosis rat model Relaxin Cardiac fibrosis (86)
Bleomycin-induced PAH model Ponatinib (multi-targeted tyrosine-kinase inhibitor) Pulmonary arterial hypertension (PAH) (87)
TGFβ1-induced EndMT HDL Non-determined (65)
TGFβ-induced EndMT Spironolactone (aldosterone receptor antagonist) Non-determined (92)
Mouse models of pressure overload and  
chronic allograft rejection

BMP-7 Cardiac fibrosis (85)

Heterotopic heart transplantation model BMP-7 Endocardial fibroelastosis (99)
Pressure-overload mouse model HGF Cardiac fibrosis (100)
Rat model of uremia and secondary hyperparathyroidism Cinacalcet (calcimimetic agent) Cardiac fibrosis (101)
TGFβ1-induced EndMT Losartan (angiotensin II receptor type 1 blocker) Non determined (102)
Isoproterenol -induced myocardial fibrosis rat model Scutellarin Cardiac fibrosis (103)
Ovine inferior myocardial infarction model CD45-selective PTPase inhibitor Myocardial infarction (104)
STZ-induced diabetic mice Linagliptin (DPP-4 inhibitor) Diabetic kidney fibrosis (105)
TGFβ and ET-1-induced EndMT Macitentan (ET-1 receptor antagonist) Systemic sclerosis (106)
MCT-induced PAH model Salvianolic acid A Pulmonary arterial hypertension (108)
Hypoxia, MCT-induced PAH model Delivery of BMPR2 Pulmonary arterial hypertension (109)
STZ-induced diabetic rats Lovastatin Diabetic nephropathy (58)
db/db diabetic mice Fasudil (ROCK1 inhibitor) Diabetic nephropathy (59)
STZ-induced SHR diabetic rats Irbesartan (angiotensin II receptor type 1 blocker) Diabetic cardiomyopathy (61)
STZ-induced diabetic mice GLP-1 analog Diabetic cardiomyopathy (55)
STZ-induced diabetic rats CCG-1423 (SRF inhibitor) Diabetic nephropathy (57)
STZ-induced diabetic ET-1f/f; Tie2-Cre(+) mice ET-1 silencing Diabetic cardiomyopathy (62)
STZ-induced diabetic mice Low-dose irisin Diabetic cardiomyopathy (63)
TGFβ1-induced EndMT HDL Non determined (65)

TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; TGFβ, transforming growth factor-β; VE-cadherin, vascular endothelial cadherin; eNOS, endothelial nitric oxide synthase; vWF, 
von Willebrand factor; α-SMA, α-smooth muscle actin; SM22α, smooth muscle protein 22-α; FSP-1, fibroblast-specific protein 1; LEC, lymphatic endothelial cell; PAVEC, porcine 
aortic valve endothelial cell; eQEE, embryonic quail endocardial explant; HDMEC, human epithelioid dermal microvascular endothelial cell; HUVEC, human umbilical vein endothelial 
cell; CEC, corneal endothelial cell; HIMEC, human intestinal microvascular endothelial cell; HEMEC, human esophageal microvascular endothelial cell; PAEC, pulmonary artery 
endothelial cell; ZEB1, zinc finger E-box-binding homeobox 1; NF-κB, nuclear factor kappa B; BMP-4, bone morphogenetic protein 4; EZH2, enhancer of zeste homolog 2; FGF-2, 
fibroblast growth factor 2; PI3K, phosphatidylinositol 3-kinase. STZ, streptozotocin; SHR, spontaneously hypertensive rats; HDL, High-Density Lipoproteins; HGF, hepatocyte growth 
factor; MCT, monocrotaline.
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reduces cardiac fibrosis by suppressing TGFβ1-mediated EndMT 
(100). Cinacalcet, a calcimimetic agent, reduces serum levels of 
parathyroid hormone and suppresses EndMT, leading to attenu-
ation of cardiac fibrosis (101). Similarly, losartan and irbesartan, 
two angiotensin II-receptor type 1 blockers, ameliorate cardiac 
fibrosis by inhibiting EndMT (61, 102). Scutellarin and relaxin 
are also EndMT inhibitors and prevent cardiac fibrosis by regu-
lating Notch1 and Jagged-1 (86, 103). Furthermore, inhibition of 
CD45 protein tyrosine phosphatase leads to reduced EndMT in 
TGFβ1-treated mitral valve ECs (104). The anti-fibrotic effects 
of linagliptin, which blocks EndMT, have also been reported 
in  vitro and in diabetic kidneys (105). Similarly, macitentan 
inhibits endothelin-1 or TGFβ1-induced EndMT in systemic 
sclerosis (106).

Cytokine-induced inflammation is widely considered a major 
cause of PAH development (107). Moreover, remodeling of the 
pulmonary artery under inflammatory conditions is a major fea-
ture of PAH (12–15). Recent evidence suggests that inflammation-
induced EndMT is a key contributor to pathological pulmonary 
vascular remodeling associated with transition of ECs to α-SMA-
expressing mesenchymal-like cells in obstructive vascular lesions 
of PAH (7, 29). Clinical data also indicate that the serum levels of 
IL-1, -6, -8, -10, and TNF-α are elevated in PAH patients (107).  
In this context, salvianolic acid A, a polyphenol compound, inhib-
its EndMT in PAH, thereby attenuating inflammation associated 
with monocrotaline-induced PAH (108). Another study showed 

that the delivery of BMP receptor-2 resulted in less right-ventricle 
hypertrophy, pulmonary vascular resistance, and improved car-
diac function through attenuation of EndMT (109). Kang et al. 
(87) suggested that ponatinib, a multi-target tyrosine-kinase 
inhibitor, delays TGFβ1-mediated EndMT and has therapeutic 
potential for use in PAH therapy, where it could act by regulating 
Wnt signaling.

Atherosclerosis is a vascular disease mediated by a typical 
inflam matory response. Inflammatory stimuli continuously 
lead to calcified plaque formation (110). Atherosclerosis lesions 
mostly comprise EndMT-derived fibroblast-like cells, which 
are regulated by various EndMT mediators, such as snail, slug, 
and β-catenin (84, 111, 112). Other pathways might also lead 
to atherosclerosis by inducing EndMT via TGFβ, oxidative 
stress, hypoxia, Wnt/β-catenin signaling, and BMP signaling 
(81, 84, 113). These data suggest that EndMT is a major source 
of neointimal hyperplasia and plays a role in the progression of 
arteriosclerosis through inflammation. In particular, excessive 
BMP activity promotes the calcification of atherosclerotic lesions 
through EndMT and serine-protease inhibitors also reduce 
EndMT and vascular calcification (88, 114). Consistent with this 
report, vascular calcification was found to be reduced in response 
to a BMP inhibitor in matrix-gla-protein-deficient mice (115).

It has been shown that metabolic syndrome, which is associ-
ated with metabolic dysfunction such as obesity, hyperglycemia, 
insulin resistance, and dyslipidemia has a central role in the 
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pathogenesis of cardiovascular disease, diabetes mellitus type 
2, and tissue remodeling (116). Abnormalities associated with 
chronic inflammation are key risk factors of metabolic dysfunc-
tion, leading to the endothelial dysfunction that is critically 
involved in the development of such diseases (64, 116–119).  
In the context of metabolic syndrome, studies on EndMT induced 
by metabolic dysfunction have mainly focused on diabetic 
nephropathy and cardiomyopathy. Several studies have shown 
that EndMT contributes to diabetic nephropathy, while inhibition 
of EndMT by lovastatin, fasudil, and CCG-1423 could ameliorate 
diabetic nephropathy in streptozotocin (STZ)-induced diabetic 
animal models (57–59). In addition, inhibition of EndMT by 
Irbesartan, glucagon-like peptide-1 analog, ET-1 inhibition and 
low-dose irisin could prevent diabetic cardiomyopathy in diabetic 
animal models (55, 61–63).

Taken together, the currently available data indicate that 
EndMT plays a key role in various fibrosis-related and cardiovas-
cular diseases (Figure 1; Table 2). Considering the large number 
of studies that suggest targeting EndMT as a novel therapeutic 
approach for many diseases, clarifying the underlying signaling 
mechanisms associated with EndMT and establishing strategies 
to regulate EndMT are urgently needed.

COnCLUSiOn

Endothelial to mesenchymal transition plays an important role 
not only during the development process but also in adults under 
physiological and pathological conditions. A central role for 
EndMT emerges from the complex network of interactions that 
underlie inflammation-induced endothelial dysfunction. There is 
accumulating evidence indicating that EndMT is a key feature 
in inflammation-related endothelial dysfunction. It is through 
this phenotypic switch that EndMT causes diverse vascular 
diseases, such as atherosclerosis, PAH, and fibrosis. Therefore, 

the modulation of EndMT might yield new therapeutic strate-
gies for the treatment of diverse diseases. Although our current 
understanding of the molecular mechanisms underlying EndMT 
in the context of inflammation is advancing, further studies are 
needed in the future to completely understand the molecular 
mechanism associated with EndMT in inflammation-related 
diseases. Given that heterogeneity is apparent in ECs of different 
organs in response to different inflammatory stimuli, it will also 
be important to determine the molecular mechanisms associated 
with EndMT in the context of endothelial heterogeneity dur-
ing inflammation in future studies. In conclusion, the study of 
EndMT will provide valuable insights into the molecular mecha-
nisms leading to various human diseases and will help develop 
more sophisticated and effective therapeutic drugs for patients 
suffering from these diseases.
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