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Abstract

detoxification.

Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying
large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group
that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reac-
tive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be
paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in
this interaction could possibly provide potential novel targets for drug and vaccine development, and disease
treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes
the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and

Introduction

Blood is a comprehensive nutrient-rich mixture, consis-
tent in composition and continuously renewable for the
life of the host [1,2]. Hematophagy is in one respect, an
easy “way-out” for parasites in acquiring essential nutri-
ents for their development and reproduction [1]. In
addition to the abundant examples of blood dwelling
protozoan parasites, hematophagous species are found
frequently in many parasitic invertebrates, most notably
the polyopistocotylean monogeneans, many digenean
flukes, nematodes, hirudinean annelids, insects, acarines
and crustaceans. There are even notable examples
within vertebrate groups that include birds, mammals,
reptiles and fish.

As red blood cells (RBC) constitute the largest cellular
component of blood [2], their efficient lysis and catabo-
lism are central requirements for blood-feeding parasites
[3]. Each parasite is equipped with a repertoire of com-
plex cascades of hemolytic and proteolytic enzymes
[3-7], characterized by general functional redundancies
in substrate specificity [3,5,7,8].

Heme, an essential prosthetic group, is liberated from
Hb by hemoglobinolysis [9]. Exogenous (dietary) heme
has been implicated as a source of metabolic heme and
iron (Fe) in some hematophagous parasites [10-12].
However, for many parasites, the pathways associated
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with heme uptake and liberation of Fe are poorly under-
stood, if indeed, they occur. While an essential nutrient,
heme in its free form is also potentially toxic and its
rapid detoxification in sanguinivorous parasites is para-
mount for their survival.

In this review, the biological importance of heme for
hemoparasites, and the adaptations utilized in its
sequestration and detoxification are presented. Many
authors have highlighted the importance of heme-para-
site interaction in survival, development and fecundity
of these hematophagus parasites [10,13-17]. As such,
understanding the underlying mechanisms involved in
this interaction could possibly provide novel targets for
drug and vaccine development, and disease treatment.

Heme
Heme consists of an iron (Fe) atom bound to four nitro-
gen atoms of the pyrrole ring of protoporphyrin IX. Fe
is a transitional metal, existing in either a ferrous (Fe*)
or a ferric (Fe**) forms. This transitional property
imparts the catalytic nature to many compounds that
contain Fe [18]. Porphyrin is an organic compound cap-
able of producing singlet oxygen ('O,) in its excited
state [19]. Due to its hydrophobic nature, porphyrin can
interact with lipophilic molecules, including proteins
and lipids [19]. The reactive nature of both Fe and por-
phyrin make heme an essential, yet potentially toxic,
molecule [18,19].

Heme forms the reactive core of numerous hemopro-
teins with diverse biological functions. Heme also
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interacts with biologically important molecules, either by
direct binding, or by transient interaction which lead to
free radical generation [19,20]. In binding macromole-
cules, heme can destabilize cell membranes, resulting in
cell lysis [20-22], or it can bind various transcriptional
factors and enzymes, thereby modulating protein synth-
esis transcriptionally and translationally, leading to the
regulation of cell development, differentiation, signal
transduction and apoptosis [23-25].

Heme can generate both hydroxyl radicals and reactive
oxygen species (ROS) and can induce lipid peroxidation
[26-28]. The contained Fe is postulated to catalyze the
formation of ROS through the Fenton reaction [19,22],
although the specific heme-H,O, reaction has also been
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shown to generate free radicals [28]. Heme-induced free
radicals are potentially toxic, capable of damaging and
degrading proteins, lipids and DNA molecules [29,30].
However, low levels of ROS are essential for many biolo-
gical functions, including the up-regulation of heme bio-
synthesis, activation of enzymes (e.g catalase) and signal
transduction in cells [24,25].

Heme Biosynthesis

In non-photosynthetic eukaryotes, heme biosynthesis
begins with the condensation of succinyl-CoA and gly-
cine, forming 8-aminolevulinic acid (ALA) and subse-
quent heme biosynthetic pathway involves seven
enzymes (Figure 1) [9,31].
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Figure 1 Heme Biosynthetic Pathway. Initiation of heme biosynthesis begins in the mitochondria with the condensation of succinyl coenzyme
A (CoA) and glycine, catalyzed by ALA synthetase (ALA-S), form §-aminolevulinic acid (ALA). Conserved biosynthetic protoporphyrin IX (PPIX)
pathway: ALA is catalyzed by ALA dehydratase (ALA-D) in the cytoplasm to form porphobilinogen (PBG). Four molecules of PBG are combined
by PBG deaminase (PBG-D) to form into the cyclic tetrapyrrole hydroxymethylbilane (HMB) and converted to Uroporphyrinogen Il (Uro'gen I1l)
by Uroporphyrinogen lIl synthase (URO-S). Uro'gen Il is converted by Uro’gen IIl decarboxylase (URO-D) to coproorphyrinogen il (Copro’gen lI),
with the removal of CO,. Subsequent conversion of Copro‘gen lIl to Protoporphyrinogen IX (Proto'gen IX) and finally protoporphyrin IX (PPIX)
occurs in the mitochondria. This is catalyzed by the actions of Coproporphyrinogen lIl Oxidase (CPO) and Protophyrinogen IX Oxidase (PPO)
respectively. Finally, ferrous iron (Fe2+) is inserted into the cyclic macrocycle through the action of ferrochelatase (FC) in the mitochondria.
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Sources of Parasite Heme

Heme Biosynthesis

The evolutionary loss of an endogenous heme biosyn-
thetic pathway is thought to be the concomitant out-
come of the adoption of hematophagy in these
hemoparasites [32-34]. Complete loss of de novo heme
biosynthesis has been postulated for the nematodes
Ancylostoma caninum, Haemonchus contortus, Ascaris
suum, the nematomorph Paragordius varius (a parasite
in the hemocoele of insects), the digeneans Schistosoma
mansoni and Philophthalmus megalurus, the tick Rhipi-
cephalus microplus and the hemoflagellate Leishmania
tarentolae, losses determined on the basis of the absence
of enzymatic activities for ALA-D, PBG-D and FC (See
Figure 1) [33,35,36]. Partial loss of the heme biosyn-
thetic ability is postulated for the trypanosomatids L.
amazonenesis, L. infantum, and Trypanosoma cruzi and
the filariid nematode Brugia malayi, in which the first
five enzymes of the pathway are thought to be absent,
while the latter three are functional [37,38].

Scavenging of Host Heme

Although some studies suggest that malaria, the filariid
Setaria digitata and the triatomid hemipteran, Rhodnius
prolixus, synthesize heme de novo [35,39,40], other stu-
dies of malaria and R. prolixus indicate that these para-
sites rely, to a certain extent, on host heme [11,40,41].
For Plasmodium falciparum and P. berghei, it has been
demonstrated that host biosynthetic enzymes present in
the RBCs are trafficked into the parasite and account
for about 80% of the enzymatic activities of intra-para-
site heme biosynthesis [42]. Inhibiting the trafficking of
host ALAD leads to death of intrerythrocytic stages of
malaria [43].

Evidence for heme uptake pathways has also been
found for Trypanosoma cruzi, Leishmania spp and even
for non-hematophagous parasites, like the luminal para-
sitic cestode Hymenolepis microstoma [13,15,44,45]. For
these parasites, heme is an absolute nutritional require-
ment for growth and development, with strong positive
correlations between heme availability and parasite
growth, survival and reproduction and parasite death in
the absence of heme and presence of iron. Uptake of
the heme moiety of Hb or heme analogues has also
been demonstrated in vivo in Schistosoma mansoni
schistosomula, malaria, the tick Rhipicephalus microplus
and the triatomine bug Rhodnius prolixus [35,40,46,47].

Loss of an endogenous heme biosynthetic pathway in
parasites is theorized to have arisen from two contribut-
ing factors. Firstly, hematophagy provides an abundance
of readily available heme. Secondly, as stated, de novo
heme biosynthesis is an oxygen-dependent pathway,
involving eight enzymes (Figure 1). Many endoparasites
are facultative anaerobes and anaerobic metabolism is
thought to occur as a counter-measure against oxidative
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stress from Hb catabolism [48]. Therefore, de novo
heme biosynthesis might conceivably place undesirable
stress on these parasites. Furthermore, loss of an endo-
genous heme biosynthetic pathway is likely to involve a
complex interplay of many factors, including adoption
of heteroxenous life cycles, the presence of multiple
stages in the life-cycle and the involvement of symbiotic
organisms, such as the obligatory endocommensal
microbe Wolbachia, which synthesises heme utilized by
its hosts [33,38,49].

Heme Uptake and Transport

In all multicellular organisms, an efficient set of path-
ways to circulate heme is essential to ensure that the
‘heme pool’ is maintained at physiological level [9]. In
these organisms, heme is transported from the extracel-
lular-to-intracellular environment and from cytoplasm
to mitochondria, and is “scavenging” by molecules when
found in its free state. Efficient transmembrane trans-
port of heme is crucial in supporting biological reactions
and hemoprotein synthesis [50,51].

Heme Transporter Proteins (HTPs)

Although Light and Olson (1990) demonstrated that free
heme can diffuse across membranes, they showed that
passive diffusion is too slow to efficiently support essen-
tial biological reactions as well as hemoprotein synthesis.
Furthermore, heme binding by cells is a saturable, tem-
perature-dependent, tissue-specific and reversible pro-
cess [52]. Heme uptake is regulated by factors like
hypoxia [53]. Given the potential toxicity of heme, trans-
membrane movement of heme is likely to be an energy-
dependent activity mediated by HTPs. Four HTPs have
been identified for mammals, namely, the heme carrier
protein (HCP1) [53], ATP-binding cassette subgroup B
member 6 [54], feline carrier leukemia receptor C and
the ATP-binding cassette subgroup G member 2 [55].
Information on the exact mechanisms involved in the
transmembrane movement of heme is limited, although
it has been suggested to involve specific binding of
heme or heme-bound complexes to the membrane sur-
face, followed by active transmembrane transportation
possibly through a proton pump [53].

In hematophagus parasites, information on these
mechanisms is even scarcer, despite numerous studies
showing the utilization and recycling of exogenous
heme source (e.g. catabolism of host RBC) as essential
for growth and development as well as more specifically
embryogenesis. In Leishmania. m. amazonenesis [56]
and T. cruzi [57], heme uptake is saturable and specific.
For T. cruzi, heme uptake may involve the presence of
an ATP-binding cassette (ABC) transporter [57], a pos-
tulate supported by an inhibition assay of heme uptake,
in which accumulation of the fluorescent heme analogue
palladium mesoporphyrin was detected at the surface of



Toh et al. Parasites & Vectors 2010, 3:108
http://www.parasitesandvectors.com/content/3/1/108

cells after pre-incubation of parasites with cyclosporin
A, an inhibitor of ABC transporters including P-glyco-
proteins (PgP) [57]. Since studies of Leishmania have
demonstrated the lack of a functional heme biosynthetic
enzymatic pathway [13,15,44,45], exogenous heme trans-
ported through HTPs could also be a source of heme
for these parasites.

Heme Binding Proteins (HBPs)

Due to its reactive nature, heme is usually bound to
protein in circulation, and is rarely found as a free mole-
cule. HBPs are important components for heme detoxi-
fication and for recycling of heme and Fe, since they
allow the targeting of heme to specific tissues such as
the liver [58,59], while protecting other tissues against
heme-mediated damage [58,60]. In humans, this seques-
tration and recycling of circulating heme and Hb during
intravascular hemolysis and tissue damage, has been
attributed to three main heme binding proteins: hapto-
globin [59], hemopexin and albumin [58].

For blood-feeding parasites, catabolism of host RBC
results in the release of large quantities of heme. This
concentration of dietary heme represents a condition
unlike that observed for mammals, in which heme abun-
dance is tightly regulated. Parasitic arthropods, including
the ticks, mosquitoes and hemipterans [61-63] express
HBPs.

Two HBPs of ixodid and argasid ticks are hemelipo-
glyco-carrier protein (CP) and vitellogenin (Vg) [61,64].
CP and VG are similar in structure, binding affinity to
heme, lipid and carbohydrates, and in signaling cascades
leading to their expression during blood-feeding, but
have distinct functions, tissue distribution, and regulatory
controls [64]. CP (also known as HeLp in Rhipicephalus
microplus) [65] is a major hemolymph protein composed
of two subunits, with molecular mass ranging from 200
to 500kDa [64]. CP is detected in both male and female
parasites, is highly expressed in the fat bodies and salivary
glands and is up-regulated in response to blood-feeding
[66]. CP is thought to sequester heme and subsequently
transfer it to the hemocoel [61,66], for subsequent trans-
fer to other cytoplasmic HBPs to meet the heme needs of
these parasites [67]. Vg, a precursor of the large multi-
meric yolk protein, is found primarily in the female tick
and egg, although it is synthesized by fat bodies [4,64,66].
Vg is induced by mating and increased levels of ecdyster-
oid, is secreted into the hemolymph and then transported
and incorporated into developing oocytes by receptor
mediated endocytosis [61,66].

A 15kDa heme-binding protein (RHBP), which shares
similar functions with Vg of ticks, has been isolated
from both the hemolymph and oocytes of Rhodnius pro-
lixus [68]. As with Vg, RHBP is postulated to deliver
heme to developing oocytes for vitellogenesis and
embryogenesis [61,68].
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While knowledge of HBPs in arthropods is accumulat-
ing, the data on HBPs of helminth parasites is scant.
Annotated screening of genomic datasets of S. mansoni
[69] reveal a putative heme-binding protein, which
shares a conserved tertiary fold structure with members
of the SOUL/HBP superfamily [70]. Transcription of
this schistosome molecule is increased 3-4-fold in schis-
tosomules cultured in the presence of RBC compared
with those cultured in media alone [71]. The elevated
transcription of a molecule bearing structural similarity
with known heme transporters in the presence of Hb
suggests that this helminth also expresses functional
HBPs.

Heme Detoxification

The requirement to excrete and detoxify the bulk of
ingested heme is essential for hematophagous organ-
isms. This can be demonstrated in the in vitro culture
of L. donovani, in which elevated heme concentrations
results in parasite death [45]. Moreover, the success of
anti-parasitic compounds, such as the quinolines and
artemether, both of which are postulated to inhibit
heme detoxification pathways in malaria and schisto-
somes [72-74], is strong evidence for the importance of
this pathway. Numerous detoxification mechanisms have
been identified in parasitic organisms (Figure 2), includ-
ing the breaking down of heme into Fe and less reactive
intermediates, the containment of heme by a physical
barrier, and converting heme into an inert crystalline
structure.

Heme Oxygenase

In the presence of oxygen and NADPH, human heme
oxygenase (HO) catalyzes the oxidation of heme to a-
meso-hydroxyheme, verdoheme and finally, biliverdin.
Biliverdin is further metabolized to bilirubin and
excreted in the bile, conjugated with glucuronic acid
[75]. Similar catalytic mechanisms by HO-like proteins
are postulated to also occur in bacteria and plants [76].
Conclusive evidence for HO-like activity in haematopha-
gous parasites is lacking, although there has been recent
reports indicating that HO-like activity does occur
[11,77]. The absence of HO homologues in parasitic
organisms have led some researchers to postulate alter-
native pathways for heme catabolism and Fe rescue
[78,79].

Injection of excess heme into the hemocoel of R. pro-
lixus results in the production of a biliverdin-like com-
pound (RpBV), which differs from biliverdin in
possessing two additional cysteine residues [80], an
observation that strongly suggests HO-like activity in
this hemipteran [80]. Similarly, HO-like catabolic system
is thought to exist in Aedes aeypti, as it has been shown
that most Fe in adult mosquitoes are derived from host
heme [12].
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Recently, a P. falciparum HO (PfHO), which shares
similar heme catabolic activity with mammalian HO
despite limited amino acid sequence identity, has been
identified [77]. PfHO is similar to plastidial HO of cyano-
bacteria, algae and other higher plants, all of which use
reduced ferredoxin as its electron source, instead of
NADPH cytochrome P450 reductase as the mammalian
HO does [77]. HO-like activity has also been demon-
strated for P. berghei and it has been noted that signifi-
cantly higher HO activities were detected in chloroquine-
resistant strains [81].

Glutathione-S-Transferase (GST) & Reduced Glutathione
(GSH)

Members of the glutathione-S-transferase (GST) family
characteristically catalyze the breakdown of endogenous
and exogenous toxins with a demonstrated heme cata-
bolic activity found in reduced glutathione (GSH) [82].
Multiple heme-responsive GSTs with high affinity bind-
ing to heme have been identified in H. contortus and A
caninum using sub-proteomic approaches and it has
been suggested that GST is important for transport and
detoxification of heme [78,79].

Fueled by reports indicating a correlation between chlor-
oquine (CLQ) resistance in malaria with a loss of hemozoin
formation [83], it has been proposed that other heme

detoxification mechanisms are present in resistant parasites.
GST and GSH are thought to be important components in
the alternative detoxification of heme in malaria [78,79,83],
since increased GST and GSH activities [81,83,84] occurs
in CLQ-resistant strains. It is possible that malaria GST
acts by binding heme and conjugating it to GSH [78]. GSH,
through a series of reactions in the presence of oxygen, pro-
duces free radicals that cleave heme at the porphyrin ring,
releasing Fe [82]. There remain questions as to how this
mechanism supports heme detoxification in these parasites,
including how they deal with the free radicals and how Fe
is generated. Furthermore, human GST (hGST) is only
active at pH > 6.5 [82] whereas the optimum pH of P. falci-
parum GST (PfGST) is 8.8 [85]. However, the digestive
vacuoles of the malaria parasite are acidic [14], indicating
GST and GSH activity may not occur in that compartment,
which is the site of heme release.
Hemozoin (Hz)
Hz formation is a heme detoxification mechanism
observed only in hematophagus parasites. It is interest-
ing that Hz formation is found in divergent groups of
parasites including malaria, schistosomes (Figure 3) and
some insects.

Subsequent to the initial association of the pigment
with malaria, this detoxification mechanism has also
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Figure 3 Transmission Electron Microscope image of the gastrodermis (syncytial absorptive gut lining) of an adult female Schistosoma
japonicum. The parasite was fixed in 3% glutaraldehyde in cacodylate buffer supplemented with 5% tannic acid, followed by fixation in osmium
tetroxide and embedded in Spurr’s resin. Hemozoin formation in the schistosome gut occurs in structure believed to be epicellular vacuolar
compartments (or luminal pockets of the gastrodermis-see Delcroix et al. [8]) formed by extensive growth of surface lamellae of the syncytial
lining. A. Micrograph of apical region of the gastrodermal syncytium showing abundant epicellular vacuolar compartments (arrows). The pale
bodies (H) in the lumens of the vacuoles are regions of hemoglobin. The dark bodies (Hz) are hemozoin crystals. B. Enlargement of boxed

region of A. Hemozoin forms at the surface of lipid particles. Abbreviations: H-fragment of erythrocyte; Hz-hemozoin; L-lamella of gastrodermis.
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been described for the protistan Haemoproteus colum-
nae [86], the digeneans Echinostoma trivolvis and Schis-
tosoma [87,88] and triatomine bugs [89,90]. The Hz
polymerization pathway is proposed to be an excellent
therapeutic target for malaria and other parasites
[72-74]. The antimalarial quinoline, for example, limits
intra-erythrocytic parasite growth by inhibiting Hz for-
mation [72]. Similarly, quinoline inhibits Hz formation
in S. mansoni in vivo and in vitro [73,91].

Hz is single unit polymer of heme [92,93]. Based on
its physical and molecular properties, Hz differs from
heme aggregates, but is similar to the synthetic B-hema-
tin [94]. Unlike heme aggregates, Hz is insoluble in
bicarbonate buffer and SDS [95] and shows the two
characteristic peaks at 1,209 and 1,662 cm™! with
absence of the characteristic heme peak at 1,707 cm™
by FTIR spectra [96]. The structure of Hz has been con-
firmed by X-ray diffraction [97], infrared spectroscopy
and extended absorption fine structure (EXAFS) [94,98]
as a lattice of hydrogen-bonded heme dimers, linked in
a head-to-tail manner via iron-carboxylate bond with
the ferric iron of one heme unit bound to the propio-
nate side chain of another heme unit.

The mechanisms of Hz formation among different
parasites remain unresolved. Proteins, lipids, alcohol,
acids and even an autocatalytic mechanism have been
proposed to bring about the efficient conversion of
heme to Hz. Most recently, neutral lipids have been
implicated as the primary catalysts [99] causing heme to
be converted to B-hematin at the lipid surface by inter-
action with lipid polar heads. Growth of the B-hematin
crystal appears limited by the curvature of the lipid par-
ticle [99].

Protein was once thought to facilitate the polymeriza-
tion of Hz [100], although this hypothesis has more
recently been discounted [101]. It is now thought that
proteins function as initiation sites for the primary
nucleation step or as chaperones for delivery of heme to
the lipid nanosphere through high affinity binding to
heme [102]. Two proteins, a histidine-rich protein
(HRP) and heme detoxification protein (HDP) have
been identified in Plasmodium spp as potential initiation
sites for Hz formation. These histidine-rich proteins
bind with high affinity to heme, indicating possible bis-
histidyl heme iron coordination [103,4] . However, the
involvement of HRP as an essential catalytic component
of Hz formation has been questioned, because Hz con-
version has been noted in some malaria species in the
absence of a functional HRP [105]. On the other hand,
malaria HDP is able to mediate high levels of heme con-
version, is highly conserved across the Plasmodium
genus, and is internalized into food vacuoles of the para-
site, suggesting a role in Hz formation [104].
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Heme Containment

Peritrophic Matrix (PM)

An efficient means used by some blood-feeding parasites
to separate heme is by the use of a physical barrier, as
seen ion PMs. These structures line the mid-gut of
invertebrates and are synthesized by one or more stages
of the majority of insects examined [105]. PMs are
semi-permeable structures that encase an ingested meal,
partitioning it from the gut epithelial cell lining while
retaining selective permeability to derived compounds
and nutrients [106]. PMs are complex matrices, com-
posed of proteins, proteoglycans and chitins [105], and
are thought to protect the intestinal epithelium against
damage caused by the abrasion of food particles [106].
In hematophagous arthropods, PMs may also protect
against damage from toxic metabolites [106], as well as
against invasion by viruses and bacteria [105].

Heme binds specifically to the PM of Ae. aegypti [62],
suggesting a possible role for the matrix in heme con-
tainment. Such binding is thought to be augmented by
Ae. aegypti intestinal mucin (AeIMUCI), which has been
isolated from both the larvae and adults [107]. Expres-
sion of AeIMUCI is induced by metal feeding and the
protein can bind to chitin as well as large amounts of
heme in vitro [107]. Taken together, these data suggest
that the role of the PM in heme detoxification may be
more than just that of a passive physical barrier.
Hemosomes
An intriguing heme detoxification pathway has been
identified for the tick Rhipicephalus microplus, in which
heme is accumulated as a non-crystalline aggregate in a
specialized organelle of midgut epithelium, the hemo-
some [108]. FTIR spectroscopy of hemosomes revealed
that the heme aggregate is distinct from hemozoin and
is structurally bonded by a novel heme-based interaction
with non-heme components in the hemosome [108]. A
mature hemosome consists of a compact centre, com-
posed of approximately 90% heme aggregates, sur-
rounded by a multi-layered cortex, surrounded in turn
by a lipid bilayer [108]. Heme is transported from the
digestive vacuoles of mid-gut epithelial cells into hemo-
somes [108]. The exact mechanism facilitating this is
unknown, but may involve the use of heme transporters
or binding proteins [10]. At completion of digestion of
the blood meal and maturation of the hemosomes, the
digestive cells detach from the gut wall and are subse-
quently excreted from the tick with feces [108].

Conclusions

The reactive nature of heme renders it both a biologi-
cally important molecule as well as a toxic compound.
In hematophagy, the acquisition and detoxification of
heme is paramount for the survival and establishment of
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parasitism. This is reflected in the fact that parasites are
constantly challenged with the need to process huge
quantities of heme, released from their catabolism of
host erythrocytes. However, there remain many ques-
tions surrounding heme metabolism in these organisms:

1. What is the source of heme for many of these para-
sites? Is there an alternative heme biosynthetic pathway
present in these parasites?

2. What are the underlying mechanisms involved in
the targeting and uptake of heme in these parasites?

3. What is the importance of heme as an iron source
and what enzymatic reactions are involved in catalyzing
the release of iron? Are strategies for heme acquisition
and distribution completely distinct, or are there over-
lapping activities [67].

4. What other novel heme detoxification methods are
utilized by these parasites?

5. Do helminths express novel HBPs for cytoplasmic
storage and intercellular transport of heme?

Despite agreement that pathways of heme biosynth-
esis, uptake, detoxification and even breakdown might
provide potential important targets for drugs and vac-
cine development, there remain wide gaps in our under-
standing of the molecular regulation of these events. In
helminths the available information regarding parasite-
heme interactions remains limited. This is perhaps due
to the absence of easily amenable life cycles and inher-
ent difficulties in culturing the different life cycle stages
in these parasites. There is thus great need for further
work on adaptations of helminths for heme and iron
metabolism [109].
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