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Abstract: In the present study, by spin-coating a solution containing w/o (water-in-oil) emulsions
and hydrophobic polymers, we obtained sheets possessing uniformly dispersed w/o emulsions.
We performed release experiments for more than 100 days and clarified the effects of the number of
layers, the sheet-forming polymers (polylactide (PLA), poly(lactic-co-glycolic acid (PLGA)), the ratio
of organic solvent to water, and the composition of block copolymers on the release properties of the
sheets. For a variety of sheets, we successfully achieved the sustained release of compounds from the
sheets for 100–150 days. The sustained-release of compounds occurred because the compounds had
to diffuse into polymer networks after their release from the emulsions. Interestingly, we observed
an inflection point in the release profiles at around 50 days; that is, the sheet exhibited a “two-step”
release behavior. The results obtained in the present study provide strong evidence for the future
possibility of the time-programmed release of multiple compounds from sheets.
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1. Introduction

Developing a host of biomaterials that stably incorporate hydrophilic biomacromolecules
(e.g., proteins) and release them in a sustained manner is important for the effective differentiation
and growth of cells in tissue engineering. In general, it is difficult to control the sustained-release
property of gel-type biomaterials because the release of compounds from hydrogels depends mainly
on two phenomena: the degradation of the hydrogels and the diffusion of the compounds through
the hydrogels. Both these phenomena can be partially regulated by tuning the hydrogels’ properties,
such as the charge and crosslink density. However, it is difficult to control the diffusion and the
degradation precisely, because the factors affecting them, such as pH and body-fluid levels, are variable
in the body. By contrast, sheets have several advantages over conventional gels: (1) sheets have a
large contact area relative to drug-targeting sites, (2) the shape and size of sheets are easily adjustable,
(3) sheets perform well in surgery, and (4) molecular interactions, such as the Van der Waals force,
can facilitate the gentle adhesion of sheets to body tissues without an inflammatory reaction at
the tissue surface. The properties of sheets, including their flexibility, strength, biocompatibility,
and degradation rate, can be altered through both the blending of several substances [1–5] and the
formation of porosities [1,6,7]. Because of these properties, sheets are attractive for use in biomedical
applications, such as wound-dressing [8–12] and sustained drug release [13–18]. Although there
have been a variety of reports on hydrophobic sheets stating that they can incorporate and release
hydrophobic drugs, the incorporation and release of hydrophilic compounds from sheets remains
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difficult [19,20]. Therefore, there is an urgent need for the development of a novel biomaterial that can
incorporate and release hydrophilic compounds.

To achieve the successful incorporation and release of drugs, we have developed a novel approach
for the construction of functional biomaterials. We have applied this approach to the chemical or
physical conjugation of functional units (such as amphiphilic block copolymers or their self-assemblies)
to base materials, including gels [21–28], sheets [29–31], and particles [32–36]. For example, the covalent
incorporation of trilayered polymeric micelles [37,38] with hydrophilic inner cores into gels gave
them the ability to release hydrophilic compounds [24]. Of the three types of hybrid materials,
sheets can—using our approach—be easily prepared to contain compound-loading sites within them.
Basically, amphiphilic block copolymers are assembled and consequently result in stable droplets
(w/o emulsion) with a hydrophilic inner core in organic solvents. By spin-coating a solution containing
a w/o (water-in-oil) emulsion and hydrophobic polymers, we can easily obtain sheets possessing
uniformly dispersed w/o emulsions (Figure 1). We have reported the effects of preparation conditions
on, for example, the stability [29,30] and the dispersity [30] of inner cores formed from w/o emulsions,
the rheological properties [31], and the degradation properties [31]. In addition, although we conducted
preliminary release experiments [29,31], the release properties of the sheets were not fully determined.
In the present study, we performed release experiments for more than 100 days and clarified, in detail,
the effects that the number of layers, the sheet-forming polymers, the ratio of organic solvent to
water, and the composition of block copolymers on the release properties of sheets. Interestingly,
we found that the sheets successfully exhibit a “two-step” release behavior. To our knowledge,
this is the first report on sheets that exhibit a two-step release behavior from uniformly dispersed
compound-loading sites.
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2. Materials and Methods

2.1. Materials

Amphiphilic block copolymers and methoxy-terminated poly(ethylene glycol)-block-poly
(ε-caprolactone) (PEG-b-PCL), with different compositions, were previously synthesized by anionic
ring-opening polymerization of both ethylene oxide and ε-caprolactone [29], as listed in Table 1.
Fluorescein isothiocyanate-dextran (FITC-dex, average molecular weight: 20,000) was purchased
from Sigma-Aldrich. Poly(vinyl alcohol) (PVA, degree of polymerization: 500, saponification degree:
86–90 mol%) and PLGA (poly(lactic-co-glycolic acid), monomer ratio of lactide to glycolide: 3, average
molecular weight: 20,000) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).
PLA (average molecular weight: 300,000) was purchased from Polysciences Inc. (Warrington, PA).
All other reagents were of analytical grade and were used without further purification.
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Table 1. The different compositions of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL)
used in this study.

Code 1 PEG (Including Methoxy Terminus) PCL PEG-b-PCL

Mn
2 Mw/Mn

2 Mn
3 Mn

2,3 Mw/Mn
2

1.6k–0.7k 1600 1.11 700 2300 1.11
1.5k–1.9k 1500 1.10 1900 3400 1.24
3.0k–0.6k 3000 1.05 600 3600 1.08
3.2k–1.9k 3200 1.04 1900 5100 1.11
2.9k–3.8k 2900 1.05 3800 6700 1.13
4.2k–8.1k 4200 1.04 8100 12,300 1.19

1 Code a-b represents a block copolymer with a composition of PEG Mn (a) and PCL Mn (b), 2 GPC, 3 1H NMR.

2.2. Preparation of the Sheets

We prepared sheets in which either w/o emulsions or w/o emulsions containing fluorescent
hydrophilic polymers were dispersed. FITC-dextran was used as a fluorescent indicator for observing
the release properties of the sheets. The organic solvent used was a dichloromethane-toluene mixed
organic solvent, whose density was adjusted to 1.00 g/cm3. First, in the presence of the polymeric
surfactant PEG-b-PLA (10 w/v%), the w/o emulsion (1 mL) was prepared by sonicating both the
organic solvent and an aqueous PVA solution (1 w/v%) for 5 min in an ice bath (PVA was used
as an emulsion stabilizer). The volume ratio of the organic solvent over the aqueous solution was
399 or 39. Next, the obtained w/o emulsion (1 mL) was added to 10 mL of the organic solvent
containing sheet-forming polymers (PLA (1–3 w/v%) or PLA (2 w/v%) with PLGA (1–4 w/v%)).
The concentration of each polymer corresponded to the value in the final solution after mixing the
emulsion and organic solvent. We then obtained a thin sheet by spin-coating 1 mL of the solution at
2000 rpm for 5 min on an aluminum substrate, which was cleaned with MilliQ water and acetone prior
to use (if desired, multi-layered sheets can be prepared through a repetition of the procedures).

2.3. Characterization of the Emulsions and Sheets

The stability of the emulsion was determined through static observation and dynamic
light scattering (DLS), using the Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK).
The thickness of the sheet was determined by a laser confocal displacement meter (LT-9000, KEYENCE
Co., Tokyo, Japan). The dispersion of the emulsion in the sheets was observed using a fluorescent
microscope (BZ-9000, KEYENCE Co., Tokyo, Japan, λex = 470 nm, λem = 535 nm).

2.4. Release of FITC-Dex from the Sheets in Which W/O Emulsions Containing FITC-Dex Were Dispersed

The sheets (for which the layer number was 11) obtained in the previous section were immersed
in PBS buffer (100 mL, 10 mM, pH 7.4, 37 ◦C). The release of FITC-dex from the sheets was monitored
using a fluorescence spectrometer (λex = 495 nm, λem = 519 nm).

3. Results and Discussion

3.1. Preparation and Characterization of the Sheets in Which W/O Emulsions Were Dispersed

In the present study, we aimed to develop biomaterial sheets with uniformly dispersed inner
spaces, in which it would be possible to load hydrophilic compounds by spin-coating a solution
containing both w/o emulsions prepared from assembled block copolymers (PEG-b-PLA) and
sheet-forming hydrophobic polymers (PLA and PLGA). For the polymeric units that form the block
copolymers, we selected PEG and PCL, because PEG is a biocompatible polymer that has been used
as a non-immunogenic modifier for proteins and drugs [39–43], whereas PCL is a biodegradable
polymer that has been used in the preparation of various biomaterials [44–47]. We used PLA and
PLGA as sheet-forming polymers because PLA [48–50] and PLGA [51–53] have been frequently used
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for the preparation of polymeric biomaterials, because of their biocompatibility and easily controllable
degradation properties. The w/o emulsions had to be highly stable in order to form uniformly
dispersed inner spaces in the sheets, during the sheet preparation process. An emulsion is a system
consisting of two immiscible liquid phases, one of which (the dispersed phase) is dispersed throughout
the other (the continuous phase) in stable, small droplets. All the droplets will clump together and
phase separation will occur over time because the emulsion is usually unstable. Macroscopic separation
of the phases is commonly prevented by using suitable organic solvents, stabilizers, surfactants,
and so on. One of the easiest methods to increase the stability of an emulsion is the use of mixed
organic solvents, whose density is adjusted to 1.00 g/cm3, as the phase separation of the emulsion is
unlikely to occur when the difference in density between the two the phases is nearly equal to zero,
because of the thermodynamically high stability of the emulsion [29,32]. Through static observations
of the stability of the w/o emulsions, we found that an unstable emulsion was obtained when the
block copolymers coded as 1.6k–0.7k and 3.0k–0.6k were used. By contrast, a stable emulsion was
formed when the block copolymers coded as 1.5k–1.9k, 3.2k–1.9k, 2.9k–3.8k, and 4.2k–8.1k were
used (here, we defined an “unstable” emulsion as one that gradually aggregates and causes a phase
separation over time, whereas a “stable” emulsion is one that maintains its diameter and does not
induce a phase separation as time passes). Using DLS to identify the size distribution of the emulsions,
we found that the average diameters of the emulsions formed from the block copolymers coded as
1.5k–1.9k, 3.2k–1.9k, 2.9k–3.8k, and 4.2k–8.1k were 450, 320, 870, and 520 nm, respectively. The results
of the static observations suggested that the stability of the w/o emulsions decreased as the Mn of PCL
decreased, presumably because fewer PCL chains weaken both the formation of emulsion droplets
and repulsion between droplets. We used the block copolymers coded as 3.2k–1.9k in the following
experiments unless otherwise noted.

Transparent, thin, flexible, free-standing sheets were successfully obtained by spin-coating
solutions containing both emulsions and sheet-forming polymers (Figure 2). Figure 3 shows the
effects of the number of layers and polymer concentrations used in the sheet preparation stage on
the sheet thickness. The thickness increased as the number of layers increased, when the sheets were
prepared from PLA or PLA with PLGA (Figure 3A,B). The thickness also increased as the polymer
concentrations increased (Figure 3C,D). In both (C) and (D), the number of layers was 11. As shown
in Figure 3C, the thickness of the sheets drastically increased as the concentration of PLA increased,
because the solution used (the concentration of PLA was over 2 w/v%) was viscous and difficult to
spread during the spin-coating process. By contrast, the solution of PLGA—whose average molecular
weight was 20,000—was not as viscous; thus, the combination of PLGA and PLA had smaller effects
on the sheet thickness than the PLA alone. Furthermore, the addition of PLGA made the sheets more
flexible because PLA is crystalline, whereas PLGA is amorphous [54,55]. In two cases, when PLA alone
(Figure 3A) and when both PLA and PLGA served as sheet-forming polymers (Figure 3B), we obtained
flexible, thin, single-layered sheets with a diameter less than 1 µm.
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Figure 3. The effects of the number of layers and polymer concentrations on the thickness of the sheets:
(A) sheets prepared with a PLA (2 w/v%) solution, (B) sheets prepared with a PLA (2 w/v%) + PLGA
(2 w/v%) solution, (C) sheets prepared with a PLA solution (number of layers: 11), and (D) sheets
prepared with a PLA (2 w/v%) + PLGA solution (number of layers: 11). The polymer concentrations
indicate the values at the preparation stage of the emulsions.

3.2. The Release of FITC-Dex from the Sheets in Which W/O Emulsions Containing FITC-Dex Were Dispersed

To determine the factors that affect the release properties of the sheets, we prepared sheets in
which w/o emulsions containing a hydrophilic polymer, FITC-dextran, were dispersed, and we
evaluated the release of FITC-dextran from the sheets. The release of FITC-dex from the sheets was
monitored using a fluorescence spectrometer for 100–150 days.

Figure 4 shows the effect of the number of layers on the sheets’ release properties. We found
that the number of layers forming the sheets affected the release behavior of FITC-dex from the
sheets: an increase in layers could suppress the initial burst release of FITC-dex. Almost the same
phenomena were observed when determining the effects of the concentrations of sheet-forming
polymers on the release properties of the sheets (Figure 5): An increase in the concentration of
sheet-forming polymers could suppress the initial burst release, and decrease the total release of
FITC-dex. Presumably, these results can be explained by three phenomena: (1) an increase in the
number of layers suppressed the access of the incorporated compounds to the bulk solution because the
sheets’ thickness increased, (2) an increase in sheet-forming polymers suppressed the diffusion of the
incorporated compounds in the sheets, and (3) an increase in sheet-forming polymers suppressed the
mobility of the emulsions’ surface, making it more difficult to release compounds from the emulsions.
These results suggested that the release behavior of compounds from the sheets could be controlled
by tuning both the concentration and the composition of sheet-forming polymers. Similar results
have been reported concerning drug-incorporated sheets: The concentration and drying method of
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sheet-forming polymers (collagen) affected the release of proteins such as human growth hormone
(hGH) [56] and interferon [57], the composition of multi-block poly(ether-ester) matrices affected
the release of proteins [58], and thermally induced cross-linking of sheets suppressed the release of
hydrophobic drugs [59].
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Figure 5. The effect of the concentration of sheet-forming polymers on the release properties of the sheets
(the sheet-forming polymers were (A) PLA and (B) PLA (2 w/v%) + PLGA; number of layers: 11).

Figure 6 shows the effect of the ratios of organic solvent to water in the preparation stage of
emulsions on the release properties of the sheets. As shown, the sheets prepared from an emulsion
with a ratio of organic solvent to water of 39, exhibited faster release than sheets prepared from an
emulsion with a ratio of 399. In fact, in the former case, almost all the FITC-dex was released from the
sheet within a few days because the stability of the w/o emulsions decreased as the volume fraction of
water increased. As the volume fraction of water increased, the diameter of water droplets increased,
and consequently, the density of emulsions’ shells (PCL) decreased. These phenomena induced the
fast release of compounds from the emulsions.
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Finally, we evaluated the effect of the composition of block copolymers on the release properties
of sheets prepared, using PLA and PLGA as sheet-forming polymers. Here, we used block copolymers,
where the Mn of PEG was lower than the Mn of PCL (code 1.5k–1.9k, code 2.9k–3.8k and code
4.2k–8.1k). Figure 7 shows that the release of FITC-dex was suppressed when the block copolymers
coded as 1.5k–1.9k, 2.9k–3.8k and 4.2k–8.1k were used to form emulsions, but was not suppressed
when the block copolymer coded as 3.2k–1.9k was used (Figure 5A). This difference in the release
behavior was due to the composition of block copolymers; that is, the block copolymers (coded as
1.5k–1.9k, 2.9k–3.8k and 4.2k–8.1k) with a higher Mn of PCL than that of PEG presumably formed
more stable emulsions than the block copolymers (coded as 3.2k–1.9k) with a lower Mn of PCL than
that of PEG. Furthermore, the compound-release rates of the sheets ranked in descending order,
according to the block copolymers’ code, as 2.9k–3.8k, 1.5k–1.9k, and 4.2k–8.1k. These results support
the assumption that PCL, with its higher molecular weight, formed emulsions with outer high-density
PCL layers, and consequently, the increased outer PCL layers suppressed the release of FITC-dex
from the emulsions. In another report [60], poly(lactide-co-glycolide)-grafted dextran microspheres
exhibited slow-release properties when hydrophobic units of grafted polymers increased. These results
(including our results) suggest that controlling the amounts of hydrophobic and hydrophilic units at
optimal levels helps to regulate the release properties of the materials.

Among the three types of sheet tested in Figure 7, the one whose emulsions were prepared from
the block copolymer coded as 4.2k–8.1k, released FITC-dex slowly for 50 days and, consequently,
released FITC-dex quickly at zero-order for 100 days. Interestingly, we observed an inflection point
in the release profiles at around 50 days; that is, the sheet exhibited a “two-step” release behavior.
We hypothesize that this interesting phenomenon occurred because the two following steps were
necessary in order to release the incorporated compounds from the sheets: (1) in the first period
(0–50 days), the compounds had to release from the emulsion across the outer high-density PCL shells
and (2) in the next period (50–100 days), the compounds had to diffuse into the polymer networks
after the compounds’ release from emulsions that were uniformly dispersed in the sheets. A similar
slight “two-step” release behavior was observed with the block copolymers coded as 1.5k–1.9k and
2.9k–3.8k at 40 h. These results suggest that the “two-step” release behavior can clearly be observed
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when block copolymers having a higher Mn of PCL are used, because the increase in the thickness of
the PCL outer shell suppresses the initial release of FITC-dex from the inner space of the emulsions.Materials 2018, 11, x FOR PEER REVIEW  8 of 12 
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Combination therapies, in which multiple drugs with different therapeutic effects are used together,
have garnered attention as a method for enhancing therapeutic performance in clinical treatments [61,62].
A variety of multiple drug release systems have been proposed, including a silk fibroin protein scaffold
in which calcium alginate is embedded [63], electrospun nanofibers [64], a physically formed polymeric
micelle-hydrogel composite [65], and a covalently formed polymeric micelle-hydrogel composite [26].
For example, multilayered drug-loaded poly(L-lactide-co-ε-caprolactone) nanofiber meshes were
prepared using sequential electrospinning. The mesh consisted of four layers: a drug-loaded mesh,
a barrier mesh, another drug-loaded mesh, and a basement mesh [64]. The release profiles of the second
drug were regulated by the optimal design of the barrier-mesh. There is significant demand for the
continual development of biomaterials designed for the dual release of compounds. Unlike previously
reported materials for the dual (or multiple) release of compounds, our sheets (as shown in Figure 7)
simultaneously offer three distinct advantages: (1) the preparation requires only physical processes
(no chemical reaction is necessary), (2) hydrophilic compounds can be encapsulated despite the
hydrophobic nature of the sheets, (3) the time-programmed release of multiple compounds is possible
because the release profiles include two steps.

4. Conclusions

In the present study, by spin-coating a solution containing w/o emulsion and hydrophobic
polymers, we obtained sheets with uniformly dispersed w/o emulsions. We performed release
experiments for more than 100 days and clarified the effect that four variables—the number of
layers, the type of sheet-forming polymer, the ratio of organic solvent to water, and the composition
of block copolymers—had on the release properties of PLA- or PLA/PLGA-emulsion composite
sheets. For a variety of sheets, we successfully achieved the sustained-release of compounds from
the sheets for 100–150 days. The sustained release of the compounds was successfully achieved
because entangled sheet-forming polymer networks suppressed the diffusion of the compounds.
Interestingly, we observed an inflection point in the release profiles at 50 days; that is, the sheet
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exhibited a “two-step” release behavior. Although further studies on biocompatibility, cytotoxicity,
and cell-material interactions are necessary before biomedical use, the results obtained in the present
study strongly suggest that the time-programmed release of multiple compounds from sheets will be a
reality in the near future.
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